1
|
Chiang MC, Nicol CJB, Yang YP, Chiang T, Yen C. The α-MG exhibits neuroprotective potential by reducing amyloid beta peptide-induced inflammation, oxidative stress, and tau aggregation in human neural stem cells. Brain Res 2025; 1852:149506. [PMID: 39954799 DOI: 10.1016/j.brainres.2025.149506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in older adults. Amyloid-beta (Aβ) and tau protein neurofibrillary tangles accumulate in the brain, leading to a progressive decline in memory, thinking, and behavior. Neuroinflammation and oxidative stress play a significant role in the development and progression of AD. Research has suggested that α-mangostin (α-MG), a compound found in mangosteen peels, may have anti-inflammatory, antioxidant, and neuroprotective properties, which could be beneficial in the context of AD. Further research is required to fully comprehend the therapeutic mechanisms of α-MG on AD and determine its potential as a treatment option. α-MG treatment significantly improves the viability of hNSCs exposed to Aβ and reduces caspase activity. Furthermore, this treatment is associated with a notable decrease in the expression of TNF-α and IL-1β. The treatment effectively restores alterations in the expression of IKK and NF-κB (p65) induced by Aβ, which are critical factors in the inflammatory response. Moreover, α-MG effectively reduces iNOS and COX-2 levels in Aβ-treated hNSCs, showcasing its potential therapeutic benefits. Treatment with α-MG protects hNSCs against Aβ-induced oxidative stress and effectively prevents the decrease in Nrf2 levels caused by Aβ. The treatment significantly enhances the activity and mRNA expression of Nrf2 downstream antioxidant target genes, including SOD-1, SOD-2, Gpx1, GSH, catalase, and HO-1, compared to Aβ-treated controls. α-MG significantly reduces tau and ubiquitin (Ub) aggregates, enhances proteasome activity, and increases the mRNA expression of HSF1, HSP27, HSP70, and HSP90 in Tau-GFP-expressed hNSCs. This study significantly improves our comprehension of the anti-inflammatory, antioxidative stress, and anti-aggregated effects of α-MG. These findings have potential therapeutic implications for developing treatments that could delay AD progression and promote healthy aging.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Sinclair Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tairui Chiang
- New Taipei Municipal Jinhe High School, New Taipei City 235, Taiwan; Ames Middle School, Ames, IA 50014, USA
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| |
Collapse
|
2
|
Tripathy NS, Sahoo L, Paikray S, Dilnawaz F. Emerging nanoplatforms towards microenvironment-responsive glioma therapy. Med Oncol 2025; 42:46. [PMID: 39812745 DOI: 10.1007/s12032-024-02596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier. Imaging plays a crucial role in gliomas which significantly plays an important role in the accuracy of the diagnosis followed by any subsequent surgery or therapy. Other diagnostic methods (such as biopsies or surgery) are often very invasive. Preoperative imaging and intraoperative image-guided surgery perform the most significant safe resection. In recent years, the rapid growth of nanotechnology has opened up new avenues for glioma diagnosis and treatment. For better therapeutic efficacy, developing microenvironment-responsive nanoplatforms, including novel nanotherapeutic platforms of sonodynamic therapy, photodynamic therapy, and photothermal treatments, are employed for improved patient survival and better clinical control outcome. In this review recent advancement of multifunctional nanoplatforms leading toward treatment of glioma is discussed.
Collapse
Affiliation(s)
- Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Safal Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
3
|
Hao Y, Shen X, Liu J, Cai Z, Wang X, Yang Z, Chen F, Dong B, Wang R, Du X, Qi Z, Ge Y. A Supramolecular Protein Assembly Intrinsically Rescues Memory Deficits in an Alzheimer's Disease Mouse Model. NANO LETTERS 2024; 24:15565-15574. [PMID: 39592140 PMCID: PMC11640758 DOI: 10.1021/acs.nanolett.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Supramolecular protein assemblies have been used as intelligent drug delivery systems that can encapsulate drugs and transport them to specific tissues or cells. However, the known methods for designing supramolecular protein assemblies for transportation across the blood-brain barrier (BBB) remain challenging and inefficient. Herein, we report that the supramolecular recombinant-protein-based strategy enables the biosynthesis and production of a supramolecular protein assembly that is intrinsically capable of crossing the BBB. The recombinant protein constituting the essential part of apolipoprotein A1 can self-assemble into a supramolecular protein assembly known as a nanodisc. The nanodisc could efficiently enter the brain of an Alzheimer's disease mouse model, recognize Aβ1-42, eliminate amyloid plaques, promote neurogenesis, and ameliorate cognitive impairment. This work opens a new field for supramolecular protein assemblies and offers a new avenue for designing versatile and intelligent supramolecular biomaterials.
Collapse
Affiliation(s)
- Yuchong Hao
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xin Shen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Jiantao Liu
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhongqi Cai
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xinquan Wang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Zerui Yang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Fuqing Chen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Baorui Dong
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences & MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiubo Du
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhenhui Qi
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Yan Ge
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| |
Collapse
|
4
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2024:10.1007/s10072-024-07871-4. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Dong Y, Tang H, Dai H, Zhao H, Wang J. The application of nanodiscs in membrane protein drug discovery & development and drug delivery. Front Chem 2024; 12:1444801. [PMID: 39359422 PMCID: PMC11445163 DOI: 10.3389/fchem.2024.1444801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.
Collapse
Affiliation(s)
- Yingkui Dong
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huan Tang
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
8
|
Constantinou C, Meliou K, Skouras A, Siafaka P, Christodoulou P. Liposomes against Alzheimer's Disease: Current Research and Future Prospects. Biomedicines 2024; 12:1519. [PMID: 39062092 PMCID: PMC11275096 DOI: 10.3390/biomedicines12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease, the most common neurodegenerative disease, affects more than 60 million people worldwide, a number that is estimated to double by 2050. Alzheimer's disease is characterized by progressive memory loss, the impairment of behavior, and mood changes, as well as the disturbed daily routine of the patient. Although there are some active molecules that can be beneficial by halting the progression of the disease, the blood-brain barrier and other physiological barriers hinder their delivery and, consequently, the appropriate management of the disease. Therefore, drug delivery systems that effectively target and overcome the blood-brain barrier to reach the targeted brain area would improve treatment effectiveness. Liposomes are lipophilic carriers that consist of a phospholipid bilayer structure, simulating the physiological lipidic layer of the blood-brain barrier and enabling better delivery of the drug to the brain. Given that pure liposomes may have less targeting affinity than functionalized liposomes, modification with groups such as lactoferrin, poly(ethylene glycol), and transferrin may improve specificity. In this mini-review, we summarize the literature on the use of liposomes for the treatment of Alzheimer's disease, focusing on the functionalization moieties of liposomes. In addition, challenges in brain delivery are also discussed.
Collapse
Affiliation(s)
- Christiana Constantinou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Katerina Meliou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Athanasios Skouras
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece;
| | - Panoraia Siafaka
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | | |
Collapse
|
9
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
10
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
12
|
Chandran S, Binninger D. Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer's Disease. Antioxidants (Basel) 2023; 13:21. [PMID: 38275641 PMCID: PMC10812627 DOI: 10.3390/antiox13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
A major contributor to dementia seen in aging is Alzheimer's disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins by reactive oxygen species (ROS). Hyperphosphorylation and accumulation of the protein tau in the microtubules within the brain also promote ROS production. Methionine, a residue of proteins, is particularly sensitive to oxidation by ROS. One of the enzyme systems that reverses the oxidative damage in mammalian cells is the enzyme system known as Methionine Sulfoxide Reductases (MSRs). The components of the MSR system, namely MSRA and MSRB, reduce oxidized forms of methionine (Met-(o)) in proteins back to methionine (Met). Furthermore, the MSRs scavenge ROS by allowing methionine residues in proteins to utilize their antioxidant properties. This review aims to improve the understanding of the role of the MSR system of enzymes in reducing cellular oxidative damage and AD pathogenesis, which may contribute to effective therapeutic approaches for AD by targeting the MSR system.
Collapse
Affiliation(s)
- Sanjana Chandran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David Binninger
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
13
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Dong C, Yu X, Jin K, Qian J. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; current status, challenges and future perspective. Nanomedicine (Lond) 2023; 18:2161-2184. [PMID: 38180008 DOI: 10.2217/nnm-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Glioblastoma (GB) originating from astrocytes is considered a grade IV astrocytoma tumor with severe consequences. The blood-brain barrier (BBB) offers a major obstacle in drug delivery to the brain to overcome GB. The current treatment options possess limited efficacy and maximal systemic toxic effects in GB therapy. Emerging techniques such as targeted drug delivery offer significant advantages, including enhanced drug delivery to the tumor site by overcoming the BBB. This review article focuses on the status of surface-modified lipid nanocarriers with functional ligands to efficiently traverse the BBB and improve brain targeting for successful GB treatment. The difficulties with surface-functionalized liposomes and potential future directions for opening up novel treatment options for GB are highlighted.
Collapse
Affiliation(s)
- Changming Dong
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China
| |
Collapse
|
15
|
Wang R, Zhang X, Feng K, Zeng W, Wu J, Sun D, Lu Z, Feng H, Di L. Nanotechnologies meeting natural sources: Engineered lipoproteins for precise brain disease theranostics. Asian J Pharm Sci 2023; 18:100857. [PMID: 37953874 PMCID: PMC10637878 DOI: 10.1016/j.ajps.2023.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 11/14/2023] Open
Abstract
Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity, from preventive and diagnostic to therapeutic fields. Lipoproteins, because of their inherent blood-brain barrier permeability and lesion-homing capability, have been identified as promising strategies for high-performance theranostics of brain diseases. However, the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes, which can be critical for individual therapeutics and clinical translation. To address these issues, lipoprotein-inspired nano drug-delivery systems (nano-DDSs), which have been learned from nature, have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions. In this review, the barriers in brain disease treatment, advantages of state-of-the-art lipoprotein-inspired nano-DDSs, and bio-interactions of such nano-DDSs are highlighted. Furthermore, the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized. Specifically, the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed. Finally, the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles, such as exosomes, cell membranes, and bacteria, are discussed.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xinru Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Danni Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ziyi Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Hao Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
16
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
17
|
Liu Y, Shen Y. Applications of Nanoparticles in Alzheimer's Disease. J Alzheimers Dis 2023; 96:459-471. [PMID: 37807779 DOI: 10.3233/jad-230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
With the rapid aging of the global population, the prevalence of neurodegenerative diseases has become a significant concern, with Alzheimer's disease (AD) being the most common. However, the clinical trials of many drugs targeting AD have failed due to the challenges posed by the blood-brain barrier (BBB), which makes intracerebral administration of drugs difficult. However, nanoparticles (NPs) may aid in the delivery of such drugs. NPs are materials with sizes between 1-100 nm that offer several advantages, such as improving biocompatibility, prolonging half-life, transporting large molecules, crossing the BBB to deliver to the central nervous system, and exhibiting good targeting ability. In addition to drug delivery, NPs also have excellent diagnostic potential, and multifunctional NPs can integrate the advantages of diagnosis, targeting, and treatment. This mini-review article provides an overview of NPs, including the composition of the carrier, strategies for crossing the BBB, and different targets of AD pathology, with the aim of providing guidance for the development prospects of NPs.
Collapse
Affiliation(s)
- Yiming Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): a current overview of active targeting in brain diseases. Colloids Surf B Biointerfaces 2022; 221:112999. [DOI: 10.1016/j.colsurfb.2022.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
19
|
Mougenot MF, Pereira VS, Costa ALR, Lancellotti M, Porcionatto MA, da Silveira JC, de la Torre LG. Biomimetic Nanovesicles—Sources, Design, Production Methods, and Applications. Pharmaceutics 2022; 14:pharmaceutics14102008. [PMID: 36297442 PMCID: PMC9610935 DOI: 10.3390/pharmaceutics14102008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Despite all the progress in the field of liposomes and nanoparticles for applications as drug and gene delivery systems, the specific targeting and immune system escape capabilities of these systems are still limited. Biomimetic nanovesicles emerged as a strategy to overcome these and other limitations associated with synthetic carriers, such as short circulation time, cytotoxicity, and difficulty in crossing biological barriers, since many of the desirable abilities of drug delivery systems are innate characteristics of biological vesicles. Thus, the question arises: would biomimetic nanovesicles be responsible for addressing these advances? It is currently known that biomimetic nanovesicles (BNV) can combine the intrinsic advantages of natural materials with the well-known production methods and controllability of synthetic systems. Besides, the development of the biotechnology and nanotechnology fields has provided a better understanding of the functionalities of biological vesicles and the means for the design and production of biomimetic nanovesicles (BNV). Based on this, this work will focus on tracking the main research on biomimetic nanovesicles (BNV) applied as drug and gene delivery systems, and for vaccines applications. In addition, it will describe the different sources of natural vesicles, the technical perspectives on obtaining them, and the possibility of their hybridization with synthetic liposomes.
Collapse
Affiliation(s)
- Marcel Franco Mougenot
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Vanessa Sousa Pereira
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Institute of Exact and Technological Sciences, Campus Florestal, Federal University of Viçosa (UFV), Florestal 35690-000, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Correspondence: ; Tel.: +55-19-3521-0397
| |
Collapse
|
20
|
Li L, Lu H, Zhang X, Whiteway M, Wu H, Tan S, Zang J, Tian S, Zhen C, Meng X, Li W, Zhang D, Zhang M, Jiang Y. Baicalein Acts against Candida albicans by Targeting Eno1 and Inhibiting Glycolysis. Microbiol Spectr 2022; 10:e0208522. [PMID: 35900099 PMCID: PMC9430770 DOI: 10.1128/spectrum.02085-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Baicalein (BE) is a promising antifungal small-molecule compound with an extended antifungal spectrum, good synergy with fluconazole, and low toxicity, but its target protein and antifungal mechanism remain elusive. In this study, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. Eno1 acts as a key therapeutic target of the drug, as BE had no antifungal activity against the eno1 null mutant in a Galleria mellonella model of C. albicans infection. To investigate the mechanism of action, we solved the crystal structure of C. albicans Eno1(CaEno1) and then compared the difference between this structure and that of Eno1 from humans. The predicted primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Both positions S269 and K273 have different residues in the human Eno1 (hEno1). This finding suggests that BE may bind selectively to CaEno1, which would limit the potential for side effects in humans. Our findings demonstrate that Eno1 is a target protein of BE and thus may serve as a novel target for the development of antifungal therapeutics acting through the inhibition of glycolysis. IMPORTANCE Baicalein (BE) is a promising antifungal agent which has been well characterized, but its target protein is still undiscovered. The protein Eno1 plays a crucial role in the survival of Candida albicans. However, there are few antifungal agents which inhibit the functions of Eno1. Here, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. We further solved the crystal structure of C. albicans Eno1(CaEno1) and predicted that the primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Our findings will be helpful to get specific small-molecule inhibitors of CaEno1 and open the way for the development of new antifungal therapeutics targeted at inhibiting glycolysis.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shanlun Tan
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shujuan Tian
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianlei Meng
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Liu T, Xie Q, Dong Z, Peng Q. Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. NANOTECHNOLOGY 2022; 33. [PMID: 35917704 DOI: 10.1088/1361-6528/ac85f3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have become severe health concern worldwide. The treatment of the CNS diseases is of great challenges due largely to the presence of the blood-brain barrier (BBB). On the one hand, BBB protects brain from the harmful exogenous molecules via inhibiting their entry into the brain. On the other hand, it also hampers the transport of therapeutic drugs into the brain, resulting in the difficulties in treating the CNS diseases. In the past decades, nanoparticles-based drug delivery systems have shown great potentials in overcoming the BBB owing to their unique physicochemical properties, such as small size and specific morphology. In addition, functionalization of nanomaterials confers these nanocarriers controlled drug release features and targeting capacities. These properties make nanocarriers the potent delivery systems for treating the CNS disorders. Herein, we summarize the recent progress in nanoparticles-based systems for the CNS delivery, including the conventional and innovative systems. The prerequisites, drawbacks and challenges of nanocarriers (such as protein corona formation) in the CNS delivery are also discussed.
Collapse
Affiliation(s)
- Tianyou Liu
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qinglian Xie
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, CHINA
| |
Collapse
|
22
|
Nguyen PH, Le AH, Pek JSQ, Pham TT, Jayasinghe MK, Do DV, Phung CD, Le MT. Extracellular vesicles and lipoproteins - Smart messengers of blood cells in the circulation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e49. [PMID: 38938581 PMCID: PMC11080875 DOI: 10.1002/jex2.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/29/2024]
Abstract
Blood cell-derived extracellular vesicles (BCEVs) and lipoproteins are the major circulating nanoparticles in blood that play an important role in intercellular communication. They have attracted significant interest for clinical applications, given their endogenous characteristics which make them stable, biocompatible, well tolerated, and capable of permeating biological barriers efficiently. In this review, we describe the basic characteristics of BCEVs and lipoproteins and summarize their implications in both physiological and pathological processes. We also outline well accepted workflows for the isolation and characterization of these circulating nanoparticles. Importantly, we highlight the latest progress and challenges associated with the use of circulating nanoparticles as diagnostic biomarkers and therapeutic interventions in multiple diseases. We spotlight novel engineering approaches and designs to facilitate the development of these nanoparticles by enhancing their stability, targeting capability, and delivery efficiency. Therefore, the present work provides a comprehensive overview of composition, biogenesis, functions, and clinical translation of circulating nanoparticles from the bench to the bedside.
Collapse
Affiliation(s)
- Phuong H.D. Nguyen
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jonetta Shi Qi Pek
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cao Dai Phung
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh T.N. Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
23
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
24
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
25
|
Choi H, Choi K, Kim DH, Oh BK, Yim H, Jo S, Choi C. Strategies for Targeted Delivery of Exosomes to the Brain: Advantages and Challenges. Pharmaceutics 2022; 14:672. [PMID: 35336049 PMCID: PMC8948948 DOI: 10.3390/pharmaceutics14030672] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood-brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results. Although surface-modified exosomes possessing brain targetability have shown enhanced CNS delivery in preclinical studies, the successful development of clinically approved exosome therapeutics for CNS diseases requires the establishment of quantitative and qualitative methods for monitoring exosomal delivery to the brain parenchyma in vivo as well as elucidation of the mechanisms underlying the BBB crossing of surface-modified exosomes.
Collapse
Affiliation(s)
- Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Kyungsun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Dae-Hwan Kim
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Byung-Koo Oh
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Hwayoung Yim
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Soojin Jo
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
26
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
27
|
Phongpradist R, Thongchai W, Thongkorn K, Lekawanvijit S, Chittasupho C. Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions. Polymers (Basel) 2022; 14:443. [PMID: 35160433 PMCID: PMC8838555 DOI: 10.3390/polym14030443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Curcumin is one of the most promising natural therapeutics for use against Alzheimer's disease. The major limitations of curcumin are its low oral bioavailability and difficulty in permeating the blood-brain barrier. Therefore, designing a delivery system of curcumin to overcome its limitations must be employed. KLVFF, a peptide known as an amyloid blocker, was used in this study as a targeting moiety to develop a targeted drug delivery system. A prototype of transnasal KLVFF conjugated microemulsions containing curcumin (KLVFF-Cur-ME) for the nose-to-brain delivery was fabricated. The KLVFF-Cur-ME was developed by a titration method. A conjugation of KLVFF was performed through a carbodiimide reaction, and the conjugation efficiency was confirmed by FTIR and DSC technique. KLVFD-Cur-ME was characterized for the drug content, globule size, zeta potential, and pH. A transparent and homogeneous KLVFF-Cur-ME is achieved with a drug content of 80.25% and a globule size of 76.1 ± 2.5 nm. The pH of KLVFF-Cur-ME is 5.33 ± 0.02, indicating non-irritation to nasal tissues. KLVFD-Cur-ME does not show nasal ciliotoxicity. An ex vivo diffusion study revealed that KLVFF-Cur-ME partitions the porcine nasal mucosa through diffusion, following the Higuchi model. This investigation demonstrates the successful synthesis of a bifunctional KLVFF-Cur-ME as a novel prototype to deliver anti-Aβ aggregation via an intranasal administration.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wisanu Thongchai
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand;
| | - Kriangkrai Thongkorn
- Department of Companion Animals and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
28
|
Li Y, Sun J, Li J, Liu K, Zhang H. Engineered protein nanodrug as an emerging therapeutic tool. NANO RESEARCH 2022; 15:5161-5172. [PMID: 35281219 PMCID: PMC8900963 DOI: 10.1007/s12274-022-4103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Functional proteins are the most versatile macromolecules. They can be obtained by extraction from natural sources or by genetic engineering technologies. The outstanding selectivity, specificity, binding activity, and biocompatibility endow engineered proteins with outstanding performance for disease therapy. Nevertheless, their stability is dramatically impaired in blood circulation, hindering clinical translations. Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. We first introduce various strategies for improving therapeutic efficacy via bioengineering and nanoassembly. Furthermore, we highlight their diverse applications as growth factors, nanovaccines, antibody-based drugs, bioimaging molecules, and cytokine receptor antagonists. Finally, a summary and perspective for the future development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081 Germany
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
29
|
Charrière K, Ghzaiel I, Lizard G, Vejux A. Involvement of Microglia in Neurodegenerative Diseases: Beneficial Effects of Docosahexahenoic Acid (DHA) Supplied by Food or Combined with Nanoparticles. Int J Mol Sci 2021; 22:ijms221910639. [PMID: 34638979 PMCID: PMC8508587 DOI: 10.3390/ijms221910639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases represent a major public health issue and require better therapeutic management. The treatments developed mainly target neuronal activity. However, an inflammatory component must be considered, and microglia may constitute an important therapeutic target. Given the difficulty in developing molecules that can cross the blood–brain barrier, the use of food-derived molecules may be an interesting therapeutic avenue. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (22:6 omega-3), has an inhibitory action on cell death and oxidative stress induced in the microglia. It also acts on the inflammatory activity of microglia. These data obtained in vitro or on animal models are corroborated by clinical trials showing a protective effect of DHA. Whereas DHA crosses the blood–brain barrier, nutritional intake lacks specificity at both the tissue and cellular level. Nanomedicine offers new tools which favor the delivery of DHA at the cerebral level, especially in microglial cells. Because of the biological activities of DHA and the associated nanotargeting techniques, DHA represents a therapeutic molecule of interest for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d’Investigation Clinique, INSERM CIC 1431, 25030 Besançon, France;
| | - Imen Ghzaiel
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), Université de Bourgogne Franche-Comté, INSERM, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France; (I.G.); (G.L.)
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), Université de Bourgogne Franche-Comté, INSERM, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France; (I.G.); (G.L.)
| | - Anne Vejux
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), Université de Bourgogne Franche-Comté, INSERM, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France; (I.G.); (G.L.)
- Correspondence: ; Tel.: +33-3-8039-3701; Fax: +33-3-8039-6250
| |
Collapse
|
30
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
31
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
32
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 498] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. Int J Pharm 2021; 596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
|
34
|
Hivare P, Panda C, Gupta S, Bhatia D. Programmable DNA Nanodevices for Applications in Neuroscience. ACS Chem Neurosci 2021; 12:363-377. [PMID: 33433192 DOI: 10.1021/acschemneuro.0c00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The broad area of neuroscience has witnessed an increasing exploitation of a variety of synthetic biomaterials with controlled nanosized features. Different bionanomaterials offer very peculiar physicochemical and biochemcial properties contributing to the development of novel imaging devices toward imaging the brain, or as smartly functionalized scaffolds, or diverse tools contributing toward a better understanding of nervous tissue and its functions. DNA nanotechnology-based devices and scaffolds have emerged as ideal materials for cellular and tissue engineering due to their very biocompatible properties, robust adaptation with diverse biological systems, and biosafety in terms of reduced immune response triggering. Here we present technologies with respect to DNA nanodevices that are designed to better interact with nervous systems like neural cells, advanced molecular imaging technologies for imaging brain, biomaterials in neural regeneration, neuroprotection, and targeted delivery of drugs and small molecules across the blood-brain barrier. Along with comments regarding the progress of DNA nanotechnology in neuroscience, we also present a perspective on challenges and opportunities for applying DNA nanotechnology in applications pertaining to neurosciences.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Chinmaya Panda
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Sharad Gupta
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Dhiraj Bhatia
- Biological Engineering discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
35
|
Nanotechnology and Nanocarrier-Based Drug Delivery as the Potential Therapeutic Strategy for Glioblastoma Multiforme: An Update. Cancers (Basel) 2021; 13:cancers13020195. [PMID: 33430494 PMCID: PMC7827410 DOI: 10.3390/cancers13020195] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) are among the most lethal tumors. The highly invasive nature and presence of GBM stem cells, as well as the blood brain barrier (BBB) which limits chemotherapeutic drugs from entering the tumor mass, account for the high chance of treatment failure. Recent developments have found that nanoparticles can be conjugated to liposomes, dendrimers, metal irons, or polymeric micelles, which enhance the drug-loaded compounds to efficiently penetrate the BBB, thus offering new possibilities for overcoming GBM stem cell-mediated resistance to chemotherapy and radiation therapy. In addition, there have been new emerging strategies that use nanocarriers for successful GBM treatment in animal models. This review highlights the recent development of nanotechnology and nanocarrier-based drug delivery for treatment of GBMs, which may be a promising therapeutic strategy for this tumor entity. Abstract Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with poor prognosis. The heterogeneous and aggressive nature of GBMs increases the difficulty of current standard treatment. The presence of GBM stem cells and the blood brain barrier (BBB) further contribute to the most important compromise of chemotherapy and radiation therapy. Current suggestions to optimize GBM patients’ outcomes favor controlled targeted delivery of chemotherapeutic agents to GBM cells through the BBB using nanoparticles and monoclonal antibodies. Nanotechnology and nanocarrier-based drug delivery have recently gained attention due to the characteristics of biosafety, sustained drug release, increased solubility, and enhanced drug bioactivity and BBB penetrability. In this review, we focused on recently developed nanoparticles and emerging strategies using nanocarriers for the treatment of GBMs. Current studies using nanoparticles or nanocarrier-based drug delivery system for treatment of GBMs in clinical trials, as well as the advantages and limitations, were also reviewed.
Collapse
|
36
|
Li Y, Tang H, Andrikopoulos N, Javed I, Cecchetto L, Nandakumar A, Kakinen A, Davis TP, Ding F, Ke PC. The membrane axis of Alzheimer's nanomedicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000040. [PMID: 33748816 PMCID: PMC7971452 DOI: 10.1002/anbr.202000040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins. As literature implicates cell membrane as a culprit in AD pathogenesis, here we summarize the membrane axis of AD nanomedicine and present a new rationale that the field development may greatly benefit from harnessing our existing knowledge of Aβ-membrane interaction, nanoparticle-membrane interaction and Aβ-nanoparticle interaction.
Collapse
Affiliation(s)
- Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
37
|
Grippin AJ, Dyson KA, Qdaisat S, McGuiness J, Wummer B, Mitchell DA, Mendez-Gomez HR, Sayour EJ. Nanoparticles as immunomodulators and translational agents in brain tumors. J Neurooncol 2021; 151:29-39. [PMID: 32757093 PMCID: PMC11262791 DOI: 10.1007/s11060-020-03559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery. METHODS In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies. RESULTS Despite recent development of many promising nanoparticle systems to modulate immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation. CONCLUSION Review of early preclinical studies and clinical trials provides foundational safety, feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of immunotherapy and translational oncology for patients with brain tumors.
Collapse
Affiliation(s)
- Adam J Grippin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Kyle A Dyson
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Sadeem Qdaisat
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - James McGuiness
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Brandon Wummer
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Hector R Mendez-Gomez
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Wünsch A, Mulac D, Langer K. Lecithin coating as universal stabilization and functionalization strategy for nanosized drug carriers to overcome the blood-brain barrier. Int J Pharm 2020; 593:120146. [PMID: 33279714 DOI: 10.1016/j.ijpharm.2020.120146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
Lecithin coated cholesteryl oleate (ChOl) based nanoparticles (NPs) imitating natural lipoproteins represent a new and promising drug carrier strategy to cross the blood-brain barrier (BBB). In such systems lecithin serves as stabilizing as well as functionalizing agent and enables the adsorptive binding of apolipoprotein E3 (ApoE) as potential drug targeting ligand. The present work is focused on the effect of size reduction on the lecithin coating and ApoE binding. Furthermore, the transferability of this lecithin coating strategy to other NP cores, namely polylactic-co-glycolic acid (PLGA) and polylactic acid (PLA), is investigated in order to provide a universal strategy for a wide range of cores to overcome the BBB. The ChOl NPs' size was successfully reduced from 100 nm to 70 nm. Varying the core size of ChOl NPs illustrated, that the at least needed lecithin amount for sufficient stabilization could be calculated surface area dependently. However, the size reduction led to reduced dye loading per NP and increased ApoE need per NP mass. These effects turned out as huge disadvantages of smaller NPs by weakening the observed ApoE mediated effects. Nevertheless, the extended understanding of the lecithin coating could be used to transfer the concept to other core materials. PLGA and PLA NPs were investigated as alternative core materials for lecithin coating. PLGA was found to be unsuitable, whereas in the case of PLA sufficient stabilization and 100% adsorptive binding efficiency to ApoE could be achieved. The ApoE mediated effects of transcytosis at an in vitro BBB model by bypassing lysosomes were reproduced in even stronger quantities than with a ChOl core, proving lecithin coating as transferable strategy to disguise various NPs with a certain lipophilicity as lipoproteins.
Collapse
Affiliation(s)
- A Wünsch
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| | - D Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| | - K Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| |
Collapse
|
39
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
40
|
Wünsch A, Mulac D, Langer K. Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier. Int J Pharm 2020; 589:119821. [DOI: 10.1016/j.ijpharm.2020.119821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
|
41
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
42
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
43
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
44
|
Chen L, Song Q, Chen Y, Meng S, Zheng M, Huang J, Zhang Q, Jiang J, Feng J, Chen H, Jiang G, Gao X. Tailored Reconstituted Lipoprotein for Site-Specific and Mitochondria-Targeted Cyclosporine A Delivery to Treat Traumatic Brain Injury. ACS NANO 2020; 14:6636-6648. [PMID: 32464051 DOI: 10.1021/acsnano.9b09186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The secondary damage in traumatic brain injury (TBI) can lead to lifelong disabilities, bringing enormous economic and psychological burden to patients and their families. Mitochondria, as the core mediator of the secondary injury cascade reaction in TBI, is an important target to prevent the spread of cell death and dysfunction. Thus, therapeutics that can accumulate at the damaged sites and subsequently rescue the functions of mitochondria would largely improve the outcome of TBI. Cyclosporine A (CsA), which can maintain the integrity of mitochondrial function, is among the most promising neuroprotective therapeutics for TBI treatment. However, the clinical application of CsA in TBI is largely hindered because of its poor access to the targets. Here, to realize targeted intracellular CsA delivery, we designed a lipoprotein biomimetic nanocarrier by incorporating CsA in the core and decorating a matrix metalloproteinase-9 activatable cell-penetrating peptide onto the surface of the lipoprotein-mimic nanocarrier. This CsA-loaded tailored reconstituted lipoprotein efficiently accumulated at the damaged brain sites, entered the target cells, bound to the membrane of mitochondria, more efficiently reduced neuronal damage, alleviated neuroinflammation, and rescued memory deficits at the dose 1/16 of free CsA in a controlled cortical impact injury mice model. The findings provide strong evidence that the secondary damages in TBI can be well controlled through targeted CsA delivery and highlight the potential of a lipoprotein biomimetic nanocarrier as a flexible nanoplatform for the management of TBI.
Collapse
Affiliation(s)
- Lepei Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Shuang Meng
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jialin Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jiyao Jiang
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Junfeng Feng
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
45
|
Rabanel JM, Delbreil P, Banquy X, Brambilla D, Ramassamy C. Periphery-confined particulate systems for the management of neurodegenerative diseases and toxicity: Avoiding the blood-brain-barrier challenge. J Control Release 2020; 322:286-299. [PMID: 32243978 DOI: 10.1016/j.jconrel.2020.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier prevents passage of large and hydrophilic molecules, undermining efforts to deliver most active molecules, proteins and other macromolecules. To date, nanoparticle-assisted delivery has been extensively studied to overcome this challenge but with limited success. On the other hand, for certain brain therapeutic applications, periphery-confined particles could be of immediate therapeutic usefulness. The modulation of CNS dysfunctions from the peripheral compartment is a promising approach, as it does not involve invasive interventions. From recent studies, three main roles could be identified for periphery-confined particles: brain tissue detoxification via the "sink-effect"; a "circulating drug-reservoir" effect to improve drug delivery to brain tissues, and finally, brain vascular endothelium targeting to diagnose or heal vascular-related dysfunctions. These applications are much easier to implement as they do not involve complex therapeutic and targeting strategies and do not require crossing biological barriers. Micro/nano-devices required for such applications will likely be simpler to synthesize and will involve fewer complex materials. Moreover, peripheral particles are expected to be less prone to neurotoxicity and issues related to their diffusion in confined space.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
46
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
48
|
Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 2020; 25:molecules25081929. [PMID: 32326318 PMCID: PMC7221820 DOI: 10.3390/molecules25081929] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.)
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
49
|
Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020; 8:E13. [PMID: 31941057 PMCID: PMC7168063 DOI: 10.3390/biomedicines8010013] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) acts as a barrier to prevent the central nervous system (CNS) from damage by substances that originate from the blood circulation. The BBB limits drug penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases. Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed delivery systems are discussed for the delivery of a drug to the brain. This review particularly focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey;
| | - Rasoul Roghanian
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746, Iran;
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
| |
Collapse
|
50
|
Gopalan D, Pandey A, Udupa N, Mutalik S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J Control Release 2019; 319:183-200. [PMID: 31866505 DOI: 10.1016/j.jconrel.2019.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The present review deals in-depth with the current application of nanotechnology in targeting the major pathological hallmarks of Alzheimer's disease. This review further focuses on the surface modification of the nanocarriers using antibody, aptamers, proteins and peptides for specific targeting in the brain by overcoming the biological barriers such as blood brain barrier. The stimuli responsive/pulsatile drug delivery nanoplatforms using stimuli such as pH, temperature, photo-thermal, reactive oxygen species, ultrasonic stimulation and electrical stimulation, which help to create a micro-environment to either trigger the site-specific drug release from the nanoplatform or to reduce the disease burden in the brain, have been discussed. The targeting of nanoplatforms to sub-cellular compartments such as mitochondria, nuclei, endoplasmic reticulum, golgi apparatus and lysosomes along with receptor specific interactions such as such folate, lactoferrin, transferrin, insulin and low-density lipoprotein (LDL) receptors has been included to give reader an idea about strategies to enhance cellular co-localization and receptor based targeting of nanoparticles to enhance efficacy of delivery platform. This article describes the various type of nanoplatforms which include lipidic nanoplatforms, polymeric nanoplatforms, inorganic nanoplatforms (metallic nanocarriers, quantum dots, ceramic based nanocarriers), carbon based nanocarriers and cell derived or biomimetic (exosomes and virus based) nanoplatforms, to either deliver the active ingredient or to themselves target the Alzheimer's disease pathology. Thus the review gives a detailed insight of all the recent research studies carried out using nanotechnology in the field of Alzheimer's disease.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India.
| |
Collapse
|