1
|
Al Tahan MA, Al-Khattawi A, Russell C. Stearic acid-capped mesoporous silica microparticles as novel needle-like-structured drug delivery carriers. Eur J Pharm Biopharm 2024:114619. [PMID: 39716609 DOI: 10.1016/j.ejpb.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Mesoporous silica are widely utilised as drug carriers due to their large pore volume and surface area, which facilitate effective loading. Additionally, they can be used to enhance drugs stability and protect against enzymatic degradation due to their silica framework. However, without the addition of a capping material, the loaded cargo may be prematurely released before reaching the target site. This work reports the functionalisation of a commercially available silica microparticle (SYLOID XDP 3050) with stearic acid at various stearic acid loading concentrations (20-120 % w/w). Scanning electron microscopy (SEM) analysis revealed that the pores were capped with stearic acid, with the filling ratio increasing proportionally to the loading concentration. Notably, needle-like structures appeared when the stearic acid amount exceeded 80 % w/w, surpassing the calculated theoretical maximum pore filling ratio (64.32 %). The molecular interactions were highlighted using Fourier-transform infrared spectroscopy (FTIR), as the intensity of the CH3 increased with increased stearic acid loading concentrations. The needle-structures phenomenon was corroborated by 3D confocal imaging. It utilised the autofluorescence properties of stearic acid to demonstrate its presence within the carrier, with fluorescence intensity increasing alongside the stearic acid concentration. Differential scanning calorimetry (DSC) indicated the crystalline nature of these needle structures, which was further confirmed by X-ray diffraction (XRD) analysis, validating the crystallisation of the stearic acid needles. Moreover, nitrogen porosimetry was employed to assess the pore volume and surface area, where the formulation containing 120 % stearic acid exhibited the lowest pore volume (0.59 cc). This value was smaller than unloaded SYLOID (2.1 cc), indicating near-complete filling of the carrier. This newly developed SYLOID-stearic acid carrier will now be used to enhance formulation development as a platform to enhance protein oral drug delivery.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
2
|
Baumgartner A, Dobaj N, Planinšek O. Investigating the Influence of Processing Conditions on Dissolution and Physical Stability of Solid Dispersions with Fenofibrate and Mesoporous Silica. Pharmaceutics 2024; 16:575. [PMID: 38794237 PMCID: PMC11125193 DOI: 10.3390/pharmaceutics16050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The study aimed to enhance the solubility of the poorly water-soluble drug, fenofibrate, by loading it onto mesoporous silica, forming amorphous solid dispersions. Solid dispersions with 30% fenofibrate were prepared using the solvent evaporation method with three solvents (ethyl acetate, acetone, and isopropanol) at different temperatures (40 °C, boiling point temperature). Various characteristics, including solid-state properties, particle morphology, and drug release, were evaluated by different methods and compared to a pure drug and a physical mixture of fenofibrate and silica. Results revealed that higher solvent temperatures facilitated complete amorphization and rapid drug release, with solvent choice having a lesser impact. The optimal conditions for preparation were identified as ethyl acetate at boiling point temperature. Solid dispersions with different fenofibrate amounts (20%, 25%, 35%) were prepared under these conditions. All formulations were fully amorphous, and their dissolution profiles were comparable to the formulation with 30% fenofibrate. Stability assessments after 8 weeks at 40 °C and 75% relative humidity indicated that formulations prepared with ethyl acetate and at 40 °C were physically stable. Interestingly, some formulations showed improved dissolution profiles compared to initial tests. In conclusion, mesoporous silica-based solid dispersions effectively improved fenofibrate dissolution and demonstrated good physical stability if prepared under appropriate conditions.
Collapse
Affiliation(s)
- Ana Baumgartner
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia (O.P.)
| | | | | |
Collapse
|
3
|
Okada K, Watanabe D, Ono T, Hayashi Y, Kumada S, Onuki Y. TGA and NMR relaxation measurement of nonmesoporous silica to investigate the amount of hydrolysis product in acetylsalicylic acid adsorbed on silica. J Pharm Biomed Anal 2024; 241:115972. [PMID: 38266452 DOI: 10.1016/j.jpba.2024.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
This study investigated a crucial surface property of silica that contributes to the chemical stability of acetylsalicylic acid (ASA) physically adsorbed on silica. Hydrophilic nonmesoporous types of silica were selected, and the number of hydroxyl groups on silica (N(OH)) was evaluated using thermogravimetric analysis (TGA). The ASA-containing silica was stored at 40 °C in drying conditions, and the amount of ASA degradation was quantified based on salicylic acid. From the scatterplots between the number of hydroxyl groups per unit weight (specific surface area (SSA) × N(OH)) and the amount of ASA degradation, it was clarified that in ASA adsorbed on silica, the ASA chemical stability was determined by the formula (the SSA × N(OH)). In addition, a time-domain nuclear magnetic resonance measurement verified the N(OH) result by estimating the interaction between the silica surface and water in an aqueous silica suspension. The N(OH) result was found to be reasonable.
Collapse
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Daichi Watanabe
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Takashi Ono
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan; Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshihiro Hayashi
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Shungo Kumada
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Benedikt Brenner M, Wüst M, Kuentz M, Wagner KG. High loading of lipophilic compounds in mesoporous silica for improved solubility and dissolution performance. Int J Pharm 2024; 654:123946. [PMID: 38417728 DOI: 10.1016/j.ijpharm.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D7.4 > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035. All formulations were physically stable in their non-crystalline form and drug loads of up to 50 % were achieved. At increasing drug loads, a marked increase in equilibrium solubility of the active ingredients in biorelevant medium was detected, leading to improved performance during biorelevant biphasic dissolution studies (BiPHa + ). Particularly the natural products CoQ10 and ASX showed substantial benefits from being loaded into mesoporous carrier particles and clearly outperformed currently available commercial formulations. Performance differences between the model compounds could be explained by in silico calculations of the mixing enthalpy for drug and silica in combination with an experimental chromatographic method to estimate molecular interactions.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences, Food Chemistry, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Karl G Wagner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
5
|
Budiman A, Anastasya G, Handini AL, Lestari IN, Subra L, Aulifa DL. Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward in vitro and in vivo Studies. Int J Nanomedicine 2024; 19:2199-2225. [PMID: 38465205 PMCID: PMC10924831 DOI: 10.2147/ijn.s453873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Solid oral dosage forms are mostly preferred in pharmaceutical formulation development due to patient convenience, ease of product handling, high throughput, low manufacturing costs, with good physical and chemical stability. However, 70% of drug candidates have poor water solubility leading to compromised bioavailability. This phenomenon occurs because drug molecules are often absorbed after dissolving in gastrointestinal fluid. To address this limitation, delivery systems designed to improve the pharmacokinetics of drug molecules are needed to allow controlled release and target-specific delivery. Among various strategies, amorphous formulations show significantly high potential, particularly for molecules with solubility-limited dissolution rates. The ease of drug molecules to amorphized is known as their glass-forming ability (GFA). Specifically, drug molecules categorized into class III based on the Taylor classification have a low recrystallization tendency and high GFA after cooling, with substantial "glass stability" when heated. In the last decades, the application of mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS) has gained significant attention in various investigations and the pharmaceutical industry. This is attributed to the unique physicochemical properties of MSNs, including high loading capacity, recrystallization inhibition, excellent biocompatibility, and easy functionalization. Therefore, this study aimed to discuss the current state of good glass former drug loaded mesoporous silica and shows its impact on the pharmaceutical properties including dissolution and physical stability, along with in vivo study. The results show the importance of determining whether mesoporous structures are needed in amorphous formulations to improve the pharmaceutical properties of drug with a favorable GFA.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Laila Subra
- Department of Pharmacy, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Niederquell A, Vraníková B, Kuentz M. Study of Disordered Mesoporous Silica Regarding Intrinsic Compound Affinity to the Carrier and Drug-Accessible Surface Area. Mol Pharm 2023; 20:6301-6310. [PMID: 37948648 DOI: 10.1021/acs.molpharmaceut.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
There is increasing research interest in using mesoporous silica for the delivery of poorly water-soluble drugs that are stabilized in a noncrystalline form. Most research has been done on ordered silica, whereas far fewer studies have been published on using nonordered mesoporous silica, and little is known about intrinsic drug affinity to the silica surface. The present mechanistic study uses inverse gas chromatography (IGC) to analyze the surface energies of three different commercially available disordered mesoporous silica grades in the gas phase. Using the more drug-like probe molecule octane instead of nitrogen, the concept of a "drug-accessible surface area" is hereby introduced, and the effect on drug monolayer capacity is addressed. In addition, enthalpic interactions of molecules with the silica surface were calculated based on molecular mechanics, and entropic energy contributions of volatiles were estimated considering molecular flexibility. These free energy contributions were used in a regression model, giving a successful comparison with experimental desorption energies from IGC. It is proposed that a simplified model for drugs based only on the enthalpic interactions can provide an affinity ranking to the silica surface. Following this preformulation research on mesoporous silica, future studies may harness the presented concepts to guide formulation scientists.
Collapse
Affiliation(s)
- Andreas Niederquell
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- School of Life Sciences FHNW, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Kuentz
- School of Life Sciences FHNW, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132 Muttenz, Switzerland
| |
Collapse
|
7
|
Nowak M, Dyba AJ, Gołkowska AM, Nieckarz A, Krajewska K, Malec K, Iuga D, Karolewicz B, Khimyak YZ, Nartowski KP. Probing fluconazole deposition inside mesoporous silica using solid-state NMR spectroscopy: Crystallization of a confined metastable form and phase transformations under storage conditions. Int J Pharm 2023; 645:123403. [PMID: 37716486 DOI: 10.1016/j.ijpharm.2023.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Encapsulation of molecules into mesoporous silica carriers continues to attract considerable interest in the area of drug delivery and crystal engineering. Here, MCM-41, SBA-15 and MCF silica matrices were used to encapsulate fluconazole (FLU), a pharmaceutically relevant molecule with known conformational flexibility, using the melting method. The composites have been characterized using 1H, 13C and 19F NMR spectroscopy, nitrogen adsorption, PXRD and thermal analysis (DSC, TGA). Drug loading up to 50 wt% allowed us to probe the crystallization process and to detect different local environments of confined FLU molecules. 19F NMR spectroscopy enabled us to detect the gradual pore filling of silica with FLU and differentiate the amorphous domains and surface species. The use of the complementary structural and thermal techniques enabled us to monitor crystallization of the metastable FLU form II in MCF. Using 1H and 19F NMR spectroscopy we observed pore-size dependent reversible dehydration/hydration behaviour in the MCM and SBA composites. As water content has considerable importance in understanding of physicochemical stability and shelf-life of pharmaceutical formulations, experimental evidence of the effect of API-water-carrier interactions on the API adsorption mechanism on silica surface is highlighted.
Collapse
Affiliation(s)
- Maciej Nowak
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Aleksandra J Dyba
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Anna M Gołkowska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Aleksandra Nieckarz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Krajewska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Malec
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Dinu Iuga
- Department of Physics, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom.
| | - Karol P Nartowski
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| |
Collapse
|
8
|
Budiman A, Nurani NV, Laelasari E, Muchtaridi M, Sriwidodo S, Aulifa DL. Effect of Drug-Polymer Interaction in Amorphous Solid Dispersion on the Physical Stability and Dissolution of Drugs: The Case of Alpha-Mangostin. Polymers (Basel) 2023; 15:3034. [PMID: 37514423 PMCID: PMC10384849 DOI: 10.3390/polym15143034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Improving drug solubility is necessary for formulations of poorly water-soluble drugs, especially for oral administration. Amorphous solid dispersions (ASDs) are widely used in the pharmaceutical industry to improve the physical stability and solubility of drugs. Therefore, this study aims to characterize interaction between a drug and polymer in ASD, as well as evaluate the impact on the physical stability and dissolution of alpha-mangostin (AM). AM was used as a model of a poorly water-soluble drug, while polyvinylpyrrolidone (PVP) and eudragit were used as polymers. The amorphization of AM-eudragit and AM-PVP was confirmed as having a halo pattern with powder X-ray diffraction measurements and the absence of an AM melting peak in the differential scanning calorimetry (DSC) curve. The solubility of amorphous AM increased in the presence of either eudragit or PVP due to amorphization and interactions of AM-polymer. Furthermore, FT-IR spectroscopy and in silico studies revealed hydrogen bond interactions between the carbonyl group of AM and the proton of eudragit as well as PVP. AM-eudragit with a ratio of 1:1 recrystallized after 7 days of storage at 25 °C and 90% RH, while the AM-PVP 1:4 and 1:10 samples retained the X-ray halo patterns, even under humid conditions. In a dissolution test, the presence of polymer in ASD significantly improved the dissolution profile due to the intermolecular interaction of AM-polymer. AM-eudragit 1:4 maintained AM supersaturation for a longer time compared to the 1:1 sample. However, a high supersaturation was not achieved in AM-PVP 1:10 due to the formation of large agglomerations, leading to a slow dissolution rate. Based on the results, interaction of AM-polymer in ASD can significantly improve the pharmaceutical properties of AM including the physical stability and dissolution.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| |
Collapse
|
9
|
Tian B, Li L, Kang K, Peng D, Shi Y, Wang P. Crystallization inhibitory effects of konjac glucomannan, sodium alginate and xanthan gum on curcumin in supersaturated solution. Int J Biol Macromol 2023:125489. [PMID: 37348583 DOI: 10.1016/j.ijbiomac.2023.125489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Supersaturating drug delivery system (SDDS) is a promising approach to enhance the solubility of hydrophobic functional components. However, SDDS is thermodynamically unstable and crystallization tends to occur. In this work, curcumin was used as a model compound, and the crystallization inhibitory effect of konjac glucomannan (KGM), sodium alginate (SA) and xanthan gum (XTG) on curcumin in supersaturated solution was investigated. Amorphous solubility of curcumin was determined using ultraviolet extinction, fluorescence spectroscopy and dynamic light scattering methods. Nucleation induction time (NIT) and crystal growth rate of curcumin were evaluated using ultraviolet probe in the absence and presence of various natural polysaccharides (NPs). Results showed that amorphous solubility of curcumin was approximately 30 μg/mL in pH 6.8 phosphate buffer. NPs used in this work restrained nucleation or crystal growth of curcumin effectively. The NITs of curcumin in the absence of NPs and in the presence of XTG, KGM and SA (1 μg/mL) were 3.7, 60.7, 20.0 and 8.0 min, respectively. The crystal growth rate of curcumin in the absence of NPs and in the presence of XTG, SA and KGM (1 μg/mL) were 0.0103, 0.00752, 0.00286 and 0.000306 min-1, respectively. The nucleation inhibitory effect of NPs on curcumin was ranked as XTG > KGM > SA. The order of crystal growth inhibition capacity of NPs was KGM > SA > XTG. In conclusion, NPs could be incorporated into SDDS to maintain supersaturation of hydrophobic components for enhanced bioavailability.
Collapse
Affiliation(s)
- Bin Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, People's Republic of China.
| | - Lintao Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, People's Republic of China
| | - Kairui Kang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, People's Republic of China.
| | - Donglei Peng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, People's Republic of China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, People's Republic of China.
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
10
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Wang Y, Li F, Xin J, Xu J, Yu G, Shi Q. Mesoporous Drug Delivery System: From Physical Properties of Drug in Solid State to Controlled Release. Molecules 2023; 28:molecules28083406. [PMID: 37110638 PMCID: PMC10145233 DOI: 10.3390/molecules28083406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mesoporous materials, which exhibit great potential in the control of polymorphs and delivery of poorly water-soluble drugs, have obtained considerable attention in the field of pharmaceutical science. The physical properties and release behaviors of amorphous or crystalline drugs may be affected by formulating them into mesoporous drug delivery systems. In the past few decades, an increasing amount of papers have been written about mesoporous drug delivery systems, which play a crucial role in improving the properties of drugs. Herein, mesoporous drug delivery systems are comprehensively reviewed in terms of their physicochemical characteristics, control of polymorphic forms, physical stability, in vitro performance, and in vivo performance. Moreover, the challenges and strategies of developing robust mesoporous drug delivery systems are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya 47500, Malaysia
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Guanghua Yu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
12
|
Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, Poursina N, Mattoli V, Tay FR, Maleki A, Hamidi M. Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using in Vivo and ex Vivo Monitoring. Mol Pharm 2023; 20:1531-1548. [PMID: 36763486 DOI: 10.1021/acs.molpharmaceut.2c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.
Collapse
Affiliation(s)
- Nasim Shadmani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, EdinburghEH9 3JL, U.K
| | - Maliheh Parsa
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, Georgia30912, United States
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran.,Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| |
Collapse
|
13
|
Budiman A, Kalina K, Aristawidya L, Shofwan AAA, Rusdin A, Aulifa DL. Characterizing the Impact of Chitosan on the Nucleation and Crystal Growth of Ritonavir from Supersaturated Solutions. Polymers (Basel) 2023; 15:polym15051282. [PMID: 36904523 PMCID: PMC10007235 DOI: 10.3390/polym15051282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The addition of polymeric materials is often used to delay nucleation or crystal growth and maintain the high supersaturation of amorphous drugs. Therefore, this study aimed to investigate the impact of chitosan on the supersaturation behavior of drugs with a low recrystallization tendency and elucidate the mechanism of its crystallization inhibition in an aqueous solution. It was carried out using ritonavir (RTV) as a model of poorly water-soluble drugs categorized as class III of Taylor's classification, while chitosan was used as a polymer, and hypromellose (HPMC) was used for comparison. The inhibition of the nucleation and crystal growth of RTV by chitosan was examined by measuring the induction time. The interactions of RTV with chitosan and HPMC were evaluated by NMR measurements, FT-IR, and an in silico analysis. The results showed that the solubilities of amorphous RTV with and without HPMC were quite similar, while the amorphous solubility was significantly increased by the chitosan addition due to the solubilization effect. In the absence of the polymer, RTV started to precipitate after 30 min, indicating that it is a slow crystallizer. Chitosan and HPMC effectively inhibited the nucleation of RTV, as reflected by a 48-64-fold enhancement in the induction time. Furthermore, NMR, FT-IR, and in silico analysis demonstrated that the hydrogen bond interaction between the amine group of RTV and a proton of chitosan, as well as the carbonyl group of RTV and a proton of HPMC, was observed. This indicated that the hydrogen bond interaction between RTV and chitosan as well as HPMC can contribute to the crystallization inhibition and maintenance of RTV in a supersaturated state. Therefore, the addition of chitosan can delay nucleation, which is crucial for stabilizing supersaturated drug solutions, specifically for a drug with a low crystallization tendency.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
- Correspondence:
| | - Kalina Kalina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Levina Aristawidya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Adnan Aly Al Shofwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| |
Collapse
|
14
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
15
|
Okada K, Hayashi Y, Tsuji T, Onuki Y. Low-Field NMR to Characterize the Crystalline State of Ibuprofen Confined in Ordered or Nonordered Mesoporous Silica. Chem Pharm Bull (Tokyo) 2022; 70:550-557. [DOI: 10.1248/cpb.c22-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| | - Yoshihiro Hayashi
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Takahiro Tsuji
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| |
Collapse
|
16
|
A Comparative Study of the Pharmaceutical Properties between Amorphous Drugs Loaded-Mesoporous Silica and Pure Amorphous Drugs Prepared by Solvent Evaporation. Pharmaceuticals (Basel) 2022; 15:ph15060730. [PMID: 35745649 PMCID: PMC9228546 DOI: 10.3390/ph15060730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
The formulation of poorly water-soluble drugs is one of the main challenges in the pharmaceutical industry, especially in the development of oral dosage forms. Meanwhile, there is an increase in the number of poorly soluble drugs that have been discovered as new chemical entities. It was also reported that the physical transformation of a drug from a crystalline form into an amorphous state could be used to increase its solubility. Therefore, this study aims to evaluate the pharmaceutical properties of amorphous drug loaded-mesoporous silica (MPS) and pure amorphous drugs. Ritonavir (RTV) was used as a model of a poorly water-soluble drug due to its low recrystallization tendency. RTV loaded-MPS (RTV/MPS) and RTV amorphous were prepared using the solvent evaporation method. Based on observation, a halo pattern in the powder X-ray diffraction pattern and a single glass transition (Tg) in the modulated differential scanning calorimetry (MDSC) curve was discovered in RTV amorphous, indicating its amorphization. The Tg was not detected in RTV/MPS, which showed that the loading RTV was completed. The solid-state NMR and FT-IR spectroscopy also showed the interaction between RTV and the surface of MPS in the mesopores. The high supersaturation of RTV was not achieved for both RTV/MPS and the amorphous state due to its strong interaction with the surface of MPS and was not properly dispersed in the medium, respectively. In the dissolution test, the molecular dispersion of RTV within MPS caused rapid dissolution at the beginning, while the amorphous showed a low rate due to its agglomeration. The stability examination showed that the loading process significantly improved the physical and chemical stability of RTV amorphous. These results indicated that the pharmaceutical properties of amorphous drugs could be improved by loaded-MPS.
Collapse
|
17
|
Characterization of Drugs with Good Glass Formers in Loaded-Mesoporous Silica and Its Theoretical Value Relevance with Mesopores Surface and Pore-Filling Capacity. Pharmaceuticals (Basel) 2022; 15:ph15010093. [PMID: 35056149 PMCID: PMC8778383 DOI: 10.3390/ph15010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
The incorporation of a drug into mesoporous silica (MPS) is a promising strategy to stabilize its amorphous form. However, the drug within MPS has shown incomplete release, despite a supersaturated solution being generated. This indicates the determination of maximum drug loading in MPS below what is experimentally necessary to maximize the drug doses in the system. Therefore, this study aimed to characterize the drugs with good glass former loaded-mesoporous silica, determine the maximum drug loading, and compare its theoretical value relevance to monolayer covering the mesoporous (MCM) surface, as well as pore-filling capacity (PFC). Solvent evaporation and melt methods were used to load each drug into MPS. In addition, the glass transition of ritonavir (RTV) and cyclosporine A (CYP), as well as the melting peak of indomethacin (IDM) and saccharin (SAC) in mesoporous silica, were not discovered in the modulated differential scanning calorimetry (MDSC) curve, demonstrating that each drug was successfully incorporated into the mesopores. The amorphization of RTV-loaded MPS (RTV/MPS), CYP-loaded MPS (CYP/MPS), and IDM-loaded MPS (IDM/MPS) were confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the MDSC curve. Additionally, the good glass formers, nanoconfinement effect of MPS and silica surface interaction contributed to the amorphization of RTV, CYP and IDM within MPS. Meanwhile, the crystallization of SAC was observed in SAC-loaded MPS (SAC/MPS) due to its weak silica surface interaction and high recrystallization tendency. The maximum loading amount of RTV/MPS was experimentally close to the theoretical amount of MCM, showing monomolecular adsorption of RTV on the silica surface. On the other hand, the maximum loading amount of CYP/MPS and IDM/MPS was experimentally lower than the theoretical amount of MCM due to the lack of surface interaction. However, neither CYP or IDM occupied the entire silica surface, even though some drugs were adsorbed on the MPS surface. Moreover, the maximum loading amount of SAC/MPS was experimentally close to the theoretical amount of PFC, suggesting the multilayers of SAC within the MPS. Therefore, this study demonstrates that the characterization of drugs within MPS, such as molecular size and interaction of drug-silica surface, affects the loading efficiency of drugs within MPS that influence its relevance with the theoretical value of drugs.
Collapse
|
18
|
Koch N, Jennotte O, Ziemons E, Boussard G, Lechanteur A, Evrard B. Influence of API physico-chemical properties on amorphization capacity of several mesoporous silica loading methods. Int J Pharm 2021; 613:121372. [PMID: 34906649 DOI: 10.1016/j.ijpharm.2021.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
The objective of this work was to evaluate the impact of physico-chemical properties of pharmaceutical drugs on the optimal mesoporous silica loading methods. Indeed, a good combination between drug and loading process has to be studied to promote the deepest penetration of the drug inside the mesopores, allowing high drug amorphization. Six molecules, namely lidocaine and its hydrochloride, ibuprofen, ketoprofen, artemether and miconazole, with different physico-chemical properties (the ionized character, the acid-base character, the HBDA number, the solubility in sc-CO2 and the behavior under subcritical CO2) were used to produce drug-silica formulations. Different impregnation processes (physical mixing, melting, wetting, sc-CO2 and subcritical CO2 impregnations) have been compared for each drug, in terms of drug recovery and crystallinity. Formulations showed drug percentage close to 100% except for supercritical soluble drug formulations impregnated by using sc-CO2. However, the basic drug character provided less or no drug loss during impregnation. Processing insoluble sc-CO2 molecule under supercritical conditions led to less crystallinity than the correspondent physical mixture suggesting an interesting repulsive effect that forces the drug penetration within the mesopores. Besides, it has been also highlighted that the HBDA number is not sufficient to predict the final drug loading. Melting methods have high interest considering the drugs tested and subcritical CO2 could increase the loading, especially for drugs with high molten viscosity. This study showed that a plethora of loading methods can be used to provide high drug loaded MS formulations with a wide choice of equipment.
Collapse
Affiliation(s)
- N Koch
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium.
| | - O Jennotte
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - E Ziemons
- University of Liège, Laboratory of Pharmaceutical Analytical Chemistry Laboratory, Vibra-Santé Hub, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - G Boussard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - A Lechanteur
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - B Evrard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| |
Collapse
|
19
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
20
|
Budiman A, Aulifa DL. Encapsulation of drug into mesoporous silica by solvent evaporation: A comparative study of drug characterization in mesoporous silica with various molecular weights. Heliyon 2021; 7:e08627. [PMID: 35005278 PMCID: PMC8715180 DOI: 10.1016/j.heliyon.2021.e08627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
Mesoporous silica (MS) is a promising material as a drug carrier that is used in pharmaceutical applications. It was discovered that the incorporation of drugs into MS has the potential to improve their dissolution and bioavailability due to the large specific surface area. This study aimed to characterize the drugs with various molecular weights in MS as well as to elucidate their impact on the loading amount and the amorphization within MS. The solvent evaporation method was used to encapsulate itraconazole (ITZ), nifedipine (NIF), and nicotinamide (NIC), respectively, into MS. The result shows the absence of glass transition and the melting peak of ITZ, NIF, and SAC within MS signifying the successful encapsulation. A hallo pattern was found in ITZ and NIF within MS indicating the amorphization. The high molecular weight and the interaction between the drug with the silica surface is reportedly contributed to the formation of the amorphous state. Meanwhile, the characteristic diffraction peaks of NIC crystal were observed for NIC within MS. In conclusion, the molecular weight of the drug has a significant effect on the loading amount and the amorphization of the drug within MS.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Indonesia
| |
Collapse
|
21
|
Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int J Pharm 2021; 600:120492. [PMID: 33744448 DOI: 10.1016/j.ijpharm.2021.120492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
In this study, the molecular state of ritonavir (RTN)-saccharin (SAC) coamorphous incorporated into mesoporous silica by solvent evaporation and the effect of SAC on the RTN dissolution from mesopores were investigated. The amorphization of RTN-SAC was confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the modulated differential scanning calorimetry (MDSC) curve. 13C solid-state NMR spectroscopy revealed a hydrogen bond between the thiazole nitrogen of RTN and the amine proton of SAC. The glass transition of the RTN-SAC coamorphous in mesoporous silica was not found in the MDSC curve, indicating that RTN and SAC were monomolecularly incorporated into the mesopores. Solid-state NMR measurements suggested that the co-incorporation of SAC into the mesopores decreased the local mobility of the thiazole group of RTN via hydrogen bond formation. The RTN-SAC 1:1 coamorphous in mesoporous silica retained the X-ray halo-patterns after 30 d of storage, even under high temperature and humidity conditions. In the dissolution test, the RTN-SAC 1:1 coamorphous in mesoporous silica maintained RTN supersaturation for a longer time than the RTN amorphous in mesoporous silica. This study demonstrated that the drug-coformer interaction within mesoporous silica can significantly improve drug dissolution.
Collapse
|
22
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
23
|
Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. Int J Pharm 2020; 591:120019. [DOI: 10.1016/j.ijpharm.2020.120019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
|
24
|
Hate SS, Reutzel-Edens SM, Taylor LS. Influence of Drug-Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems. Mol Pharm 2020; 17:3435-3446. [PMID: 32790416 DOI: 10.1021/acs.molpharmaceut.0c00488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoporous silica particles are attractive carriers for poorly soluble drugs whereby confinement of drugs in the mesopores leads to amorphization, which makes them potential carriers for enhanced oral delivery. However, interactions between the drug molecules and the silica surface can lead to incomplete drug release. The strength of the interaction depends on the silica surface chemistry, which varies as a function of pH, as well as on drug chemistry and ionization states. Herein, the adsorption and dissolution behavior of weakly basic drugs were evaluated as a function of pH to understand the impact of electrostatic interactions on the performance of mesoporous silica-based formulations. A higher adsorption was noted when the drug interacted with the silica surface via electrostatic interactions compared to hydrogen bonding. Higher adsorption, in turn, led to a lower extent of drug release. In two-stage release studies of drugs with pKa values close to the intestinal pH, a shift from low to higher pH solutions resulted in a decrease in the solution concentration. Further investigations demonstrated that this was due to readsorption of the drug, initially released in the acidic medium when the pH was increased. Two-stage release studies were also coupled with mass transport measurements. Only a slight improvement in drug release due to simultaneous absorption across a membrane was observed, suggesting strong drug adsorption to the silica surface arising from favorable electrostatic interactions, which diminishes the effect of sink conditions provided by the absorptive environment. This study highlights that physiological parameters, such as solution pH, are important considerations when designing mesoporous silica-based formulations for poorly soluble drugs. It also underscores the importance of incorporating in vivo-relevant conditions in in vitro testing to better evaluate these complex formulations due to the notable effect of dissolution media on the release behavior.
Collapse
Affiliation(s)
- Siddhi S Hate
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Susan M Reutzel-Edens
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
McCarthy CA, Zemlyanov DY, Crean AM, Taylor LS. Comparison of Drug Release and Adsorption under Supersaturating Conditions for Ordered Mesoporous Silica with Indomethacin or Indomethacin Methyl Ester. Mol Pharm 2020; 17:3062-3074. [PMID: 32633973 DOI: 10.1021/acs.molpharmaceut.0c00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incomplete drug release from mesoporous silica systems has been observed in several studies. This work aims to increase the understanding of this phenomenon by investigating the mechanism of drug-silica interactions and adsorption behavior from supersaturated aqueous solutions of two similar drug molecules with different hydrogen bonding capabilities. Drug-silica interactions between indomethacin or its methyl ester and SBA-15 were investigated using spectroscopic techniques (infrared, fluorescence and X-ray photoelectron) and adsorption experiments. The results demonstrate that the predominant mechanism of interaction of both drugs with silica is hydrogen bonding between drug acceptor carbonyl groups with donor groups on the silica surface. The presence of a drug hydrogen bond donor group did not enhance drug adsorption. No evidence was obtained for drug adsorption through nonspecific hydrophobic interactions. Drug adsorption onto the silica surface was investigated under supersaturating conditions through the generation of adsorption isotherms. Similar adsorption isotherms were observed for each compound when the concentration scale was normalized to the drug amorphous solubility. In other words, the equilibrium between the drug adsorbed on the silica surface and free drug in solution was related to the drug activity in solution. The high tendency of the drug to adsorb when the solution is supersaturated was, in turn, found to limit the extent of drug release during dissolution under nonsink conditions. Thus, adsorption provides an explanation for incomplete drug release.
Collapse
Affiliation(s)
- Carol A McCarthy
- SSPC Pharm. Res. Centre, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette 47907, Indiana, United States
| | - Abina M Crean
- SSPC Pharm. Res. Centre, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette 47907, Indiana, United States
| |
Collapse
|
26
|
Ornik J, Knoth D, Koch M, Keck CM. Terahertz-spectroscopy for non-destructive determination of crystallinity of L-tartaric acid in smartFilms® and tablets made from paper. Int J Pharm 2020; 581:119253. [PMID: 32217156 DOI: 10.1016/j.ijpharm.2020.119253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/18/2023]
Abstract
Newly developed active pharmaceutical ingredients (API) often experience low solubility in aqueous media and thus possess poor oral bioavailability. The SmartFilm®-technology is a novel approach to overcome poor solubility. The technique uses commercial paper in which API can be loaded in amorphous state, thus increasing dissolution rate dc/dt and solubility cs when compared to bulk material. However, the preservation of the amorphous state is a prerequisite for an efficient use of the smartFilm-technology and thus the crystalline state needs to be inspected during storage. Preferably, this should be done non-destructively. Traditional techniques, such as x-ray diffraction (XRD) or differential scanning calorimetry (DSC), do not allow for non-destructive crystallinity investigations, whereas Terahertz (THz) spectroscopy is a non-destructive technique, that is sensitive to the crystalline state of many molecular crystals. Therefore, the potential of THz-spectroscopy for crystallinity state inspection of API in smartFilms and tablets made from smartFilms was investigated in this study. The THz results obtained were compared to results obtained from XRD and DSC measurements. Whereas DSC measurements failed to reliably detect crystalline API in the smartFilms, XRD and THz-spectroscopy showed similar results and revealed that it was possible to prepare smartFilms loaded with >23% (w/w) amorphous API. Results indicate the great potential of THz spectroscopy for the non-destructive determination of the crystalline state of APIs in smartFilms and/or tablets made from paper.
Collapse
Affiliation(s)
- Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Daniel Knoth
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
27
|
Evaluation of the Solid Dispersion System Engineered from Mesoporous Silica and Polymers for the Poorly Water Soluble Drug Indomethacin: In Vitro and In Vivo. Pharmaceutics 2020; 12:pharmaceutics12020144. [PMID: 32050600 PMCID: PMC7076385 DOI: 10.3390/pharmaceutics12020144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
This work explored absorption efficacy via an in vivo imaging system and parallel artificial membrane penetration in indomethacin (IMC) solid dispersion (SD) systems. Two different polymer excipients—hydroxypropyl methylcellulose (HPMC) and Kollicoat IR as precipitation inhibitors (PIs)—combined with mesoporous silica nanoparticles (MSNs) as carriers were investigated. The IMC–SDs were prepared using the solvent evaporation method and characterized by solubility analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), and differential scanning calorimetry (DSC). It was confirmed that IMC successfully changed into an amorphous state after loading into the designed carriers. The in vitro release and stability experiments were conducted to examine the in vitro dissolution rates of IMC–SDs combined with HPMC and Kollicoat IR as PIs which both improved approximately three-fold to that of the pure drug. Finally, in vivo studies and in vitro parallel artificial membrane penetration (PAMPA) experiments ensured the greater ability of enhancing the dissolution rates of pure IMC in the gastrointestinal tract by oral delivery. In brief, this study highlights the prominent role of HPMC and Kollicoat IR as PIs in MSN SD systems in improving the bioavailability and gastrointestinal oral absorption efficiency of indomethacin.
Collapse
|
28
|
Elucidation of alginate-drug miscibility on its crystal growth inhibition effect in supersaturated drug delivery system. Carbohydr Polym 2020; 230:115601. [DOI: 10.1016/j.carbpol.2019.115601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/29/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022]
|
29
|
Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP, Popat A. Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics 2019; 11:E418. [PMID: 31430872 PMCID: PMC6723263 DOI: 10.3390/pharmaceutics11080418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.
Collapse
Affiliation(s)
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| | - Ekaterina Strounina
- Center for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
| | - Rute Nunes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Costa
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Sumaira Z Hasnain
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
- Australian Infectious Disease Research Centre-The University of Queensland Building 76 Room 155 Cooper Road, St. Lucia QLD 4067, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
30
|
Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions. J Control Release 2019; 307:186-199. [DOI: 10.1016/j.jconrel.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022]
|
31
|
Delivery of Poorly Soluble Drugs via Mesoporous Silica: Impact of Drug Overloading on Release and Thermal Profiles. Pharmaceutics 2019; 11:pharmaceutics11060269. [PMID: 31185610 PMCID: PMC6630575 DOI: 10.3390/pharmaceutics11060269] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Among the many methods available for solubility enhancement, mesoporous carriers are generating significant industrial interest. Owing to the spatial confinement of drug molecules within the mesopore network, low solubility crystalline drugs can be converted into their amorphous counterparts, which exhibit higher solubility. This work aims to understand the impact of drug overloading, i.e., above theoretical monolayer surface coverage, within mesoporous silica on the release behaviour and the thermal properties of loaded drugs. The study also looks at the inclusion of hypromellose acetate succinate (HPMCAS) to improve amorphisation. Various techniques including DSC, TGA, SEM, assay and dissolution were employed to investigate critical formulation factors of drug-loaded mesoporous silica prepared at drug loads of 100-300% of monolayer surface coverage, i.e., monolayer, double layer and triple layer coverage. A significant improvement in the dissolution of both Felodipine and Furosemide was obtained (96.4% and 96.2%, respectively). However, incomplete drug release was also observed at low drug load in both drugs, possibly due to a reversible adsorption to mesoporous silica. The addition of a polymeric precipitation inhibitor HPMCAS to mesoporous silica did not promote amorphisation. In fact, a partial coating of HPMCAS was observed on the exterior surface of mesoporous silica particles, which resulted in slower release for both drugs.
Collapse
|
32
|
Guan J, Huan X, Liu Q, Jin L, Wu H, Zhang X, Mao S. Synergetic effect of nucleation and crystal growth inhibitor on in vitro-in vivo performance of supersaturable lacidipine solid dispersion. Int J Pharm 2019; 566:594-603. [PMID: 31175988 DOI: 10.1016/j.ijpharm.2019.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Limited supersaturation maintaining duration is the main challenge for amorphous solid dispersion design. Nucleation or crystal growth inhibitors may function in different ways but the combination use of nucleation and crystal growth inhibitors in supersaturated system is rarely explored. Thus, using Lacidipine (LCDP) as a Biopharmaceutical Classification System (BCS) II model drug, the aim of this study was to explore whether the combination use of nucleation and crystal growth inhibitors could provide a synergistic effect on the in vitro-in vivo performance of poorly water-soluble drugs. First of all, based on compatibility screening using solubility parameter (Δδ) and crystallization inhibition efficiency as criteria, soluplus (SOL) and gum arabic (GA) were selected as the most effective nucleation and crystal growth inhibitor respectively. Thereafter, the supersaturated drug solutions were spray dried and characterized. The in vitro release, physical stability as well as pharmacokinetic behavior were investigated. It was found that the combination use of SOL and GA did not present remarkable advantage in prolonging the supersaturation time in solution state. However, their synergistic effect in equilibrium solubility and dissolution enhancement was noticed at SOL/GA ratio 3:1, with 5-7 times higher dissolution rate observed for LCDP/SOL/GA based formulation compared with that of LCDP/SOL, which was maintained even after three months accelerated stability test under non-sink condition. Moreover, compared to the LCDP/SOL formulation, approximately 2.8 and 2.5-fold increase in the maximum plasma concentration (Cmax) and the area under the plasma-time curve (AUC0-∞) was achieved with LCDP/SOL/GA based formulation. Possible mechanism of the synergistic effect was elucidated, indicating GA may penetrate into SOL particles providing both electrostatic and steric stabilization. In conclusion, the combination use of screened nucleation and crystal growth inhibitors might be an efficient approach to design supersaturated drug delivery system.
Collapse
Affiliation(s)
- Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Huan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liwei Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyang Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
33
|
Edeler D, Drača D, Petković V, Natalio F, Maksimović-Ivanić D, Mijatović S, Schmidt H, Kaluđerović GN. Impact of the mesoporous silica SBA-15 functionalization on the mode of action of Ph 3Sn(CH 2) 6OH. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:315-322. [PMID: 30948067 DOI: 10.1016/j.msec.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Herein appropriateness of nonfunctionalized mesoporous silica nanoparticles SBA-15 and functionalized with (3-chloropropyl)triethoxysilane (→ SBA-15~Cl) and (3-aminopropyl)triethoxysilane (→ SBA-15~NH2) on delivery of physically adsorbed Ph3Sn(CH2)6OH (Sn6) is evaluated. Fluorescent nanomaterial, bearing isatoic moiety, loaded with Sn6 (→ SBA-15~NF|Sn6) was used for cellular uptake study. The fluorescent nanomaterial is efficiently acquired and distributed into the cytoplasm of the cells even after 2 h of cultivation. According to the attained data, all SBA-15 materials loaded with Sn6 diminished cellular viability in dose dependent manner while carriers alone (SBA-15, SBA-15~Cl, SBA-15~NH2) did not show cytotoxicity against B16 cells. According to the MC50 values structural modification of SBA-15 did not improve the efficacy of tested drug. While progressive apoptosis was detected upon the treatment with SBA-15|Sn6, exposure of cells to SBA-15~NH2|Sn6 revealed extinguished apoptosis in time, accompanied with lower caspase activity. This effect is probably due to triggered autophagic process under the treatment with the SBA-15~NH2|Sn6, thus opposed to apoptosis. Presented results suggested that functionalization of SBA-15 was not beneficial for the efficacy of loaded drug, thus, all of them are almost equally efficient considering loaded Sn6 content. Importantly, functionalization of SBA-15 does have an influence on the mode of action and differentiation inducing properties.
Collapse
Affiliation(s)
- David Edeler
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
| | - Dijana Drača
- Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vladana Petković
- Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Filipe Natalio
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany; Department of Plant and Environmental Sciences & Kimmel Center for Archaeological Science Nella & Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Harry Schmidt
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, 06217 Merseburg, Germany.
| |
Collapse
|
34
|
Meka AK, Jenkins LJ, Dàvalos-Salas M, Pujara N, Wong KY, Kumeria T, Mariadason JM, Popat A. Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics 2018; 10:E283. [PMID: 30562958 PMCID: PMC6321298 DOI: 10.3390/pharmaceutics10040283] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) or vorinostat (VOR) is a potent inhibitor of class I histone deacetylases (HDACs) that is approved for the treatment of cutaneous T-cell lymphoma. However, it has the intrinsic limitations of low water solubility and low permeability which reduces its clinical potential especially when given orally. Packaging of drugs within ordered mesoporous silica nanoparticles (MSNs) is an emerging strategy for increasing drug solubility and permeability of BCS (Biopharmaceutical Classification System) class II and IV drugs. In this study, we encapsulated vorinostat within MSNs modified with different functional groups, and assessed its solubility, permeability and anti-cancer efficacy in vitro. Compared to free drug, the solubility of vorinostat was enhanced 2.6-fold upon encapsulation in pristine MSNs (MCM-41-VOR). Solubility was further enhanced when MSNs were modified with silanes having amino (3.9 fold) or phosphonate (4.3 fold) terminal functional groups. Moreover, permeability of vorinostat into Caco-2 human colon cancer cells was significantly enhanced for MSN-based formulations, particularly MSNs modified with amino functional group (MCM-41-NH₂-VOR) where it was enhanced ~4 fold. Compared to free drug, vorinostat encapsulated within amino-modified MSNs robustly induced histone hyperacetylation and expression of established histone deacetylase inhibitor (HDACi)-target genes, and induced extensive apoptosis in HCT116 colon cancer cells. Similar effects were observed on apoptosis induction in HH cutaneous T-cell lymphoma cells. Thus, encapsulation of the BCS class IV molecule vorinostat within MSNs represents an effective strategy for improving its solubility, permeability and anti-tumour activity.
Collapse
Affiliation(s)
- Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Mercedes Dàvalos-Salas
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Kuan Yau Wong
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|