1
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
2
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influencia de la farmacogenética en la diversidad de respuesta a las estatinas asociada a las reacciones adversas. ADVANCES IN LABORATORY MEDICINE 2023; 4:353-364. [PMID: 38106494 PMCID: PMC10724860 DOI: 10.1515/almed-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Introducción Las estatinas son unos de los medicamentos más prescritos en los países desarrollados por ser el tratamiento de elección para reducir los niveles de colesterol ayudando así a prevenir la enfermedad cardiovascular. Sin embargo, un gran número de pacientes sufre reacciones adversas, en especial miotoxicidad. Entre los factores que influyen en la diversidad de respuesta, la farmacogenética puede jugar un papel relevante especialmente en la prevención de los efectos adversos asociados a estos medicamentos. Contenido Revisión de los conocimientos actuales sobre la influencia de la farmacogenética en la aparición y prevención de las reacciones adversas asociadas a estatinas, así como del beneficio clínico del test farmacogenético anticipado. Resumen Variaciones genéticas en SLCO1B1 (rs4149056) para todas las estatinas; en ABCG2 (rs2231142) para rosuvastatina; o en CYP2C9 (rs1799853 y rs1057910) para fluvastatina están asociadas a un incremento de las reacciones adversas de tipo muscular y a una baja adherencia al tratamiento. Además, diversos fármacos inhibidores de estos transportadores y enzimas de biotransformación incrementan la exposición sistémica de las estatinas favoreciendo la aparición de las reacciones adversas. Perspectiva La implementación clínica del análisis anticipado de este panel de farmacogenética evitaría en gran parte la aparición de reacciones adversas. Además, la estandarización en la identificación de los efectos adversos, en la metodología e interpretación del genotipo, permitirá obtener resultados más concluyentes sobre la asociación entre las variantes genéticas del SLCO1B1, ABCG y CYP2C9 y la aparición de reacciones adversas y establecer recomendaciones para alcanzar tratamientos más personalizados para cada estatina.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| |
Collapse
|
3
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influence of pharmacogenetics on the diversity of response to statins associated with adverse drug reactions. ADVANCES IN LABORATORY MEDICINE 2023; 4:341-352. [PMID: 38106499 PMCID: PMC10724874 DOI: 10.1515/almed-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Background Statins are one of the most prescribed medications in developed countries as the treatment of choice for reducing cholesterol and preventing cardiovascular diseases. However, a large proportion of patients experience adverse drug reactions, especially myotoxicity. Among the factors that influence the diversity of response, pharmacogenetics emerges as a relevant factor of influence in inter-individual differences in response to statins and can be useful in the prevention of adverse drug effects. Content A systematic review was performed of current knowledge of the influence of pharmacogenetics on the occurrence and prevention of statin-associated adverse reactions and clinical benefits of preemptive pharmacogenetics testing. Summary Genetic variants SLCO1B1 (rs4149056) for all statins; ABCG2 (rs2231142) for rosuvastatin; or CYP2C9 (rs1799853 and rs1057910) for fluvastatin are associated with an increase in muscle-related adverse effects and poor treatment adherence. Besides, various inhibitors of these transporters and biotransformation enzymes increase the systemic exposure of statins, thereby favoring the occurrence of adverse drug reactions. Outlook The clinical preemptive testing of this pharmacogenetic panel would largely prevent the incidence of adverse drug reactions. Standardized methods should be used for the identification of adverse effects and the performance and interpretation of genotyping test results. Standardization would allow to obtain more conclusive results about the association between SLCO1B1, ABCG and CYP2C9 variants and the occurrence of adverse drug reactions. As a result, more personalized recommendations could be established for each statin.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Ramsey LB, Gong L, Lee SB, Wagner JB, Zhou X, Sangkuhl K, Adams SM, Straka RJ, Empey PE, Boone EC, Klein TE, Niemi M, Gaedigk A. PharmVar GeneFocus: SLCO1B1. Clin Pharmacol Ther 2023; 113:782-793. [PMID: 35797228 PMCID: PMC10900141 DOI: 10.1002/cpt.2705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) is now providing star (*) allele nomenclature for the highly polymorphic human SLCO1B1 gene encoding the organic anion transporting polypeptide 1B1 (OATP1B1) drug transporter. Genetic variation within the SLCO1B1 gene locus impacts drug transport, which can lead to altered pharmacokinetic profiles of several commonly prescribed drugs. Variable OATP1B1 function is of particular importance regarding hepatic uptake of statins and the risk of statin-associated musculoskeletal symptoms. To introduce this important drug transporter gene into the PharmVar database and serve as a unified reference of haplotype variation moving forward, an international group of gene experts has performed an extensive review of all published SLCO1B1 star alleles. Previously published star alleles were self-assigned by authors and only loosely followed the star nomenclature system that was first developed for cytochrome P450 genes. This nomenclature system has been standardized by PharmVar and is now applied to other important pharmacogenes such as SLCO1B1. In addition, data from the 1000 Genomes Project and investigator-submitted data were utilized to confirm existing haplotypes, fill knowledge gaps, and/or define novel star alleles. The PharmVar-developed SLCO1B1 nomenclature has been incorporated by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 2022 guideline on statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Laura B Ramsey
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Korea
| | - Jonathan B Wagner
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Solomon M Adams
- School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip E Empey
- School of Pharmacy and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
5
|
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Pharmaceutics 2023; 15:1020. [PMID: 36986880 PMCID: PMC10052025 DOI: 10.3390/pharmaceutics15031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired transport activity of hepatic OATP1B1 and OATP1B3 due to drug-drug interactions (DDIs) often leads to increased systemic exposure to substrate drugs (e.g., lipid-lowering statins). Since dyslipidemia and hypertension frequently coexist, statins are often concurrently used with antihypertensives, including calcium channel blockers (CCBs). OATP1B1/1B3-related DDIs in humans have been reported for several CCBs. To date, the OATP1B1/1B3-mediated DDI potential of CCB nicardipine has not been assessed. The current study was designed to assess the OATP1B1- and OATP1B3-mediated DDI potential of nicardipine using the R-value model, following the US-FDA guidance. IC50 values of nicardipine against OATP1B1 and OATP1B3 were determined in transporter-overexpressing human embryonic kidney 293 cells using [3H]-estradiol 17β-D-glucuronide and [3H]-cholecystokinin-8 as substrates, respectively, with or without nicardipine-preincubation in protein-free Hanks' Balanced Salt Solution (HBSS) or in fetal bovine serum (FBS)-containing culture medium. Preincubation with nicardipine for 30 min in protein-free HBSS buffer produced lower IC50 and higher R-values for both OATP1B1 and OATP1B3 compared to in FBS-containing medium, yielding IC50 values of 0.98 and 1.63 µM and R-values of 1.4 and 1.3 for OATP1B1 and OATP1B3, respectively. The R-values were higher than the US-FDA cut-off value of 1.1, supporting that nicardipine has the potential to cause OATP1B1/3-mediated DDIs. Current studies provide insight into the consideration of optimal preincubation conditions when assessing the OATP1B1/3-mediated DDIs in vitro.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
6
|
Fan Y, Wang H, Yu Z, Liang Z, Li Y, You G. Inhibition of proteasome, but not lysosome, upregulates organic anion transporter 3 in vitro and in vivo. Biochem Pharmacol 2023; 208:115387. [PMID: 36549459 PMCID: PMC9877193 DOI: 10.1016/j.bcp.2022.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Organic anion transporter 3 (OAT3), an indispensable basolateral membrane transporter predominantly distributed in the kidney proximal tubules, mediated the systemic clearance of substrates including clinical drugs, nutrients, endogenous and exogenous metabolites, toxins, and critically sustains body homeostasis. Preliminary data in this study showed that classical proteasome inhibitors (e.g., MG132), but not lysosome inhibitors, significantly increased the OAT3 ubiquitination and OAT3-mediated transport of estrone sulfate (ES) in OAT3 stable expressing cells, indicating that proteasome rather than lysosome is involved in the intracellular fate of OAT3. Next, bortezomib and carfilzomib, two FDA-approved and widely applied anticancer agents through selective targeting proteasome, were further used to define the role of inhibiting proteasome in OAT3 regulation and related molecular mechanisms. The results showed that 20S proteasome activity in cell lysates was suppressed with bortezomib and carfilzomib treatment, leading to the increased OAT3 ubiquitination, stimulated transport activity of ES, enhanced OAT3 surface and total expression. The upregulated OAT3 function by proteasome inhibition was attributed to the augment in maximum transport velocity and stability of membrane OAT3. Lastly, in vivo study using Sprague Dawley rats validated that proteasome inhibition using bortezomib induced enhancement of OAT3 ubiquitination and membrane expression in kidney. These data suggest that activity of proteasome but not lysosome could have an impact on the physiological function of OAT3, and proteasome displayed a promising target for OAT3 regulation in vitro and in vivo, and could be used in restoring OAT3 impairment under pathological conditions, avoiding OAT3-associated toxicity and diseases, ensuring drug efficacy and safety.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yufan Li
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Da Costa GV, Neto MFA, Da Silva AKP, De Sá EMF, Cancela LCF, Vega JS, Lobato CM, Zuliani JP, Espejo-Román JM, Campos JM, Leite FHA, Santos CBR. Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. Int J Mol Sci 2022; 23:8218. [PMID: 35897792 PMCID: PMC9332482 DOI: 10.3390/ijms23158218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is the main vector that transmits viral diseases such as dengue, hemorrhagic dengue, urban yellow fever, zika, and chikungunya. Worldwide, many cases of dengue have been reported in recent years, showing significant growth. The best way to manage diseases transmitted by Aedes aegypti is to control the vector with insecticides, which have already been shown to be toxic to humans; moreover, insects have developed resistance. Thus, the development of new insecticides is considered an emergency. One way to achieve this goal is to apply computational methods based on ligands and target information. In this study, sixteen compounds with acceptable insecticidal activities, with 100% larvicidal activity at low concentrations (2.0 to 0.001 mg·L−1), were selected from the literature. These compounds were used to build up and validate pharmacophore models. Pharmacophore model 6 (AUC = 0.78; BEDROC = 0.6) was used to filter 4793 compounds from the subset of lead-like compounds from the ZINC database; 4142 compounds (dG < 0 kcal/mol) were then aligned to the active site of the juvenile hormone receptor Aedes aegypti (PDB: 5V13), 2240 compounds (LE < −0.40 kcal/mol) were prioritized for molecular docking from the construction of a chitin deacetylase model of Aedes aegypti by the homology modeling of the Bombyx mori species (PDB: 5ZNT), which aligned 1959 compounds (dG < 0 kcal/mol), and 20 compounds (LE < −0.4 kcal/mol) were predicted for pharmacokinetic and toxicological prediction in silico (Preadmet, SwissADMET, and eMolTox programs). Finally, the theoretical routes of compounds M01, M02, M03, M04, and M05 were proposed. Compounds M01−M05 were selected, showing significant differences in pharmacokinetic and toxicological parameters in relation to positive controls and interaction with catalytic residues among key protein sites reported in the literature. For this reason, the molecules investigated here are dual inhibitors of the enzymes chitin synthase and juvenile hormonal protein from insects and humans, characterizing them as potential insecticides against the Aedes aegypti mosquito.
Collapse
Affiliation(s)
- Glauber V. Da Costa
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Moysés F. A. Neto
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Alicia K. P. Da Silva
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Ester M. F. De Sá
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Luanne C. F. Cancela
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Jeanina S. Vega
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Cássio M. Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Juliana P. Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 78912-000, RO, Brazil;
| | - José M. Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Franco H. A. Leite
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Cleydson B. R. Santos
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| |
Collapse
|
8
|
Farasyn T, Pahwa S, Xu C, Yue W. Pre-incubation with OATP1B1 and OATP1B3 inhibitors potentiates inhibitory effects in physiologically relevant sandwich-cultured primary human hepatocytes. Eur J Pharm Sci 2021; 165:105951. [PMID: 34311070 PMCID: PMC11005446 DOI: 10.1016/j.ejps.2021.105951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 are liver-specific transport proteins that express on the basolateral membrane of human hepatocytes and mediate hepatic uptake of many drugs, including statins. They are important determinants of transporter-mediated drug-drug interactions (DDIs). It has been reported that pre-incubation with some OATP1B1 and OATP1B3 inhibitors potentiates the inhibitory effects, yielding reduced IC50 values. The US FDA draft guidance has recently recommended to use the lower IC50 values after inhibitor-preincubation to assess OATP1B1 and OATP1B3-mediated DDIs. However, it remains unknown whether the potentiation effects of inhibitor-preincubation on IC50 values occur in a physiologically relevant cell model. The current study was designed to determine the IC50 values of OATP1B1 and OATP1B3 inhibitors everolimus (EVR), sirolimus (SIR), and dasatinib against OATP1B substrates in physiologically relevant primary human hepatocytes with or without inhibitor-preincubation and to compare the OATP-mediated DDI prediction using data from primary human hepatocytes and that reported previously in transporter-expressing cell lines. Primary human hepatocytes were cultured in a sandwich configuration. Accumulation of [3H]-CCK-8 (1 µM, 1.5 min), [3H]-rosuvastatin (0.5 µM, 2 min) and [3H]-pitavastatin (1 µM, 0.5 min) was determined in human sandwich-cultured hepatocytes (SCH) in the presence of vehicle control or an inhibitor with or without inhibitor-preincubation at designated concentrations, and was utilized to determine the IC50 values for these inhibitors. R-value models were used to predict OATP-mediated DDIs. Pre-incubation with EVR at a clinically relevant concentration of 0.2 µM significantly reduced accumulation of [3H]-CCK-8 and [3H]-rosuvastatin even after washing. Reduced IC50 values following inhibitor pre-incubation were observed for all three inhibitors using [3H]-CCK-8 and [3H]-rosuvastatin as substrates in human SCH. The IC50 values after inhibitor-preincubation were lower or comparable in transporter-expressing cell lines compared with that in human SCH. For dasatinib, R-values from both cell lines and human SCH were greater than the US FDA cut-off value of 1.1. For EVR, R values from cell lines were 1.23 and were lowered to near 1.1 (1.08-1.09) in human SCH. For SIR, R values from either cell type were less than the cut-off values of 1.1. In conclusion, the current study is the first to report that pre-incubation with OATP1B inhibitors potentiates inhibitory effects in physiologically relevant primary human hepatocytes, supporting the rationale of the current US FDA draft guidance of including an inhibitor-preincubation step when assessing OATP-mediated DDIs in vitro. IC50 values after inhibitor-preincubation in transporter-expressing cell lines may be used for DDI prediction for the purpose of mitigating false-negative OATP-mediated DDI prediction.
Collapse
Affiliation(s)
| | | | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK US
| | - Wei Yue
- Department of Pharmaceutical Sciences, US.
| |
Collapse
|
9
|
Martinez-Guerrero L, Zhang X, Zorn KM, Ekins S, Wright SH. Cationic Compounds with SARS-CoV-2 Antiviral Activity and Their Interaction with Organic Cation Transporter/Multidrug and Toxin Extruder Secretory Transporters. J Pharmacol Exp Ther 2021; 379:96-107. [PMID: 34253645 PMCID: PMC9006906 DOI: 10.1124/jpet.121.000619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.
Collapse
Affiliation(s)
- Lucy Martinez-Guerrero
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Sean Ekins
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| |
Collapse
|
10
|
Zhang L, Sarangi V, Ho MF, Moon I, Kalari KR, Wang L, Weinshilboum RM. SLCO1B1: Application and Limitations of Deep Mutational Scanning for Genomic Missense Variant Function. Drug Metab Dispos 2021; 49:395-404. [PMID: 33658230 PMCID: PMC8042483 DOI: 10.1124/dmd.120.000264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
SLCO1B1 (solute carrier organic anion transporter family member 1B1) is an important transmembrane hepatic uptake transporter. Genetic variants in the SLCO1B1 gene have been associated with altered protein folding, resulting in protein degradation and decreased transporter activity. Next-generation sequencing (NGS) of pharmacogenes is being applied increasingly to associate variation in drug response with genetic sequence variants. However, it is difficult to link variants of unknown significance with functional phenotypes using "one-at-a-time" functional systems. Deep mutational scanning (DMS) using a "landing pad cell-based system" is a high-throughput technique designed to analyze hundreds of gene open reading frame (ORF) missense variants in a parallel and scalable fashion. We have applied DMS to analyze 137 missense variants in the SLCO1B1 ORF obtained from the Exome Aggregation Consortium project. ORFs containing these variants were fused to green fluorescent protein and were integrated into "landing pad" cells. Florescence-activated cell sorting was performed to separate the cells into four groups based on fluorescence readout indicating protein expression at the single cell level. NGS was then performed and SLCO1B1 variant frequencies were used to determine protein abundance. We found that six variants not previously characterized functionally displayed less than 25% and another 12 displayed approximately 50% of wild-type protein expression. These results were then functionally validated by transporter studies. Severely damaging variants identified by DMS may have clinical relevance for SLCO1B1-dependent drug transport, but we need to exercise caution since the relatively small number of severely damaging variants identified raise questions with regard to the application of DMS to intrinsic membrane proteins such as organic anion transporter protein 1B1. SIGNIFICANCE STATEMENT: The functional implications of a large numbers of open reading frame (ORF) "variants of unknown significance" (VUS) in transporter genes have not been characterized. This study applied deep mutational scanning to determine the functional effects of VUS that have been observed in the ORF of SLCO1B1(s olute carrier organic anion transporter family member 1B1). Several severely damaging variants were identified, studied, and validated. These observations have implications for both the application of deep mutational scanning to intrinsic membrane proteins and for the clinical effect of drugs and endogenous compounds transported by SLCO1B1.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Vivekananda Sarangi
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Irene Moon
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Rendic S, Guengerich FP. Metabolism and Interactions of Chloroquine and Hydroxychloroquine with Human Cytochrome P450 Enzymes and Drug Transporters. Curr Drug Metab 2021; 21:1127-1135. [PMID: 33292107 DOI: 10.2174/1389200221999201208211537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In clinical practice, chloroquine and hydroxychloroquine are often co-administered with other drugs in the treatment of malaria, chronic inflammatory diseases, and COVID-19. Therefore, their metabolic properties and the effects on the activity of cytochrome P450 (P450, CYP) enzymes and drug transporters should be considered when developing the most efficient treatments for patients. METHODS Scientific literature on the interactions of chloroquine and hydroxychloroquine with human P450 enzymes and drug transporters, was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/) and the ADME database (https://life-science.kyushu.fujitsu.com/admedb/). RESULTS Chloroquine and hydroxychloroquine are metabolized by P450 1A2, 2C8, 2C19, 2D6, and 3A4/5 in vitro and by P450s 2C8 and 3A4/5 in vivo by N-deethylation. Chloroquine effectively inhibited P450 2D6 in vitro; however, in vivo inhibition was not apparent except in individuals with limited P450 2D6 activity. Chloroquine is both an inhibitor and inducer of the transporter MRP1 and is also a substrate of the Mate and MRP1 transport systems. Hydroxychloroquine also inhibited P450 2D6 and the transporter OATP1A2. CONCLUSIONS Chloroquine caused a statistically significant decrease in P450 2D6 activity in vitro and in vivo, also inhibiting its own metabolism by the enzyme. The inhibition indicates a potential for clinical drug-drug interactions when taken with other drugs that are predominant substrates of the P450 2D6. When chloroquine and hydroxychloroquine are used clinically with other drugs, substrates of P450 2D6 enzyme, attention should be given to substrate-specific metabolism by P450 2D6 alleles present in individuals taking the drugs.
Collapse
Affiliation(s)
| | - Frederick Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
12
|
Farasyn T, Xu C, Yue W. Development of a Rat Sandwich-Cultured Hepatocytes Model Expressing Functional Human Organic Anion Transporting Polypeptide (OATP) 1B3: A Potential Screening Tool for Liver-Targeting Compounds. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2021; 24:475-483. [PMID: 34516949 PMCID: PMC11195919 DOI: 10.18433/jpps31818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Organic anion transporting polypeptide (OATP) 1B3 transports many clinically important drugs, including statins, from blood into the liver. It exclusively expresses in human liver under normal physiological conditions. There is no rodent ortholog of human OATP1B3. Tissue targeting of therapeutic molecules mediated by transporters, including liver-targeting via liver-specific OATPs, is an emerging area in drug development. Sandwich-cultured primary hepatocytes (SCH) are a well characterized in vitro model for assessment of hepatic drug uptake and biliary excretion. The current study was designed to develop a novel rat SCH model expressing human OATP1B3 to study the hepatic disposition of OATP1B3 substrates. METHODS Primary rat hepatocytes transduced with adenoviral vectors expressing FLAG-tagged OATP1B3 (Ad-OATP1B3), a control vector Ad-LacZ, or that were non-transduced were cultured in a sandwich configuration. FLAG immunoblot and immunofluorescence-staining determined expression and localization of OATP1B3. Uptake of [3H]-cholecystokinin octapeptide (CCK-8), a specific OATP1B3 substrate, was determined. Taurocholate (TC) is a substrate routinely used in SCH to assess biliary excretion via bile canaliculi (BC) and is also a substrate of OATP1B3. [3H]-TC accumulation in cells+BC, cells, biliary excretion index (BEI) and in vitro Clbiliary were determined using B-CLEAR® technology. RESULTS OATP1B3 protein was extensively expressed and primarily localized on the plasma membrane in day 4 Ad-OATP1B3-transduced rat SCH. [3H]-CCK-8 accumulation in cells+BC was significantly greater (~5-13 folds, p<0.001) in day 4 SCH with vs. without Ad-OATP1B3-transduction. Expressing OATP1B3 in rat SCH significantly increased [3H]-TC accumulation in cells+BC and cells, without affecting BEI and in vitro Clbiliary. CONCLUSIONS Rat SCH expressing human OATP1B3-is a novel in vitro model allowing simultaneous assessment of hepatic uptake, hepatocellular accumulation and biliary excretion process of a human OATP1B3 substrate. This model could be a potential tool for screening for liver-targeting compounds mediated by OATP1B3.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chao Xu
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
13
|
Kayesh R, Farasyn T, Crowe A, Liu Q, Pahwa S, Alam K, Neuhoff S, Hatley O, Ding K, Yue W. Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. J Pharm Sci 2021; 110:314-324. [PMID: 32590030 PMCID: PMC7750294 DOI: 10.1016/j.xphs.2020.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important determinants of transporter-mediated drug-drug interactions (DDIs). Current studies assessed the OATP1B1 and OATP1B3-mediated DDI potential of vemurafenib, a kinase inhibitor drug with high protein binding and low aqueous solubility, using R-value and physiologically-based pharmacokinetic (PBPK) models. The total half-maximal inhibitory concentration (IC50,total) values of vemurafenib against OATP1B1 and OATP1B3 were determined in 100% human plasma in transporter-overexpressing human embryonic kidney 293 stable cell lines. The unbound fraction of vemurafenib in human plasma before (fu,plasma) and after addition into the uptake assay plate (fu,plasma,inc) were determined by rapid equilibrium dialysis. There was no statistically significant difference between fu,plasma and fu,plasma,inc. Vemurafenib IC50,total values against OATP1B1 and OATP1B3 are 175 ± 82 and 231 ± 26 μM, respectively. The R-values [R = 1 + fu,plasma × Iin,max/(fu,plasma,inc × IC50,total)] were then simplified as R = 1+Iin,max/IC50,total, and were 1.76 and 1.57 for OATP1B1 and OATP1B3, respectively. The simulated pravastatin AUC ratio was 1.28 when a single dose of pravastatin (40 mg) was co-administered with vemurafenib (960 mg, twice daily) at steady-state, compared to pravastatin alone. Both R-value and PBPK models predict that vemurafenib has the potential to cause OATP1B1- and OATP1B3-mediated DDIs.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Qiang Liu
- ARL Bio Pharma, Oklahoma City, Oklahoma 73104
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
14
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin Toxicol (Phila) 2020; 59:12-23. [DOI: 10.1080/15563650.2020.1817479] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cassandra Doyno
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, CT, USA
| | - Diana M. Sobieraj
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, CT, USA
| | - William L. Baker
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, CT, USA
| |
Collapse
|
16
|
Ma X, Qin X, Shang X, Liu M, Wang X. Organic anion transport polypeptide 1b2 selectively affects the pharmacokinetic interaction between paclitaxel and sorafenib in rats. Biochem Pharmacol 2019; 169:113612. [DOI: 10.1016/j.bcp.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 01/27/2023]
|
17
|
Farasyn T, Crowe A, Hatley O, Neuhoff S, Alam K, Kanyo J, Lam TT, Ding K, Yue W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J Pharm Sci 2019; 108:3443-3456. [PMID: 31047942 PMCID: PMC6759397 DOI: 10.1016/j.xphs.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Oliver Hatley
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jean Kanyo
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
18
|
Crowe A, Zheng W, Miller J, Pahwa S, Alam K, Fung KM, Rubin E, Yin F, Ding K, Yue W. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 2019; 36:101. [PMID: 31093828 DOI: 10.1007/s11095-019-2634-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Membrane transport protein organic anion transporting polypeptide (OATP) 1B1 mediates hepatic uptake of many drugs (e.g. statins). The OATP1B1 c.521 T > C (p. V174A) polymorphism has reduced transport activity. Conflicting in vitro results exist regarding whether V174A-OATP1B1 has reduced plasma membrane localization; no such data has been reported in physiologically relevant human liver tissue. Other potential changes, such as phosphorylation, of the V174A-OATP1B1 protein have not been explored. Current studies characterized the plasma membrane localization of V174A-OATP1B1 in genotyped human liver tissue and cell culture and compared the phosphorylation status of V174A- and wild-type (WT)-OATP1B1. METHODS Localization of V174A- and WT-OATP1B1 were determined in OATP1B1 c.521 T > C genotyped human liver tissue (n = 79) by immunohistochemistry and in transporter-overexpressing human embryonic kidney (HEK) 293 and HeLa cells by surface biotinylation and confocal microscopy. Phosphorylation and transport of OATP1B1 was determined using 32P-orthophosphate labeling and [3H]estradiol-17β-glucuronide accumulation, respectively. RESULTS All three methods demonstrated predominant plasma membrane localization of both V174A- and WT-OATP1B1 in human liver tissue and in cell culture. Compared to WT-OATP1B1, the V174A-OATP1B1 has significantly increased phosphorylation and reduced transport. CONCLUSIONS We report novel findings of increased phosphorylation, but not impaired membrane localization, in association with the reduced transport function of the V174A-OATP1B1.
Collapse
Affiliation(s)
- Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Wei Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Rubin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Yin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
19
|
|
20
|
Li Q, Zhou T, Wu F, Li N, Wang R, Zhao Q, Ma YM, Zhang JQ, Ma BL. Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab Rev 2018; 50:430-447. [PMID: 30270675 DOI: 10.1080/03602532.2018.1512614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
After administration, drug molecules usually enter target cells to access their intracellular targets. In eukaryotic cells, these targets are often located in organelles, including the nucleus, endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, and peroxisomes. Each organelle type possesses unique biological features. For example, mitochondria possess a negative transmembrane potential, while lysosomes have an intraluminal delta pH. Other properties are common to several organelle types, such as the presence of ATP-binding cassette (ABC) or solute carrier-type (SLC) transporters that sequester or pump out xenobiotic drugs. Studies on subcellular drug distribution are critical to understand the efficacy and toxicity of drugs along with the body's resistance to them and to potentially offer hints for targeted subcellular drug delivery. This review summarizes the results of studies from 1990 to 2017 that examined the subcellular distribution of small molecular drugs. We hope this review will aid in the understanding of drug distribution within cells.
Collapse
Affiliation(s)
- Qiao Li
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ting Zhou
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Fei Wu
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Na Li
- c Department of Chinese materia medica , School of Pharmacy , Shanghai , China
| | - Rui Wang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Qing Zhao
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yue-Ming Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ji-Quan Zhang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bing-Liang Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
21
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
22
|
Zhu A, Zeng D, Zhang P, Li L. Estimating causal log-odds ratio using the case-control sample and its application in the pharmaco-epidemiology study. Stat Methods Med Res 2018; 28:2165-2178. [PMID: 29355073 DOI: 10.1177/0962280217750175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One important goal in pharmaco-epidemiology studies is to understand the causal relationship between drug exposures and their clinical outcomes, including adverse drug events. In order to achieve this goal, however, we need to resolve several challenges. Most of pharmaco-epidemiology data are observational and confounding is largely present due to many co-medications. The pharmaco-epidemiology study data set is often sampled from large medical record databases using a matched case-control design, and it may not be representative of the original patient population in the medical record databases. Data analysis method needs to handle a large sample size that cannot be handled using existing statistical analysis packages. In this paper, we tackle these challenges both methodologically and computationally. We propose a conditional causal log-odds ratio (OR) definition to characterize causal effects of drug exposures on a binary adverse drug event adjusting for individual level confounders. Using a case-control design, we present a propensity score estimation using only case samples and we provide sufficient conditions for the consistency of the estimation of the causal log-odds ratio using case-based propensity scores. Computationally, we implement a principle component analysis to reduce high-dimensional confounders. Extensive simulation studies are performed to demonstrate superior performance of our method to existing methods. Finally, we apply the proposed method to analyze drug-induced myopathy data sampled from a de-identified subset of medical record database (close to 5 million patient records), The Indiana Network for Patient Care. Our method identified 70 drug-induced myopathy (p < 0.05) out 72 drugs, which have myoathy side effects on their FDA drug labels. These 70 drugs include three statins who are known for their myopathy side effects.
Collapse
Affiliation(s)
- Anqi Zhu
- 1 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donglin Zeng
- 1 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengyue Zhang
- 2 Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Lang Li
- 2 Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
23
|
Chiang CW, Zhang P, Wang X, Wang L, Zhang S, Ning X, Shen L, Quinney SK, Li L. Translational High-Dimensional Drug Interaction Discovery and Validation Using Health Record Databases and Pharmacokinetics Models. Clin Pharmacol Ther 2017; 103:287-295. [PMID: 29052226 DOI: 10.1002/cpt.914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/07/2022]
Abstract
Polypharmacy increases the risk of drug-drug interactions (DDIs). Combining epidemiological studies with pharmacokinetic modeling, we detected and evaluated high-dimensional DDIs among 30 frequent drugs. Multidrug combinations that increased the risk of myopathy were identified in the US Food and Drug Administration Adverse Event Reporting System (FAERS) and electronic medical record (EMR) databases by a mixture drug-count response model. CYP450 inhibition was estimated among the 30 drugs in the presence of 1 to 4 inhibitors using in vitro / in vivo extrapolation. Twenty-eight three-way and 43 four-way DDIs had significant myopathy risk in both databases and predicted increases in the area under the concentration-time curve ratio (AUCR) >2-fold. The high-dimensional DDI of omeprazole, fluconazole, and clonidine was associated with a 6.41-fold (FAERS) and 18.46-fold (EMR) increased risk of myopathy local false discovery rate (<0.005); the AUCR of omeprazole in this combination was 9.35. The combination of health record informatics and pharmacokinetic modeling is a powerful translational approach to detect high-dimensional DDIs.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Pengyue Zhang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Xueying Wang
- Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, Harbin, P.R. China
| | - Lei Wang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA.,Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, Harbin, P.R. China
| | - Shijun Zhang
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Xia Ning
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Li Shen
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sara K Quinney
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Alam K, Farasyn T, Crowe A, Ding K, Yue W. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One 2017; 12:e0186924. [PMID: 29107984 PMCID: PMC5673231 DOI: 10.1371/journal.pone.0186924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/10/2017] [Indexed: 01/26/2023] Open
Abstract
OATP1B1 and OATP1B3 mediate hepatic uptake of many drugs (e.g., statins) and can mediate transporter-mediated drug-drug-interactions (DDIs). Bortezomib is the first-in-class proteasome inhibitor drug approved by the U. S. Food and Drug Administration for the treatment of multiple myeloma. The potential of bortezomib to cause OATP-mediated DDIs has not been assessed. The current study investigated the involvement of the ubiquitin-proteasome system (UPS) in OATP1B1 and OATP1B3 degradation and determined the effects of proteasome inhibitors on OATP1B1- and OATP1B3-mediated transport. Co-immunoprecipitation of FLAG-OATP1B1/1B3 and HA-ubiquitin was observed in human embryonic kidney (HEK) 293 cells co-transfected with FLAG-tagged OATP1B1/OATP1B3 and hemagglutinin (HA)-tagged ubiquitin, suggesting that OATP1B1 and OATP1B3 can be ubiquitin-modified. Although blocking proteasome activity by bortezomib treatment (50 nM, 7 h) increased the endogenous ubiquitin-conjugated FLAG-OATP1B1 and FLAG-OATP1B3 in HEK293-FLAG-OATP1B1 and-OATP1B3 cells, such treatment did not affect the total protein levels of OATP1B1 and OATP1B3, suggesting that the UPS plays a minor role in degradation of OATP1B1 and OATP1B3 under current constitutive conditions. Pretreatment with bortezomib (50-250 nM, 2-7 h) significantly decreased transport of [3H]CCK-8, a specific OATP1B3 substrate, in HEK293-OATP1B3 and human sandwich-cultured hepatocytes (SCH). However, bortezomib pretreatment had negligible effects on the transport of [3H]E217βG and [3H]pitavastatin, dual substrates of OATP1B1 and OATP1B3, in HEK293-OATP1B1/1B3 cells and/or human SCH. Compared with vehicle control treatment, bortezomib pretreatment significantly decreased the maximal transport velocity (Vmax) of OATP1B3-mediated transport of CCK-8 (92.25 ± 14.2 vs. 133.95 ± 15.5 pmol/mg protein/min) without affecting the affinity constant (Km) values. Treatment with other proteasome inhibitors MG132, epoxomicin, and carfilzomib also significantly decreased OATP1B3-mediated [3H]CCK-8 transport. In summary, the current studies for the first time report ubiquitination of OATP1B1 and OATP1B3 and the apparent substrate-dependent inhibitory effect of bortezomib on OATP1B3-mediated transport. The data suggest that bortezomib has a low risk of causing OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sortica VA, Lindenau JD, Cunha MG, O Ohnishi MD, R Ventura AM, Ribeiro-dos-Santos ÂKC, Santos SEB, Guimarães LSP, Hutz MH. SLCO1A2, SLCO1B1 and SLCO2B1 polymorphisms influences chloroquine and primaquine treatment in Plasmodium vivax malaria. Pharmacogenomics 2017; 18:1393-1400. [PMID: 28975866 PMCID: PMC7099631 DOI: 10.2217/pgs-2017-0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
AIM The association of transporters gene polymorphisms with chloroquine/primaquine malaria treatment response was investigated in a Brazilian population. PATIENTS & METHODS Totally, 164 Plasmodium vivax malaria infected patients were included. Generalized estimating equations were performed to determine gene influences on parasitemia and/or gametocytemia clearance over treatment time. RESULTS Significant interaction between SLCO2B1 genotypes and treatment over time for parasitemia clearance rate on day 2 were observed (p FDR = 0.002). SLCO1A2 and SLCO1B1 gene treatment over time interactions were associated with gametocytemia clearance rate (p FDR = 0.018 and p FDR = 0.024). ABCB1, ABCC4 and SLCO1B3 were not associated with treatment response. CONCLUSION The present work presents the first pharmacogenetic report of an association between chloroquine/primaquine responses with OATP transporters.
Collapse
Affiliation(s)
- Vinicius A Sortica
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana D Lindenau
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maristela G Cunha
- Laboratório de Microbiologia e Imunologia, Universidade Federal do Para, Belém, PA, Brazil
| | - Maria Deise O Ohnishi
- Programa de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Sistema de Vigilância Sanitária, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Ana Maria R Ventura
- Programa de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Sistema de Vigilância Sanitária, Ministério da Saúde, Ananindeua, PA, Brazil
| | | | - Sidney EB Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luciano SP Guimarães
- Unidade de Bioestatística, Grupo de Pesquisa e Pós Graduação, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mara H Hutz
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Pahwa S, Alam K, Crowe A, Farasyn T, Neuhoff S, Hatley O, Ding K, Yue W. Pretreatment With Rifampicin and Tyrosine Kinase Inhibitor Dasatinib Potentiates the Inhibitory Effects Toward OATP1B1- and OATP1B3-Mediated Transport. J Pharm Sci 2017; 106:2123-2135. [PMID: 28373111 PMCID: PMC5511785 DOI: 10.1016/j.xphs.2017.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Present studies determined the effects of pretreatment with rifampicin, an organic anion-transporting polypeptide (OATP) inhibitor, and the tyrosine kinase inhibitor dasatinib on OATP1B1- and OATP1B3-mediated transport, and evaluated the OATP-mediated drug-drug interaction potential of dasatinib using the static R-value and dynamic physiologically based pharmacokinetic models. Rifampicin and dasatinib pretreatment significantly decreased OATP1B1- and OATP1B3-mediated transport. Rifampicin pretreatment also significantly decreased [3H]-pitavastatin and [3H]-CCK-8 accumulation in human sandwich-cultured hepatocytes. Present studies revealed that estrone-3-sulfate is a less-sensitive OATP1B1 substrate than estradiol-17β-glucuronide in assessing rifampicin pretreatment effects. Pretreatment with rifampicin and dasatinib reduced the inhibition constant (Ki) values against OATP1B1 by 3 and 2.1 fold and against OATP1B3 by 2.4 and 2.1 fold, respectively. The in vitro rifampicin Ki values after preincubation are comparable to the estimated in vivo Ki reported previously. Models predict that dasatinib has a low potential to cause OATP1B1- and OATP1B3-mediated drug-drug interactions. Time-lapse confocal microscopy demonstrated that rifampicin and dasatinib pretreatment did not affect plasma membrane localization of green-fluorescent protein-tagged OATP1B1 (GFP-OATP1B1) and GFP-OATP1B3 in human embryonic kidney 293 stable cell lines. In summary, we report novel findings that pretreatment with rifampicin and dasatinib potentiates the inhibitory effects toward OATP1B1 and OATP1B3 without affecting plasma membrane levels of the transporters.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Oliver Hatley
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117.
| |
Collapse
|