1
|
Pangeni R, Poudel S, Momin MAM, Farkas D, Dalton C, Hall F, Kang JD, Hylemon P, Longest W, Hindle M, Xu Q. Inhalable tobramycin EEG powder formulation for treating Pseudomonas aeruginosa-induced lung infection. Int J Pharm 2024; 662:124504. [PMID: 39053676 PMCID: PMC11344668 DOI: 10.1016/j.ijpharm.2024.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Pulmonary delivery of antibiotics is an effective strategy in treating bacterial lung infection for cystic fibrosis patients, by achieving high local drug concentrations and reducing overall systemic exposure compared to systemic administration. However, the inherent anatomical lung defense mechanisms, formulation characteristics, and drug-device combination determine the treatment efficacy of the aerosol delivery approach. In this study, we prepared a new tobramycin (Tobi) dry powder aerosol using excipient enhanced growth (EEG) technology and evaluated the in vitro and in vivo aerosol performance. We further established a Pseudomonas aeruginosa-induced lung infection rat model using an in-house designed novel liquid aerosolizer device. Notably, novel liquid aerosolizer yields comparable lung infection profiles despite administering 3-times lower P. aeruginosa CFU per rat in comparison to the conventional intratracheal administration. Dry powder insufflator (e.g. Penn-Century DP-4) to administer small powder masses to experimental animals is no longer commercially available. To address this gap, we developed a novel rat air-jet dry powder insufflator (Rat AJ DPI) that can emit 68-70 % of the loaded mass for 2 mg and 5 mg of Tobi-EEG powder formulations, achieving a high rat lung deposition efficiency of 79 % and 86 %, respectively. Rat AJ DPI can achieve homogenous distribution of Tobi EEG powder formulations at both loaded mass (2 mg and 5 mg) over all five lung lobes in rats. We then demonstrated that Tobi EEG formulation delivered by Rat AJ DPI can significantly decrease CFU counts in both trachea and lung lobes at 2 mg (p < 0.05) and 5 mg (p < 0.001) loaded mass compared to the untreated P. aeruginosa-infected group. Tobi EEG powder formulation delivered by the novel Rat AJ DPI showed excellent efficiencies in substantially reducing the P. aeruginosa-induced lung infection in rats.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Surendra Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Caleb Dalton
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Felicia Hall
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason D Kang
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Phillip Hylemon
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Baldelli A, Jerry Wong CY, Oguzlu H, Gholizadeh H, Guo Y, Ong HX, Singh A, Traini D, Pratap-Singh A. Nasal delivery of encapsulated recombinant ACE2 as a prophylactic drug for SARS-CoV-2. Int J Pharm 2024; 655:124009. [PMID: 38493838 DOI: 10.1016/j.ijpharm.2024.124009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is responsible for cell fusion with SARS-CoV viruses. ACE2 is contained in different areas of the human body, including the nasal cavity, which is considered the main entrance for different types of airborne viruses. We took advantage of the roles of ACE2 and the nasal cavity in SARS-CoV-2 replication and transmission to develop a nasal dry powder. Recombinant ACE2 (rhACE2), after a proper encapsulation achieved via spray freeze drying, shows a binding efficiency with spike proteins of SARS-CoV-2 higher than 77 % at quantities lower than 5 µg/ml. Once delivered to the nose, encapsulated rhACE2 led to viability and permeability of RPMI 2650 cells of at least 90.20 ± 0.67 % and 47.96 ± 4.46 %, respectively, for concentrations lower than 1 mg/ml. These results were validated using nasal dry powder containing rhACE2 to prevent or treat infections derived from SARS-CoV-2.
Collapse
Affiliation(s)
- Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, Canada; School of Agriculture and Food Sustainability, The University of Queensland, Australia.
| | - Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Hale Oguzlu
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Canada
| | - Hanieh Gholizadeh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Yigong Guo
- Faculty of Land and Food Systems, The University of British Columbia, Canada
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Australia Sydney, Australia
| | - Anika Singh
- Natural Health and Food Products Research Group, Centre for Applied Research, and Innovation (CARI), British Columbia Institute of Technology, Canada
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Australia Sydney, Australia
| | | |
Collapse
|
3
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
4
|
Aladwani G, Momin MAM, Spence B, Farkas DR, Bonasera S, Hassan A, Hindle M, Longest W. Effects of different mesh nebulizer sources on the dispersion of powder formulations produced with a new small-particle spray dryer. Int J Pharm 2023; 642:123138. [PMID: 37307962 PMCID: PMC10527815 DOI: 10.1016/j.ijpharm.2023.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The objective of this study was to explore the aerosolization performance of powders produced with different mesh nebulizer sources in the initial design of a new small-particle spray dryer system. An aqueous excipient enhanced growth (EEG) model formulation was spray dried using different mesh sources and the resulting powders were characterized based on (i) laser diffraction, (ii) aerosolization with a new infant air-jet dry powder inhaler, and (iii) aerosol transport through an infant nose-throat (NT) model ending with a tracheal filter. While few differences were observed among the powders, the medical-grade Aerogen Solo (with custom holder) and Aerogen Pro mesh sources were selected as lead candidates that produced mean fine particle fractions <5 µm and <1 µm in ranges of 80.6-77.4% and 13.1-16.0%, respectively. Improved aerosolization performance was achieved at a lower spray drying temperature. Lung delivery efficiencies through the NT model were in the range of 42.5-45.8% for powders from the Aerogen mesh sources, which were very similar to previous results with a commercial spray dryer. Ultimately, a custom spray dryer that can accept meshes with different characteristics (e.g., pore sizes and liquid flow rates) will provide particle engineers greater flexibility in producing highly dispersible powders with unique characteristics.
Collapse
Affiliation(s)
- Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Dale R Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|