1
|
Edr A, Wrobel D, Krupková A, Št′astná LČ, Apartsin E, Hympánová M, Marek J, Malý J, Malý M, Strašák T. Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure. Biomacromolecules 2024; 25:7799-7813. [PMID: 39526947 PMCID: PMC11632778 DOI: 10.1021/acs.biomac.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.
Collapse
Affiliation(s)
- Antonín Edr
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Dominika Wrobel
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Alena Krupková
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Lucie Červenková Št′astná
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Evgeny Apartsin
- Université
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Michaela Hympánová
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Marek
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
- Department
of Epidemiology, Military Faculty of Medicine, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic
| | - Jan Malý
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Marek Malý
- Department
of Physics, University of Jan Evangelista
Purkyně in Ústí nad Labem, 400 96 Ústí nad
Labem, Czech Republic
| | - Tomáš Strašák
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| |
Collapse
|
2
|
Du J, Su J, Xing Y, Zhao Y, Tian M, Dai W, Dong H. Charge-Reversal NaCl/G-Quartets for Aggregation-Induced Mitochondrial MicroRNA Imaging and Ion-Interference Therapy. Anal Chem 2024; 96:5922-5930. [PMID: 38575388 DOI: 10.1021/acs.analchem.3c05977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.
Collapse
Affiliation(s)
- Jinya Du
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yanming Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meng Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
3
|
Vasileva L, Gaynanova G, Kuznetsova D, Valeeva F, Lyubina A, Amerhanova S, Voloshina A, Sibgatullina G, Samigullin D, Petrov K, Zakharova L. Mitochondria-Targeted Lipid Nanoparticles Loaded with Rotenone as a New Approach for the Treatment of Oncological Diseases. Molecules 2023; 28:7229. [PMID: 37894708 PMCID: PMC10609561 DOI: 10.3390/molecules28207229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Leysan Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Darya Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Farida Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., Kazan 420111, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., Kazan 420111, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| |
Collapse
|
4
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
5
|
Ray R, Ghosh S, Panja P, Jana NR. Rapid Mitochondria Targeting by Arginine-Terminated, Sub-10 nm Nanoprobe via Direct Cell Membrane Penetration. ACS APPLIED BIO MATERIALS 2023. [PMID: 37196150 DOI: 10.1021/acsabm.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although mitochondria have been identified as a potential therapeutic target for the treatment of various diseases, inefficient drug targeting to mitochondria is a major limitation for related therapeutic applications. In the current approach, drug loaded nanoscale carriers are used for mitochondria targeting via endocytic uptake. However, these approaches show poor therapeutic performance due to inefficient drug delivery to mitochondria. Here, we report a designed nanoprobe that can enter the cell via a nonendocytic approach and label mitochondria within 1 h. The designed nanoprobe is <10 nm in size and terminated with arginine/guanidinium that offers direct membrane penetration followed by mitochondria targeting. We found five specific criteria that need to be adjusted in a nanoscale material for mitochondria targeting via the nonendocytic approach. They include <10 nm size, functionalization with arginine/guanidinium, cationic surface charge, colloidal stability, and low cytotoxicity. The proposed design can be adapted for mitochondria delivery of drugs for efficient therapeutic performance.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
Sarkar A, Rasheed MSU, Singh MP. Redox Modulation of Mitochondrial Proteins in the Neurotoxicant Models of Parkinson's Disease. Antioxid Redox Signal 2023; 38:824-852. [PMID: 36401516 DOI: 10.1089/ars.2022.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significance: Mitochondrial proteins regulate the oxidative phosphorylation, cellular metabolism, and free radical generation. Redox modulation alters the mitochondrial proteins and instigates the damage to dopaminergic neurons. Toxicants contribute to Parkinson's disease (PD) pathogenesis in conjunction with aging and genetic factors. While oxidative modulation of a number of mitochondrial proteins is linked to xenobiotic exposure, little is known about its role in the toxicant-induced PD. Understanding the role of redox modulation of mitochondrial proteins in complex cellular events leading to neurodegeneration is highly relevant. Recent Advances: Many toxicants are shown to inhibit complex I or III and elicit free radical production that alters the redox status of mitochondrial proteins. Implication of redox modulation of the mitochondrial proteins makes them a target to comprehend the underlying mechanism of toxicant-induced PD. Critical Issues: Owing to multifactorial etiology, exploration of onset and progression and treatment outcomes needs a comprehensive approach. The article explains about a few mitochondrial proteins that undergo redox changes along with the promising strategies, which help to alleviate the toxicant-induced redox imbalance leading to neurodegeneration. Future Directions: Although mitochondrial proteins are linked to PD, their role in toxicant-induced parkinsonism is not yet completely known. Preservation of antioxidant defense machinery could alleviate the redox modulation of mitochondrial proteins. Targeted antioxidant delivery, use of metal chelators, and activation of nuclear factor erythroid 2-related factor 2, and combinational therapy that encounters multiple free radicals, could ameliorate the redox modulation of mitochondrial proteins and thereby PD progression.
Collapse
Affiliation(s)
- Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
A Triphenylphosphonium-Functionalized Delivery System for an ATM Kinase Inhibitor That Ameliorates Doxorubicin Resistance in Breast Carcinoma Mammospheres. Cancers (Basel) 2023; 15:cancers15051474. [PMID: 36900267 PMCID: PMC10000448 DOI: 10.3390/cancers15051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.
Collapse
|
8
|
Bottagisio M, Palombella S, Lopa S, Sangalli F, Savadori P, Biagiotti M, Sideratou Z, Tsiourvas D, Lovati AB. Vancomycin-nanofunctionalized peptide-enriched silk fibroin to prevent methicillin-resistant Staphylococcus epidermidis-induced femoral nonunions in rats. Front Cell Infect Microbiol 2023; 12:1056912. [PMID: 36683682 PMCID: PMC9851397 DOI: 10.3389/fcimb.2022.1056912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Implant-related infections and infected fractures are significant burdens in orthopedics. Staphylococcus epidermidis is one of the main causes of bone infections related to biofilm formation upon implants. Current antibiotic prophylaxis/therapy is often inadequate to prevent biofilm formation and results in antibiotic resistance. The development of bioactive materials combining antimicrobial and osteoconductive properties offers great potential for the eradication of microorganisms and for the enhancement of bone deposition in the presence of infections. The purpose of this study is to prevent the development of methicillin-resistant S. epidermidis (MRSE)-infected nonunion in a rat model. Methods To this end, a recently developed in our laboratories bioactive material consisting of antibiotic-loaded nanoparticles based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that are integrated into peptide-enriched silk fibroin sponges with osteoconductive properties (AFN-PSF) was employed, whose biocompatibility and microbiological tests provided proof of its potential for the treatment of both orthopedic and dental infections. In particular, non-critical femoral fractures fixed with plates and screws were performed in Wistar rats, which were then randomly divided into three groups: 1) the sham control (no infection, no treatment); 2) the control group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating non-drug-loaded functionalized nanoparticles (PSF); 3) the treated group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating vancomycin-loaded functionalized nanoparticles (AFN-PSF). After 8 weeks, bone healing and osteomyelitis were clinically assessed and evaluated by micro-CT, microbiological and histological analyses. Results The sham group showed no signs of infection and complete bone healing. The PSF group failed to repair the infected fracture, displaying 75% of altered bone healing and severe signs of osteomyelitis. The AFN-PSF treated group reached 70% of fracture healing in the absence of signs of osteomyelitis, such as abscesses in the cortical and intraosseous compartments and bone necrosis with sequestra. Discussion AFN-PSF sponges have proven effective in preventing the development of infected nonunion in vivo. The proposed nanotechnology for local administration of antibiotics can have a significant impact on patient health in the case of orthopedic infections.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Fabio Sangalli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Renal Biophysics, Department of Biomedical Engineering, Bergamo, Italy
| | - Paolo Savadori
- IRCCS Istituto Ortopedico Galeazzi, Department of Endodontics, Milan, Italy
| | | | - Zili Sideratou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Dimitris Tsiourvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| |
Collapse
|
9
|
Patra D, Kumar S, Kumar P, Chakraborty I, Basheer B, Shunmugam R. Iron(III) Coordinated Theranostic Polyprodrug with Sequential Receptor-Mitochondria Dual Targeting and T 1-Weighted Magnetic Resonance Imaging Potency for Effective and Precise Chemotherapy. Biomacromolecules 2022; 23:3198-3212. [PMID: 35767830 DOI: 10.1021/acs.biomac.2c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sequential cancer cell receptor and mitochondria dual-targeting single delivery agent deliver chemotherapeutic drug effectively and precisely at the targeted site has become a promising strategy to enhance the drug efficacy and suppressions of cancer cell drug resistance prominence. Herein, required specialty molecules like a chemotherapeutic drug [camptothecin (CPT)], mitochondriotropic segment (triphenyl phosphonium cation) receptor targeting ligand (biotin), and magnetic resonance imaging (MRI)-contrast agent (iron-complex) were tethered to the polyprodrug, CP TP PG BN Fe, using the ring-opening metathesis polymerization technique for potential chemotherapy and simultaneous MRI-based diagnosis. This amphiphilic polyprodrug spontaneously aggregated into nanospheres and exhibited remarkable T1-weighted MRI proficiency. Detail in vitro cellular studies revealed unambiguous mitochondrial delivery of CPT, which eventually enhanced the chemotherapeutic efficacy of CP TP PG BN Fe. Therefore, MRI-tracking, receptor-mitochondria dual targeting, theranostic polyprodrug, and CP TP PG BN Fe opened the way for effective and precise chemotherapy, which would have the attractive potential for diagnosis and decisive dose determination in clinical implications.
Collapse
Affiliation(s)
- Diptendu Patra
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| | - Pawan Kumar
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| | - Ipsita Chakraborty
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| | - Basim Basheer
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| | - Raja Shunmugam
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
| |
Collapse
|
10
|
Patra D, Kumar P, Pal D, Chakraborty I, Shunmugam R. Unique Random-Block Polymer Architecture for Site-Specific Mitochondrial Sequestration-Aided Effective Chemotherapeutic Delivery and Enhanced Fluorocarbon Segmental Mobility-Facilitated 19F Magnetic Resonance Imaging. Biomacromolecules 2022; 23:2428-2440. [PMID: 35512287 DOI: 10.1021/acs.biomac.2c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The elevation of the chemotherapeutic efficacy and attenuation of its side effects on healthy cells and tissues become one of the prime targets for the treatment of cancer. Toward this direction, a sequential receptor and mitochondria dual-targeting strategy was implemented in the DX TP PG BN 19F theranostic polymer that was anchored with the chemotherapeutic agent doxorubicin, receptor-targeting biotin, and mitochondria-targeting triphenylphosphonium cations. The polymer was flourished with a unique 19F magnetic resonance imaging (MRI) tracer that exhibited high segmental mobility and eventually led to prolonged T2 relaxation time. Furthermore, for the sake of amphiphilicity, the DX TP PG BN 19F polymer spontaneously aggregated into nano-sphere with positive zeta potential, where the MRI tracer and biotin embedded at the exterior and displayed site-specific targeting and remarkable 19F MRI capability simultaneously. The mitochondria-targeting competency of the DX TP PG BN 19F theranostic polymer was investigated by comparing the non-mitochondrial-targeting DX PG BN 19F polymer using fluorescence microscopic cell imaging in human cervical, HeLa, and breast MCF-7 carcinoma cell lines. Moreover, cytotoxicity experiments of the aforementioned theranostic polymers clarified the enhancement of the chemotherapeutic efficacy of DX TP PG BN 19F theranostic polymers through effective and precise mitochondrial doxorubicin delivery that forced to follow the apoptotic path.
Collapse
Affiliation(s)
- Diptendu Patra
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Pawan Kumar
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Dwaipayan Pal
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Ipsita Chakraborty
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
11
|
Ramezani Farani M, Aminzadeh Jahromi N, Ali V, Ebrahimpour A, Salehian E, Shafiee Ardestani M, Seyedhamzeh M, Ahmadi S, Sharifi E, Ashrafizadeh M, Rabiee N, Makvandi P. Detection of Dopamine Receptors Using Nanoscale Dendrimer for Potential Application in Targeted Delivery and Whole-Body Imaging: Synthesis and In Vivo Organ Distribution. ACS APPLIED BIO MATERIALS 2022; 5:1744-1755. [DOI: 10.1021/acsabm.2c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Negin Aminzadeh Jahromi
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Vahid Ali
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, 19585-466 Rasht, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Elnaz Salehian
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohammad Seyedhamzeh
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80078, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
12
|
Shueng PW, Yu LY, Hou HH, Chiu HC, Lo CL. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. Int J Mol Sci 2022; 23:ijms23063080. [PMID: 35328500 PMCID: PMC8954455 DOI: 10.3390/ijms23063080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low. Therefore, pH-sensitive polymer–liposome complexes with charge-conversion copolymers and CTPP-containing cationic liposomes were designed for efficiently delivering an anti-cancer agent, ceramide, into cancer cellular mitochondria. The charge-conversion copolymers, methoxypoly(ethylene glycol)-block-poly(methacrylic acid-g-histidine), were anionic and helped in absorbing and shielding the positive charges of cationic liposomes at pH 7.4. In contrast, charge-conversion copolymers became neutral in order to depart from cationic liposomes and induced endosomal escape for releasing cationic liposomes into cytosol at acidic endosomes. The experimental results reveal that these pH-sensitive polymer–liposome complexes could rapidly escape from MCF-7 cell endosomes and target MCF-7 mitochondria within 3 h, thereby leading to the generation of reactive oxygen species and cell apoptosis. These findings provide a promising solution for cationic liposomes in cancer mitochondrial-targeting drug delivery.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsiao-Hsin Hou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan;
| | - Chun-Liang Lo
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
- Correspondence:
| |
Collapse
|
13
|
Xu J, Du W, Zhao Y, Lim K, Lu L, Zhang C, Li L. Mitochondria targeting drugs for neurodegenerative diseases—design, mechanism and application. Acta Pharm Sin B 2022; 12:2778-2789. [PMID: 35755284 PMCID: PMC9214044 DOI: 10.1016/j.apsb.2022.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are a heterogeneous group of disorders characterized by progressive degeneration of neurons. NDDs threaten the lives of millions of people worldwide and regretfully remain incurable. It is well accepted that dysfunction of mitochondria underlies the pathogenesis of NDDs. Dysfunction of mitochondria results in energy depletion, oxidative stress, calcium overloading, caspases activation, which dominates the neuronal death of NDDs. Therefore, mitochondria are the preferred target for intervention of NDDs. So far various mitochondria-targeting drugs have been developed and delightfully some of them demonstrate promising outcome, though there are still some obstacles such as targeting specificity, delivery capacity hindering the drugs development. In present review, we will elaborately address 1) the strategy to design mitochondria targeting drugs, 2) the rescue mechanism of respective mitochondria targeting drugs, 3) how to evaluate the therapeutic effect. Hopefully this review will provide comprehensive knowledge for understanding how to develop more effective drugs for the treatment of NDDs.
Collapse
|
14
|
Patra D, Kumar P, Samanta T, Chakraborty I, Shunmugam R. Coordinately Tethered Iron(III) Fluorescent Nanotheranostic Polymer Ascertaining Cancer Cell Mitochondria Destined Potential Chemotherapy and T1-Weighted MRI Competency. ACS APPLIED BIO MATERIALS 2022; 5:1284-1296. [DOI: 10.1021/acsabm.1c01300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Hicke FJ, Puerta A, Dinić J, Pešić M, Padrón JM, López Ó, Fernández-Bolaños JG. Straightforward access to novel mitochondriotropics derived from 2-arylethanol as potent and selective antiproliferative agents. Eur J Med Chem 2022; 228:113980. [PMID: 34847410 DOI: 10.1016/j.ejmech.2021.113980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
The necessity for developing novel cytostatic agents with improved activities and reduced side-effects to tackle cancer prompted us to investigate mitochondria-targeted compounds, an approach that is gaining attention for the selective transportation of cytotoxic agents. We envisioned the possibility of conjugating a phenethyl alcohol motif, decorated with a series of phenol-based substituents on the aryl moiety, with a triphenyl phosphonium scaffold (a mitochondria-directed vector), through a hydrocarbon chain of different lengths. Thus, such compounds that incorporate the phenethyl skeleton can be considered as masked phenolic compounds derived from relevant natural counterparts found in olive tree (e.g. tyrosol, hydroxytyrosol). Title compounds exhibited very strong in vitro antiproliferative activities against the panel of six human tumor cell lines tested, with GI50 values ranging from the nanomolar (0.026 ± 0.010 μM for 36) to the submicromolar range in most of the cases; this represents an improvement of up to 350-fold compared to classical chemotherapeutic agents, like 5-fluorouracil or cisplatin. Interestingly, decrease in the linker length led to an increase of GI50 values against non-tumor cells, thus allowing a remarkable improvement of selectivity (SI up to 269). The very promising antiproliferative activities prompted us to further investigate their behaviour against multidrug resistant cell lines (MDR). The results indicated a reduced sensitivity of the multidrug resistant cells to compounds, probably due to P-gp-mediated efflux of these antiproliferative agents. Interestingly, activities were completely restored to the same levels by co-administration of tariquidar, a well-known inhibitor of P-gp. Flow cytometry analysis on sensitive cell lines revealed a decrease in the percentage of cells in G1 phase accompanied by increase in S and G2/M phases. In addition, a significant increase in subG1 area, was observed. These results are compatible with the necrotic and apoptotic cell death detected in the Annexin V assay, and with the depolarization of the mitochondria membrane. Thus, the new mitochondriotropic agents reported herein can be considered as promising antiproliferative agents, endowed with remarkable potency and selectivity, including MDR cells, upon co-administration with a pump-efflux inhibitor.
Collapse
Affiliation(s)
- Francisco J Hicke
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206, La Laguna, Spain
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206, La Laguna, Spain.
| | - Óscar López
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain.
| | - José G Fernández-Bolaños
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain.
| |
Collapse
|
16
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Kaminari A, Nikoli E, Athanasopoulos A, Sakellis E, Sideratou Z, Tsiourvas D. Engineering Mitochondriotropic Carbon Dots for Targeting Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090932. [PMID: 34577632 PMCID: PMC8470554 DOI: 10.3390/ph14090932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Aiming to understand and enhance the capacity of carbon dots (CDs) to transport through cell membranes and target subcellular organelles—in particular, mitochondria—a series of nitrogen-doped CDs were prepared by the one-step microwave-assisted pyrolysis of citric acid and ethylenediamine. Following optimization of the reaction conditions for maximum fluorescence, functionalization at various degrees with alkylated triphenylphosphonium functional groups of two different alkyl chain lengths afforded a series of functionalized CDs that exhibited either lysosome or mitochondria subcellular localization. Further functionalization with rhodamine B enabled enhanced fluorescence imaging capabilities in the visible spectrum and allowed the use of low quantities of CDs in relevant experiments. It was thus possible, by the appropriate selection of the alkyl chain length and degree of functionalization, to attain successful mitochondrial targeting, while preserving non-toxicity and biocompatibility. In vitro cell experiments performed on normal as well as cancer cell lines proved their non-cytotoxic character and imaging potential, even at very low concentrations, by fluorescence microscopy. Precise targeting of mitochondria is feasible with carefully designed CDs that, furthermore, are specifically internalized in cells and cell mitochondria of high transmembrane potential and thus exhibit selective uptake in malignant cells compared to normal cells.
Collapse
Affiliation(s)
- Archontia Kaminari
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Eleni Nikoli
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Alexandros Athanasopoulos
- National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, 15310 Aghia Paraskevi, Greece;
| | - Elias Sakellis
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Zili Sideratou
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Dimitris Tsiourvas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
- Correspondence: ; Tel.: +30-210-650-3616
| |
Collapse
|
18
|
Schlichtmann BW, Kalyanaraman B, Schlichtmann RL, Panthani MG, Anantharam V, Kanthasamy AG, Mallapragada SK, Narasimhan B. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. J Biomed Mater Res B Appl Biomater 2021; 110:450-459. [PMID: 34312984 DOI: 10.1002/jbm.b.34922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease affecting a large proportion of older adults. Exposure to pesticides like rotenone is a leading cause for PD. To reduce disease progression and prolong life expectancy, it is important to target disease mechanisms that contribute to dopaminergic neuronal atrophy, including mitochondrial dysfunction. Achieving targeted mitochondrial delivery is difficult for many therapeutics by themselves, necessitating higher therapeutic doses that could lead to toxicity. To minimize this adverse effect, targeted nano-carriers such as polyanhydride nanoparticles (NPs) can protect therapeutics from degradation and provide sustained release, enabling fewer administrations and lower therapeutic dose. This work expands upon the use of the polyanhydride NP platform for targeted drug delivery by functionalizing the polymer with a derivative of triphenylphosphonium called (3-carboxypropyl) triphenylphosphonium (CPTP) using a novel method that enables longer CPTP persistence on the NPs. The extent to which neurons internalized both nonfunctionalized and functionalized NPs was tested. Next, the efficacy of these nanoformulations in treating rotenone-induced mitochondrial dysfunction in the same cell line was evaluated using a novel neuroprotective drug, mito-metformin. CPTP functionalization significantly improved NP internalization by neuronal cells. This was correlated with significant protection by CPTP-functionalized, mito-metformin encapsulated NPs against rotenone-induced mitochondrial dysfunction. However, nonfunctionalized, mito-metformin encapsulated NPs and soluble mito-metformin administered at the same dose did not significantly protect cells from rotenone-induced toxicity. These results indicate that the targeted NP platform can provide enhanced dose-sparing and potentially reduce the occurrence of systemic side-effects for PD therapeutics.
Collapse
Affiliation(s)
| | | | - Rainie L Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Matthew G Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA.,Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
19
|
Liu W, Li Z, Qiu Y, Li J, Yang J, Li J. Biomineralization of Aggregation-Induced Emission-Active Photosensitizers for pH-Mediated Tumor Imaging and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5566-5574. [PMID: 35006732 DOI: 10.1021/acsabm.1c00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As an efficient, noninvasive, and high spatiotemporal resolved approach, photodynamic therapy (PDT) has high therapeutic potential for cancer treatment, whereas its development still faces a number of challenges, such as the lack of efficient and stable photosensitizers (PSs) and the inadequate ability of PSs to accumulate at tumor sites and target responses. Herein, a pH-responsive calcium carbonate (CaCO3)-mineralized AIEgen nanoprobe was prepared by using bovine serum albumin as the skeleton and loaded with a mitochondria-specific aggregation-induced emission (AIE)-active PS of 1-methyl-4-(4-(1,2,2-triphenylvinyl)styryl)quinolinium iodide (TPE-Qu+), which exhibits superior singlet oxygen (1O2)-generation ability and meanwhile possesses a bright near-infrared fluorescence emission. The biomineralized nanoparticles have small sizes (100 ± 10 nm) with good water dispersion and stability. With an increase in acidity (pH = 7.4-5.0), the internal TPE-Qu+ molecules are released gradually and accumulated in the mitochondria due to their hydrophobicity and electropositivity and then generate fluorescence emission and PDT under an external light source. Tumor inhibition and low acute toxicity were further successfully confirmed by the intracellular uptake test and 4T1-tumor-bearing mouse model.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanqing Qiu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinfeng Yang
- Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Lyra KM, Kaminari A, Panagiotaki KN, Spyrou K, Papageorgiou S, Sakellis E, Katsaros FK, Sideratou Z. Multi-Walled Carbon Nanotubes Decorated with Guanidinylated Dendritic Molecular Transporters: An Efficient Platform for the Selective Anticancer Activity of Doxorubicin. Pharmaceutics 2021; 13:858. [PMID: 34207727 PMCID: PMC8226981 DOI: 10.3390/pharmaceutics13060858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
An efficient doxorubicin (DOX) drug delivery system with specificity against tumor cells was developed, based on multi-walled carbon nanotubes (MWCNTs) functionalized with guanidinylated dendritic molecular transporters. Acid-treated MWCNTs (oxCNTs) interacted both electrostatically and through hydrogen bonding and van der Waals attraction forces with guanidinylated derivatives of 5000 and 25,000 Da molecular weight hyperbranched polyethyleneimine (GPEI5K and GPEI25K). Chemical characterization of these GPEI-functionalized oxCNTs revealed successful decoration with GPEIs all over the oxCNTs sidewalls, which, due to the presence of guanidinium groups, gave them aqueous compatibility and, thus, exceptional colloidal stability. These GPEI-functionalized CNTs were subsequently loaded with DOX for selective anticancer activity, yielding systems of high DOX loading, up to 99.5% encapsulation efficiency, while the DOX-loaded systems exhibited pH-triggered release and higher therapeutic efficacy compared to that of free DOX. Most importantly, the oxCNTs@GPEI5K-DOX system caused high and selective toxicity against cancer cells in a non-apoptotic, fast and catastrophic manner that cancer cells cannot recover from. Therefore, the oxCNTs@GPEI5K nanocarrier was found to be a potent and efficient nanoscale DOX delivery system, exhibiting high selectivity against cancerous cells, thus constituting a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Kyriaki-Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Katerina N. Panagiotaki
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Konstantinos Spyrou
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Fotios K. Katsaros
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| |
Collapse
|
21
|
Heliopoulos NS, Kythreoti G, Lyra KM, Panagiotaki KN, Papavasiliou A, Sakellis E, Papageorgiou S, Kouloumpis A, Gournis D, Katsaros FK, Stamatakis K, Sideratou Z. Cytotoxicity Effects of Water-Soluble Multi-Walled Carbon Nanotubes Decorated with Quaternized Hyperbranched Poly(ethyleneimine) Derivatives on Autotrophic and Heterotrophic Gram-Negative Bacteria. Pharmaceuticals (Basel) 2020; 13:E293. [PMID: 33036144 PMCID: PMC7601344 DOI: 10.3390/ph13100293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidized multi-walled carbon nanotubes (oxCNTs) were functionalized by a simple non-covalent modification procedure using quaternized hyperbranched poly(ethyleneimine) derivatives (QPEIs), with various quaternization degrees. Structural characterization of these hybrids using a variety of techniques, revealed the successful and homogenous anchoring of QPEIs on the oxCNTs' surface. Moreover, these hybrids efficiently dispersed in aqueous media, forming dispersions with excellent aqueous stability for over 12 months. Their cytotoxicity effect was investigated on two types of gram(-) bacteria, an autotrophic (cyanobacterium Synechococcus sp. PCC 7942) and a heterotrophic (bacterium Escherichia coli). An enhanced, dose-dependent antibacterial and anti-cyanobacterial activity against both tested organisms was observed, increasing with the quaternization degree. Remarkably, in the photosynthetic bacteria it was shown that the hybrid materials affect their photosynthetic apparatus by selective inhibition of the Photosystem-I electron transport activity. Cytotoxicity studies on a human prostate carcinoma DU145 cell line and 3T3 mouse fibroblasts revealed that all hybrids exhibit high cytocompatibility in the concentration range, in which they also exhibit both high antibacterial and anti-cyanobacterial activity. Thus, QPEI-functionalized oxCNTs can be very attractive candidates as antibacterial and anti-cyanobacterial agents that can be used for potential applications in the disinfection industry, as well as for the control of harmful cyanobacterial blooms.
Collapse
Affiliation(s)
- Nikolaos S. Heliopoulos
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
- Department of Industrial Design & Production Engineering, University of West Attica, 12241 Egaleo, Attiki, Greece
| | - Georgia Kythreoti
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
- Institute of Biosciences and Applications, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece;
| | - Kyriaki Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Katerina N. Panagiotaki
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Aggeliki Papavasiliou
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Antonios Kouloumpis
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (D.G.)
| | - Dimitrios Gournis
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (D.G.)
| | - Fotios K. Katsaros
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| | - Kostas Stamatakis
- Institute of Biosciences and Applications, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece;
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (N.S.H.); (G.K.); (K.M.L.); (K.N.P.); (A.P.); (E.S.); (S.P.); (F.K.K.)
| |
Collapse
|
22
|
Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics. Angew Chem Int Ed Engl 2020; 60:2232-2256. [PMID: 32128948 DOI: 10.1002/anie.201915826] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Mitochondria are the powerhouse of cells. They are vital organelles that maintain cellular function and metabolism. Dysfunction of mitochondria results in various diseases with a great diversity of clinical appearances. In the past, strategies have been developed for fabricating subcellular-targeting drug-delivery nanocarriers, enabling cellular internalization and subsequent organelle localization. Of late, innovative strategies have emerged for the smart design of multifunctional nanocarriers. Hierarchical targeting enables nanocarriers to evade and overcome various barriers encountered upon in vivo administration to reach the organelle with good bioavailability. Stimuli-responsive nanocarriers allow controlled release of therapeutics to occur at the desired target site. Synergistic therapy can be achieved using a combination of approaches such as chemotherapy, gene and phototherapy. In this Review, we survey the field for recent developments and strategies used in the smart design of nanocarriers for mitochondria-targeted therapeutics. Existing challenges and unexplored therapeutic opportunities are also highlighted and discussed to inspire the next generation of mitochondrial-targeting nanotherapeutics.
Collapse
Affiliation(s)
- Si Si Liew
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jia Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
23
|
Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Intelligentes Design von Nanomaterialien für Mitochondrien‐gerichtete Nanotherapeutika. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si Si Liew
- Department of Chemistry National University of Singapore Singapore 117543 Singapur
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Jia Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapur
| |
Collapse
|
24
|
Abstract
Liposomes are spherical vesicles made up of an aqueous core surrounded by phospholipids. These delivery systems (DS) are largely employed as drug carriers in several industrial fields, such as pharmaceutical and nutraceutical fields. The aim of this short review is to provide a fast overview on the main fundamentals of liposomes, thought as a compact guide for researchers and students that want to approach this topic for the first time. The mini-review will focus on the definitions, production methods and characterization protocols of the liposomes produced, making a critical comparison of the main conventional and supercritical based manufacturing methods available. The literature was analyzed deeply from the first works by Dr. Bangham in 1965 to the most recent supercritical fluid applications. The advantages and disadvantages of conventional and high-pressure processes will be described in terms of solvent elimination, production at the nanometric (50–300 nm) and micrometric level (1–100 μm) and encapsulation efficiency (20–90%). The first proposed methods were characterized by a low encapsulation efficiency (20–40%), resulting in drug loss, a high solvent residue and high operating cost. The repeatability of conventional processes was also low, due to the prevalent batch mode. Supercritical-assisted methods were developed in semi-continuous layouts, resulting in an easy process scale-up, better control of liposome dimensions (polydispersity index, PDI) and also higher encapsulation efficiencies (up to 90%).
Collapse
|
25
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
26
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
27
|
Kuznetsova DA, Gaynanova GA, Vasileva LA, Sibgatullina GV, Samigullin DV, Sapunova AS, Voloshina AD, Galkina IV, Petrov KA, Zakharova LY. Mitochondria-targeted cationic liposomes modified with alkyltriphenylphosphonium bromides loaded with hydrophilic drugs: preparation, cytotoxicity and colocalization assay. J Mater Chem B 2019; 7:7351-7362. [PMID: 31696196 DOI: 10.1039/c9tb01853k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this work was to obtain cationic liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine noncovalently modified using alkyltriphenylphosphonium bromides (TPPB-n) with different lengths of hydrocarbon tail for targeted delivery to mitochondria. The hydrodynamic diameter and electrokinetic potential of hybrid liposomes depending on the lipid/surfactant ratio were monitored in time with the aim to optimize the composition with sufficient stability and positive charge for mitochondria-targeted delivery. It was found that increasing the alkyl tail length of the surfactant (up to TPPB-14) leads to an increase in the positive charge of the liposomes. The most optimal results of stability were obtained for hybrid liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and TPPB-12, TPPB-14. The obtained modified liposomes were loaded with hydrophilic substrates (a model probe Rhodamine B and medicines metronidazole and doxorubicin). This is one of the first examples of fabrication of liposomes noncovalently modified using an amphiphilic TPP cation, with the alkyl tail length of surfactant and TPP/lipid ratio optimized in terms of stability of the liposomes and the binding/release behavior of hydrophilic probes. Using the confocal microscopy method, it was shown that modification of liposomes with a triphenylphosphonium cation results in targeted delivery of encapsulated compounds to mitochondria.
Collapse
Affiliation(s)
- Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation.
| | - Gulnara A Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation.
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation. and Kazan National Research Technological University, 68 Karl Marx str., Kazan, 420015, Russian Federation
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., Kazan, 420111, Russian Federation
| | - Dmitry V Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., Kazan, 420111, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation.
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation.
| | - Irina V Galkina
- Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation. and Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan, 420088, Russian Federation.
| |
Collapse
|
28
|
Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11080423. [PMID: 31434345 PMCID: PMC6722595 DOI: 10.3390/pharmaceutics11080423] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are membrane-enclosed organelles present in most eukaryotic cells, described as “power houses of the cell”. The mitochondria can be a target for inducing cancer cell death and for developing strategies to bypass multi drug resistance (MDR) mechanisms. 4-Carboxybutyl triphenylphosphonium bromide-polyethylene glycol-distearoylphosphatidylethanolamine (TPP-DSPE-PEG) and dequalinium-polyethylene glycol-distearoylphosphatidylethanolamine (DQA-DSPE-PEG) were synthesized as mitochondriotropic molecules. Mitochondria-targeting liposomes carrying resveratrol were constructed by modifying the liposome’s surface with TPP-PEG or DQA-PEG, resulting in TLS (Res) and DLS (Res), respectively, with the aim to obtain longer blood circulation and enhanced permeability and retention (EPR). Both TLS (Res) and DLS (Res) showed dimensions of approximately 120 nm and a slightly positive zeta potential. The enhanced cellular uptake and selective accumulation of TLS (Res) and DLS (Res) into the mitochondria were demonstrated by behavioral observation of rhodamine-labeled TLS or DLS, using confocal microscopy, and by resveratrol quantification in the intracellular organelle, using LC–MS/MS. Furthermore, TLS (Res) and DLS (Res) induced cytotoxicity of cancer cells by generating reactive oxygen species (ROS) and by dissipating the mitochondrial membrane potential. Our results demonstrated that TLS (Res) and DLS (Res) could provide a potential strategy to treat cancers by mitochondrial targeting delivery of therapeutics and stimulation of the mitochondrial signaling pathway.
Collapse
|
29
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
30
|
Xiang S, Zhang K, Yang G, Gao D, Zeng C, He M. Mitochondria-Targeted and Resveratrol-Loaded Dual-Function Titanium Disulfide Nanosheets for Photothermal-Triggered Tumor Chemotherapy. NANOSCALE RESEARCH LETTERS 2019; 14:211. [PMID: 31227943 PMCID: PMC6588667 DOI: 10.1186/s11671-019-3044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/07/2019] [Indexed: 05/04/2023]
Abstract
A subcellular organelle-targeted delivery of anti-cancer drugs is a promising strategy to maximize the anti-cancer effects and minimize the adverse effects. Herein, we prepared a mitochondria-targeted drug delivery nanoplatform based on IR780 iodide (IR780) and titanium disulfide (TiS2) nanosheets. Due to the large specific surface area of TiS2 nanosheets, the nanoplatform could highly load anti-cancer drug resveratrol (RV). The as-prepared nanocomposite (IR780-TiS2/RV) was used for an efficacious photothermal-triggered tumor chemotherapy. IR780-TiS2/RV showed satisfactory stability and biocompatibility, and the loading ratio of RV and IR780 was about 112% and 56%, respectively. Upon the near-infrared (NIR) irradiation, the heat generated by IR780-TiS2/RV could trigger the RV release. Due to the conjugation with the mitochondria-specific IR780, IR780-TiS2/RV could target and accumulate in mitochondria and release RV when triggered by NIR to decrease the mitochondrial membrane potential, rapidly induce the upregulation of key intrinsic apoptotic factors such as cytochrome c, and initiate the caspase cascade, thereby achieving the chemotherapeutic effect. The IR780-TiS2/RV nanocomposite was demonstrated to have a high anti-tumor efficacy in vitro and in vivo as well as no remarkable tissue toxicity. We believe our study demonstrates that the NIR-triggered IR780-TiS2/RV nanoplatform could be a promising chemotherapeutic agent in clinical practice.
Collapse
Affiliation(s)
- Sen Xiang
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| | - Kaifang Zhang
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| | - Guanghua Yang
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| | - Dongdong Gao
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| | - Chen Zeng
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| | - Miao He
- The First Department of Oncology, Zhumadian Central Hospital, 747 Zhumadian Zhonghua Road, Zhumadian, 463000 China
| |
Collapse
|
31
|
Li H, Li J, He X, Zhang B, Liu C, Li Q, Zhu Y, Huang W, Zhang W, Qian H, Ge L. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Jin F, Liu D, Yu H, Qi J, You Y, Xu X, Kang X, Wang X, Lu K, Ying X, You J, Du Y, Ji J. Sialic Acid-Functionalized PEG-PLGA Microspheres Loading Mitochondrial-Targeting-Modified Curcumin for Acute Lung Injury Therapy. Mol Pharm 2018; 16:71-85. [PMID: 30431285 DOI: 10.1021/acs.molpharmaceut.8b00861] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is a serious illness without resultful therapeutic methods commonly. Recent studies indicate the importance of oxidative stress in the occurrence and development of ALI, and mitochondria targeted antioxidant has become a difficult and hot topic in the research of ALI. Therefore, a sialic acid (SA)-modified lung-targeted microsphere (MS) for ALI therapy are developed, with triphenylphosphonium cation (TPP)-modified curcumin (Cur-TPP) loaded, which could specifically target the mitochondria, increasing the effect of antioxidant. The results manifest that with the increase of microsphere, lung distribution of microsphere is also increased in murine mice, and after SA modification, the microsphere exhibits the ideal lung-targeted characteristic in ALI model mice, due to SA efficiently targeting to E-selectin expressed on inflammatory tissues. Further investigations indicate that SA/Cur-TPP/MS has better antioxidative capacity, decreases intracellular ROS generation, and increases mitochondrial membrane potential, contributing to a lower apoptosis rate in human umbilical vein endothelial cells (HUVECs) compared to H2O2 group. In vivo efficacy of SA/Cur-TPP/MS demonstrates that the inflammation has been alleviated markedly and the oxidative stress is ameliorated efficiently. Significant histological improvements by SA/Cur-TPP/MS are further proved via HE stains. In conclusion, SA/Cur-TPP/MS might act as a promising drug formulation for ALI therapy.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xuqi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaojuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Kongjun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research , Lishui Hospital of Zhejiang University , Lishui 323000 , China
| |
Collapse
|
34
|
Wu H, Lai X, Li Z, Gu L, Ao N. PEGylation Quaternary (Triphenyl-) Phosphonium Tosylate: A Class of Promising Carriers for Drug Delivery and Gene Delivery? ChemistrySelect 2018. [DOI: 10.1002/slct.201801535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Haiwei Wu
- Department of Biomedical Engineering; Jinan University,Guangzhou; China
| | - Xuexu Lai
- Department of Biomedical Engineering; Jinan University,Guangzhou; China
| | - Zhou Li
- Department of Biomedical Engineering; Jinan University,Guangzhou; China
| | - Liuqun Gu
- Department of Biomedical Engineering; Jinan University,Guangzhou; China
| | - Ningjian Ao
- Department of Biomedical Engineering; Jinan University,Guangzhou; China
| |
Collapse
|
35
|
Ahn J, Lee B, Choi Y, Jin H, Lim NY, Park J, Kim JH, Bae J, Jung JH. Non-peptidic guanidinium-functionalized silica nanoparticles as selective mitochondria-targeting drug nanocarriers. J Mater Chem B 2018; 6:5698-5707. [PMID: 32254976 DOI: 10.1039/c8tb01358f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report on the design and fabrication of a Fe3O4 core-mesoporous silica nanoparticle shell (Fe3O4@MSNs)-based mitochondria-targeting drug nanocarrier. A guanidinium derivative (GA) was conjugated onto the Fe3O4@MSNs as the mitochondria-targeting ligand. The fabrication of the Fe3O4@MSNs and their functionalization with GA were carried out by the sol-gel polymerization of alkoxysilane groups. Doxorubicin (DOX), an anti-cancer drug, was loaded into the pores of a GA-attached Fe3O4@MSNs due to both its anti-cancer properties and to allow for the fluorescent visualization of the nanocarriers. The selective and efficient mitochondria-targeting ability of a DOX-loaded GA-Fe3O4@MSNs (DOX/GA-Fe3O4@MSNs) was demonstrated by a co-localization study, transmission electron microscopy, and a fluorometric analysis on isolated mitochondria. It was found that the DOX/GA-Fe3O4@MSNs selectively accumulated into mitochondria within only five minutes; to the best of our knowledge, this is the shortest accumulation time reported for mitochondria targeting systems. Moreover, 2.6 times higher amount of DOX was accumulated in mitochondria by DOX/GA-Fe3O4@MSNs than by DOX/TPP-Fe3O4@MSNs. A cell viability assay indicated that the DOX/GA-Fe3O4@MSNs have high cytotoxicity to cancer cells, whereas the GA-Fe3O4@MSNs without DOX are non-cytotoxic; this indicates that the DOX/GA-Fe3O4@MSNs have great potential for use as biocompatible and effective mitochondria-targeting nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Junho Ahn
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University, Jinju, 52828, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ma P, Sun Y, Chen J, Li H, Zhu H, Gao X, Bi X, Zhang Y. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM-camptothecin conjugate. Drug Deliv 2018; 25:153-165. [PMID: 29282992 PMCID: PMC6058575 DOI: 10.1080/10717544.2017.1419511] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficient targeting of drugs to tumor cell and subsequent rapid drug release remain primary challenges in the development of nanomedicines for cancer therapy. Here, we constructed a glucose transporter 1 (GLUT1)-targeting and tumor cell microenvironment-sensitive drug release Glucose–PEG–PAMAM-s-s–Camptothecin-Cy7 (GPCC) conjugate to tackle the dilemma. The conjugate was characterized by a small particle size, spherical shape, and glutathione (GSH)-sensitive drug release. In vitro tumor targeting was explored in monolayer (2D) and multilayer tumor spheroid (3D) HepG2 cancer cell models (GLUT1+). The cellular uptake of GPCC was higher than that in the control groups and that in normal L02 cells (GLUT1−), likely due to the conjugated glucose moiety. Moreover, the GPCC conjugate exhibited stronger cytotoxicity, higher S arrest and enhanced apoptosis and necrosis rate in HepG2 cells than control groups but not L02 cells. However, the cytotoxicity of GPCC was lower than that of free CPT, which could be explained by the slower release of CPT from the GPCC compared with free CPT. Additional in vivo tumor targeting experiments demonstrated the superior tumor-targeting ability of the GPCC conjugate, which significantly accumulated in tumor meanwhile minimize in normal tissues compared with control groups. The GPCC conjugate showed better pharmacokinetic properties, enabling a prolonged circulation time and increased camptothecin area under the curve (AUC). These features contributed to better therapeutic efficacy and lower toxicity in H22 hepatocarcinoma tumor-bearing mice. The GLUT1-targeting, GSH-sensitive GPCC conjugate provides an efficient, safe and economic approach for tumor cell targeted drug delivery.
Collapse
Affiliation(s)
- Pengkai Ma
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yi Sun
- b Institute of Pharmacology & Toxicology , Academy of Military Medical Sciences , Beijing , China
| | - Jianhua Chen
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongpin Li
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongyu Zhu
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xing Gao
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xinning Bi
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yujie Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
37
|
Zhang X, Yan Q, Mulatihan DN, Zhu J, Fan A, Wang Z, Zhao Y. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy. NANOTECHNOLOGY 2018; 29:255101. [PMID: 29620538 DOI: 10.1088/1361-6528/aabbdb] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Nagpal K, Mohan A, Thakur S, Kumar P. Dendritic platforms for biomimicry and biotechnological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:861-875. [DOI: 10.1080/21691401.2018.1438451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Anand Mohan
- Department of Biotechnology, Lovely Professional University, Jalandhar, India
| | - Sourav Thakur
- Department of Pharmacy, Lovely Professional University, Jalandhar, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmachology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
Kim KY, Jin H, Park J, Jung SH, Lee JH, Park H, Kim SK, Bae J, Jung JH. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery. NANO RESEARCH 2018; 11:1082-1098. [DOI: 10.1007/s12274-017-1728-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
|
40
|
Lee JH, Kim KY, Jin H, Baek YE, Choi Y, Jung SH, Lee SS, Bae J, Jung JH. Self-Assembled Coumarin Nanoparticle in Aqueous Solution as Selective Mitochondrial-Targeting Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3380-3391. [PMID: 29302967 DOI: 10.1021/acsami.7b17711] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of specifically targeted nanoparticles for subcellular organelles modified with a low-molecular-weight organic compound as drug nanocarriers can bring about wide applications in cancer therapy. However, their utility has been hampered by low selectivity, poor biodistribution, and limited efficiency. Herein, we report the aggregation behavior of a triphenylphosphonium-appended coumarin probe (TPP-C) in an aqueous solution and its applications as a mitochondria-targeting probe, and drug delivery carrier, which is a rare example for a low molecular-weight organic compound. The TPP-C formed homogeneous nanoparticles with small diameters in water as well as in mixtures of organic solvents and water. In pure water, the homogeneous nanoparticles induced J-aggregation, whereas in mixed solvents, the homogeneous nanoparticles induced H-aggregation. The luminescence intensities of nanoparticles originated from the aggregation-induced emission (AIE) effect in pure water and also in mixtures of organic solvents and water. These findings indicate that the AIE effect of TPP-C was dependent on the solvent. More interestingly, the TPP-C nanoparticles selectively accumulated in mitochondria. The TPP-C nanoparticles alone exhibited noncytotoxicity toward cancer cells. However, with the encapsulation of the anticancer drug doxorubicin (DOX) into the TPP-C nanoparticles, the DOX was efficiently delivered to the mitochondria. These results indicated that the proposed system demonstrates promise as a platform for future clinical medication, particularly for specific suborganelle-targeted drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Ji Ha Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Hanyong Jin
- School of Pharmacy, Chung-Ang University , Seoul 06974, Korea
| | - Yeong Eun Baek
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University , Seoul 06974, Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| |
Collapse
|
41
|
Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V, Tsiourvas D. A Triphenylphosphonium-Functionalized Mitochondriotropic Nanocarrier for Efficient Co-Delivery of Doxorubicin and Chloroquine and Enhanced Antineoplastic Activity. Pharmaceuticals (Basel) 2017; 10:E91. [PMID: 29160846 PMCID: PMC5748647 DOI: 10.3390/ph10040091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 μΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.
Collapse
Affiliation(s)
- Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Spiros A Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear and Radiological Sciences and Technology Energy and Safety, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vassilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
42
|
Abstract
The advantageous biological properties of hydroxyethyl starch (HES) triggered research interest toward the design and synthesis of drug delivery systems (DDSs) based on this polysaccharide. Convenient reaction schemes, including one-step reactions, led to the synthesis of HES conjugates with selected anticancer molecules or therapeutic proteins. Nanocapsules and hydrogels based on HES were also prepared and studied as prospective drug delivery systems. Formulations originating from these drug conjugates and also from nanocapsules and hydrogels loaded with drugs were characterized, highlighting the extension of their half-life in plasma, which is a critical property as far as their efficacy is concerned. Results obtained in vitro and in vivo proved promising, justifying the undertaking of additional experiments with such systems, including their multifunctionalization. The promising formulations that are discussed in this Topical Review is expected to further increase interest in applying HES for molecular constructing novel DDSs with enhanced efficacy, which may, in the future, find clinical applications.
Collapse
Affiliation(s)
- Constantinos M Paleos
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology , 15310 Aghia Paraskevi, Attiki Greece.,Regulon AE , Apollonos 1, 19400 Koropi, Attiki Greece
| | - Zili Sideratou
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology , 15310 Aghia Paraskevi, Attiki Greece
| | - Dimitris Tsiourvas
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology , 15310 Aghia Paraskevi, Attiki Greece
| |
Collapse
|
43
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
44
|
Zhang L, Dong X, Lu D, Liu S, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Controlled ROS production by corannulene: the vehicle makes a difference. Biomater Sci 2017; 5:1236-1240. [DOI: 10.1039/c7bm00221a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vehicle can dramatically influence corannulene's ability in terms of ROS production.
Collapse
Affiliation(s)
- Limei Zhang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Xiaopeng Dong
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Di Lu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Aiping Fan
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
45
|
Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials. J Mater Chem B 2017; 5:4918-4925. [DOI: 10.1039/c7tb00954b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvature-induced dipole moment can induce ROS production and mitochondrial accumulation.
Collapse
Affiliation(s)
- Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Di Lu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Xinchang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|