1
|
Wang KN, Li ZZ, Zhou K, Liu B, Rao L, Bu LL. Cell Membrane-Coated Nanoparticles for Dental, Oral, and Craniofacial Diseases. RESEARCH (WASHINGTON, D.C.) 2024; 7:0478. [PMID: 39296987 PMCID: PMC11409001 DOI: 10.34133/research.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Dental, oral, and craniofacial diseases can substantially impact the quality of human life, thereby posing a serious public health concern. Although conventional therapies such as surgery have solved these problems largely, the prognosis of patients is not always satisfactory. Cell membrane-coated nanoparticles (CMCNPs) carry nanodrugs with the help of natural cell membranes, therefore utilizing their remarkable ability to interface and interact with their surrounding environment. These nanoparticles have demonstrated substantial advantages in drug targeting, prolonging blood circulation time, penetrating biofilms, and immune escape. With the assistance of CMCNPs, the therapeutic effects of dental, oral, and craniofacial diseases can reach a higher level. CMCNPs have been applied for dental, oral, and craniofacial diseases for various conditions such as head and neck cancer, periodontal disease, and oral biosignal detection. For the therapies of head and neck cancer, CMCNPs have been widely utilized as a tool of chemotherapy, phototherapy, and immunotherapy, while yet to be exploited in imaging technique. In the end, we summarized the challenges and prospectives of CMCNPs for dental, oral, and craniofacial diseases: large-scale production with uniform standards and high quantity, extensive application directions in dental, oral, and craniofacial regions (implant, endodontics), and the promotion of its clinical application.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
2
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
3
|
Romdoni Y, Prasedya ES, Kadja GTM, Kitamoto Y, Khalil M. Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe 3O 4@SiO 2 nanocarrier with folic acid and β-cyclodextrin. Biochim Biophys Acta Gen Subj 2024; 1868:130643. [PMID: 38797254 DOI: 10.1016/j.bbagen.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe3O4@SiO2 (Fe3O4@SiO2-Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe3O4@SiO2-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe3O4@SiO2-Ag/Cys/FA and Fe3O4@SiO2-Ag/Cys/BCD exhibited maximum loading efficiency of 50-60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40-47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
Collapse
Affiliation(s)
- Yoga Romdoni
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia; Bioscience and Biotechnology Research Center, Faculty of Mathematics and Natural Sciences, University of Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia
| | - Grandprix T M Kadja
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Yoshitaka Kitamoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
| |
Collapse
|
4
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
5
|
Lin X, Li Y, Zhang B, Li J, Ren J, Tang Y, Wu S, Yang J, Wang Q. Alginate nanogel-embedded liposomal drug carriers facilitate drug delivery efficiency in arthritis treatment. Int J Biol Macromol 2024; 273:133065. [PMID: 38866273 DOI: 10.1016/j.ijbiomac.2024.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Despite numerous advantages of liposomes in treating rheumatoid arthritis (RA), the in vivo stability remains a critical issue. Current strategies for improving liposomal stability often compromise their original properties. Herein, we designed an alginate nanogel-embedded liposome aiming at retaining those inherent advantages while enhancing their in vivo stability. The introduction of alginate network within the liposome core can provide mechanical support and controlled drug release without affecting the surface properties. Results showed the cross-linking of alginate network within the inner core of liposomes elevated the particle rigidity to 3 times, allowing for improved stability and decreased drug leakage. Moreover, this nanogel-embedded liposome with optimized elasticity obviously facilitated cellular uptake in inflammatory macrophages. When entering blood circulation, increased rigidity altered the composition of protein corona on the particle surface, resulting in 2-fold increase in circulation time and improved drug accumulation in arthritic joints. When anti-inflammatory chlorogenic acid (CA) was encapsulated into the nanogel network, this CA-loaded nanogel-embedded liposome significantly inhibited ROS production and inflammatory response, ultimately achieved superior therapeutic outcome in arthritic rats. Results demonstrated that this nanogel-embedded liposomes can essentially retain the inherent advantages and overcome the drawbacks of liposomes, thereby improving the drug delivery efficiency.
Collapse
Affiliation(s)
- Xin Lin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Li
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Bin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianheng Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yao Tang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinming Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
6
|
Zhang Y, Li L, Li J, Ma Q. Integrating aptasensor with an explosive mass-tag signal amplification strategy for ultrasensitive and multiplexed analysis using a miniature mass spectrometer. Biosens Bioelectron 2024; 249:116010. [PMID: 38215638 DOI: 10.1016/j.bios.2024.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mass probes attached with aptamers and mass tags offer excellent specificity and sensitivity for multiplexed detection, wherein the dissociation of mass tags from the mass probes is as important as their labeling. Herein, aggregation-induced emission luminogen (AIEgen)-tagged mass probes (AIEMPs) were established to analyze estrogens, which integrated aptasensor with an explosive mass-tag signal amplification strategy via a simple ultrasound-assisted emulsification of nanoliposomes. The AIEMPs were assembled by the hybridization of aptamer-modified Fe3O4 nanoparticles (Fe NPs@Apt) and nanoliposomes loaded with massive AIEgen mass tags and partially complementary DNA strands (AIE NLs@cDNA). The aptamer was preferentially and specifically bound to estrogen, resulting in the detachment of AIE NLs from AIEMPs. Subsequently, the AIEMPs were deposited with electrospray solvents for explosive release of mass tags. Using nanoelectrospray ionization mass spectrometry (nanoESI-MS), the AIEMP-based aptasensor achieved ultrasensitive analysis of estrogens with limits of detection of 0.168-0.543 pg/mL and accuracies in the range of 87.9-114.0%. Compared to direct nanoESI-MS detection, the AIEMP-based aptasensor provides a signal amplification of four orders of magnitude. Furthermore, the utilization of different AIEMPs enables multiplexed detection of three estrogens with a miniature mass spectrometer, showing promising potential for on-site detection. This work expands the diversity of mass-tagging strategy and provides a versatile mass probe-based aptasensor platform for routine MS detection of trace analytes.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jingjing Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
7
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Zia R, Poortinga AT, Nazir A, Aburuz S, van Nostrum CF. Triple-Emulsion-Based Antibubbles: A Step Forward in Fabricating Novel Multi-Drug Delivery Systems. Pharmaceutics 2023; 15:2757. [PMID: 38140097 PMCID: PMC10747882 DOI: 10.3390/pharmaceutics15122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Developing carriers capable of efficiently transporting both hydrophilic and lipophilic payloads is a captivating focus within the pharmaceutical and drug delivery research domain. Antibubbles, constituting an innovative encapsulation system designed for drug delivery purposes, have garnered scientific interest thanks to their distinctive water-in-air-in-water (W1/A/W2) structure. However, in contrast to their precursor, i.e., nanoparticle-stabilized W1/O/W2 double emulsion, traditional antibubbles lack the ability to accommodate a lipophilic payload, as the intermediary (volatile) oil layer of the emulsion is replaced by air during the antibubble fabrication process. Therefore, here, we report the fabrication of triple-emulsion-based antibubbles (O1/W1/A/W2), in which the inner aqueous phase was loaded with a nanoemulsion stabilized by various proteins, including whey, soy, or pea protein isolates. As model drugs, we employed the dyes Nile red in the oil phase and methylene blue in the aqueous phase. The produced antibubbles were characterized regarding their size distribution, entrapment efficiency, and stability. The produced antibubbles demonstrated substantial entrapment efficiencies for both lipophilic (ranging from 80% to 90%) and hydrophilic (ranging from 70% to 82%) components while also exhibiting an appreciable degree of stability during an extended rehydration period of two weeks. The observed variations among different antibubble variants were primarily attributed to differences in protein concentration rather than the type of protein used.
Collapse
Affiliation(s)
- Rabia Zia
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Albert T. Poortinga
- Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
9
|
Thangudu S, Tsai CY, Lin WC, Su CH. Modified gefitinib conjugated Fe 3O 4 NPs for improved delivery of chemo drugs following an image-guided mechanistic study of inner vs. outer tumor uptake for the treatment of non-small cell lung cancer. Front Bioeng Biotechnol 2023; 11:1272492. [PMID: 37877039 PMCID: PMC10591449 DOI: 10.3389/fbioe.2023.1272492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Gefitinib (GEF) is an FDA-approved anti-cancer drug for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the efficacy of anticancer drugs is limited due to their non-specificity, lower accumulation at target sites, and systemic toxicity. Herein, we successfully synthesized a modified GEF (mGEF) drug and conjugated to Iron oxide nanoparticles (Fe3O4 NPs) for the treatment of NSCLC via magnetic resonance (MR) image-guided drug delivery. A traditional EDC coupling pathway uses mGEF to directly conjugate to Fe3O4 NPs to overcom the drug leakage issues. As a result, we found in vitro drug delivery on mGEF- Fe3O4 NPs exhibits excellent anticancer effects towards the PC9 cells selectively, with an estimated IC 50 value of 2.0 μM. Additionally, in vivo MRI and PET results demonstrate that the NPs could accumulate in tumor-specific regions with localized cell growth inhibition. Results also revealed that outer tumor region exhibiting a stronger contrast than the tinner tumor region which may due necrosis in inner tumor region. In vivo biodistribution further confirms Fe3O4 NPs are more biocompatible and are excreated after the treatment. Overall, we believe that this current strategy of drug modification combined with chemical conjugation on magnetic NPs will lead to improved cancer chemotherapy as well as understanding the tumor microenvironments for better therapeutic outcomes.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Akbar MU, Khattak S, Khan MI, Saddozai UAK, Ali N, AlAsmari AF, Zaheer M, Badar M. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil. Front Pharmacol 2023; 14:1265440. [PMID: 37745070 PMCID: PMC10517339 DOI: 10.3389/fphar.2023.1265440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer has remained one of the leading causes of death worldwide, with a lack of effective treatment. The intrinsic shortcomings of conventional therapeutics regarding tumor specificity and non-specific toxicity prompt us to look for alternative therapeutics to mitigate these limitations. In this regard, we developed multifunctional bimetallic (FeCo) bi-MIL-88B-FC MOFs modified with folic acid-conjugated chitosan (FC) as drug delivery systems (DDS) for targeted delivery of 5-Fluorouracil (5-FU). The bi-MIL-88B nanocarriers were characterized through various techniques, including powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Interestingly, 5-FU@bi-MIL-88B-FC showed slower release of 5-FU due to a gated effect phenomenon endowed by FC surface coating compared to un-modified 5-FU@bi-MIL-88B. The pH-responsive drug release was observed, with 58% of the loaded 5-FU released in cancer cells mimicking pH (5.2) compared to only 24.9% released under physiological pH (5.4). The in vitro cytotoxicity and cellular internalization experiments revealed the superiority of 5-FU@bi-MIL-88B-FC as a highly potent targeted DDS against folate receptor (FR) positive SW480 cancer cells. Moreover, due to the presence of Fe and Co in the structure, bi-MIL-88B exhibited peroxidase-like activity for chemodynamic therapy. Based on the results, 5-FU@bi-MIL-88B-FC could serve as promising candidate for smart DDS by sustained drug release and selective targeting.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Malik Ihsanullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
11
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
12
|
Tian Y, Jing H, Wang Q, Hu S, Wu Z, Duan Y. Dissolving microneedles-based programmed delivery system for enhanced chemo-immunotherapy of melanoma. J Control Release 2023; 360:630-646. [PMID: 37414221 DOI: 10.1016/j.jconrel.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 μm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 μm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8+ T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Suxian Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Xiao Q, Li X, Liu C, Jiang Y, He Y, Zhang W, Azevedo HS, Wu W, Xia Y, He W. Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator. Acta Pharm Sin B 2023; 13:3503-3517. [PMID: 37655330 PMCID: PMC10465872 DOI: 10.1016/j.apsb.2022.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Wei Wu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
15
|
Pan R, Chen D, Hou L, Hu R, Jiao Z. Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci 2023; 15:1184435. [PMID: 37404690 PMCID: PMC10315580 DOI: 10.3389/fnagi.2023.1184435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) have a slow onset and are usually detected late during disease. NDs are often difficult to cure due to the presence of the blood-brain barrier (BBB), which makes it difficult to find effective treatments and drugs, causing great stress and financial burden to families and society. Currently, small extracellular vesicles (sEVs) are the most promising drug delivery systems (DDSs) for targeted delivery of molecules to specific sites in the brain as a therapeutic vehicle due to their low toxicity, low immunogenicity, high stability, high delivery efficiency, high biocompatibility and trans-BBB functionality. Here, we review the therapeutic application of sEVs in several NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, discuss the current barriers associated with sEVs and brain-targeted DDS, and suggest future research directions.
Collapse
Affiliation(s)
- Renjie Pan
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongdong Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lanlan Hou
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Rong Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Yang D, Tang Y, Zhu B, Pang H, Rong X, Gao Y, Du F, Cheng C, Qiu L, Ma L. Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206181. [PMID: 37096840 PMCID: PMC10265064 DOI: 10.1002/advs.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yuanjiao Tang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Bihui Zhu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Houqing Pang
- Department of UltrasoundWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiao Rong
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yang Gao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fangxue Du
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Li Qiu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Lang Ma
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
17
|
Hou J, Zhao Y, Sun L, Zou X. Enzyme/GSH/pH-responsive hyaluronic acid grafted porous silica nanocarriers bearing Ag 2S QDs for fluorescence imaging and combined therapy. Carbohydr Polym 2023; 305:120547. [PMID: 36737216 DOI: 10.1016/j.carbpol.2023.120547] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid (HA) is a naturally polysaccharide that has been used for drug delivery, but is limited by low drug loading capacity and drug leakage in circulation. To improve drug delivery efficient, HA modified porous silica (pSiO2) nanocarriers were successfully prepared for drug delivery and combining therapy. pSiO2 nanocarriers have stable porous structure and high loading capacity, and pSiO2/HA nanocarriers would possess advantages of HA-based carriers and pSiO2 nanoparticles. Herein, pSiO2 nanocarriers were prepared by two-phase process, followed by embedding Ag2S QDs in the pore walls of pSiO2 carriers, which render the carriers photothermal effect. pSiO2 nanocarriers have size of 30 nm, large channels, and high loading capacity (29.3 %). To graft HA, a sensitive linker with alkyl amine and disulfide bond was conjugated on the surface of Ag2S/pSiO2 nanocarriers by three-step reaction. After loading doxorubicin (DOX), HA was grafted via sensitive linker onto the surface of Ag2S/pSiO2 carriers via the formation of amide bonds to seal the loaded drugs. The interaction between HA and CD44 confers the carrier targeting ability to cancer cells. HA coating can be degraded by hyaluronidase resulting in the release of internal cargo. The Ag2S/pSiO2/HA nanocarriers performs responsive drug release and combining photothermal chemotherapy.
Collapse
Affiliation(s)
- Jun Hou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
| | - Yanbao Zhao
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Lei Sun
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
| | - Xueyan Zou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|
18
|
Doroudian M, Zanganeh S, Abbasgholinejad E, Donnelly SC. Nanomedicine in Lung Cancer Immunotherapy. Front Bioeng Biotechnol 2023; 11:1144653. [PMID: 37008041 PMCID: PMC10064145 DOI: 10.3389/fbioe.2023.1144653] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the major cause of cancer death worldwide. Cancer immunotherapy has been introduced as a promising and effective treatment that can improve the immune system’s ability to eliminate cancer cells and help establish immunological memory. Nanoparticles can contribute to the rapidly evolving field of immunotherapy by simultaneously delivering a variety of immunological agents to the target site and tumor microenvironment. Nano drug delivery systems can precisely target biological pathways and be implemented to reprogram or regulate immune responses. Numerous investigations have been conducted to employ different types of nanoparticles for immunotherapy of lung cancer. Nano-based immunotherapy adds a strong tool to the diverse collection of cancer therapies. This review briefly summarizes the remarkable potential opportunities for nanoparticles in lung cancer immunotherapy and its challenges.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seamas C. Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Tallaght University Hospital, Dublin, Ireland
- *Correspondence: Seamas C. Donnelly,
| |
Collapse
|
19
|
Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2023; 13:716-737. [PMID: 36417162 PMCID: PMC9684886 DOI: 10.1007/s13346-022-01252-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Recently, nanoparticle-based drug delivery systems have been widely used for the treatment, prevention, and detection of diseases. Improving the targeted delivery ability of nanoparticles has emerged as a critical issue that must be addressed as soon as possible. The bionic cell membrane coating technology has become a novel concept for the design of nanoparticles. The diverse biological roles of cell membrane surface proteins endow nanoparticles with several functions, such as immune escape, long circulation time, and targeted delivery; therefore, these proteins are being extensively studied in the fields of drug delivery, detoxification, and cancer treatment. Furthermore, hybrid cell membrane-coated nanoparticles enhance the beneficial effects of monotypic cell membranes, resulting in multifunctional and efficient delivery carriers. This review focuses on the synthesis, development, and application of the cell membrane coating technology and discusses the function and mechanism of monotypic/hybrid cell membrane-modified nanoparticles in detail. Moreover, it summarizes the applications of cell membranes from different sources and discusses the challenges that may be faced during the clinical application of bionic carriers, including their production, mechanism, and quality control. We hope this review will attract more scholars toward bionic cell membrane carriers and provide certain ideas and directions for solving the existing problems.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yu-Yan Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xin-Chi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People's Republic of China.
| |
Collapse
|
20
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
21
|
Bazazi S, Hosseini SP, Hashemi E, Rashidzadeh B, Liu Y, Saeb MR, Xiao H, Seidi F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. NANOSCALE 2023; 15:3630-3650. [PMID: 36728615 DOI: 10.1039/d2nr07065k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
C-dots are a new class of materials with vast applications. The synthesis of bio-based C-dots has attracted increasing attention in recent years. Polysaccharides being the most abundant natural materials with high biodegradability and no toxicity have been the focus of researchers for the synthesis of C-dots. C-dots obtained from polysaccharides are generally fabricated via thermal procedures, carbonization, and microwave pyrolysis. Small size, photo-induced electron transfer (PET), and highly adjustable luminosity behavior are the most important physical and chemical properties of C-dots. However, C-dot/polysaccharide composites can be introduced as a new generation of composites that combine the features of both C-dots and polysaccharides having a wide range of applications in biomedicines, biosensors, drug delivery systems, etc. This review demonstrates the features, raw materials, and methods used for the fabrication of C-dots derived from different polysaccharides. Furthermore, the properties, applications, and synthesis conditions of various C-dot/polysaccharide composites are discussed in detail.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Seyedeh Parisa Hosseini
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | | | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Zhong Y, Zhou Y, Ding R, Zou L, Zhang H, Wei X, He D. Intra-articular treatment of temporomandibular joint osteoarthritis by injecting actively-loaded meloxicam liposomes with dual-functions of anti-inflammation and lubrication. Mater Today Bio 2023; 19:100573. [PMID: 36816604 PMCID: PMC9929446 DOI: 10.1016/j.mtbio.2023.100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common osteochondral degenerative disease which can severely affect patient's mouth opening and mastication. Meloxicam (MLX), one of the most widely used non-steroidal anti-inflammatory drugs, is the main clinical therapy for the treatment of TMJ osteoarthritis. However, the clinical effect is greatly compromised because of its poor water solubility and high lipophilicity. In the present study, we developed an actively-loaded liposomal formulation, namely MLX-Ca(AC)2Lipo, using meglumine to enhance aqueous solubility and divalent metal (Ca2+) solution to improve encapsulation efficiency. By the formation of the nano-bowl shaped MLX-Ca precipitates inside the liposomes, MLX-Ca(AC)2Lipo successfully achieved an optimal encapsulation efficiency as high as 98.4% compared with previous passive loading method (60.6%). Additionally, MLX-Ca(AC)2Lipo maintained stable, and the slow drug release not only prolonged the duration of drug efficacy but also improved bioavailability. It was shown in the in vitro and in vivo tests that MLX-Ca(AC)2Lipo downregulated the synthesis of the inflammatory factors (such as prostaglandin-E2) and as a consequence reduced chondrocytes apoptosis and extracellular matrix degeneration. Furthermore, the intra-articular injection of MLX-Ca(AC)2Lipo enhanced bioinspired lubrication of TMJ, protecting the cartilage from progressive wear. In summary, MLX-Ca(AC)2Lipo with dual-functions of anti-inflammation and lubrication is a promising nanomedicine for the treatment of TMJ osteoarthritis by intra-articular injection.
Collapse
Affiliation(s)
- Yingqian Zhong
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Yuyu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyi Ding
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Luxiang Zou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China,Corresponding author.
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Dongmei He
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China,Corresponding author. Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
23
|
Sun H, Leng Y, Zhou X, Li X, Wang T. Regulation of the nanostructures self-assembled from an amphiphilic azobenzene homopolymer: influence of initial concentration and solvent solubility parameter. SOFT MATTER 2023; 19:743-748. [PMID: 36621933 DOI: 10.1039/d2sm01059c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles by changing initial polymer concentrations, and prepare nanotubes and nanowires, both twisted and not, by using solvents with different solubility parameters. An amphiphilic azobenzene homopolymer (poly(4-(phenyldiazenyl)phenyl methacrylamide), PAzoMAA) is designed and synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, which can self-assemble into bowl-shaped nanoparticles promoted by the synergy of hydrogen bonding and π-π interaction. More significantly, the opening size of the bowl-shaped nanoparticles can be controlled by changing initial polymer concentrations. Nanotubes and nanowires, both twisted and not, are also obtained using a solvothermal method in alcohols. The relationship between the structure of the nanomaterials and the solubility parameters of the alcohols is investigated, revealing the molecular arrangement patterns of PAzoMAA in different nanostructures. Overall, we propose a facile strategy to manipulate the microstructure of bowl-shaped nanoparticles and one-dimensional nanomaterials by adjusting initial polymer concentration and solvent solubility parameters. Our study may bring new avenues for controlling the nanostructures of soft nanomaterials.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Ying Leng
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiaoyan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiao Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano 'bead-grafting' for SDT-facilitated immune checkpoints blocking. Chem Sci 2022; 13:14052-14062. [PMID: 36540822 PMCID: PMC9728588 DOI: 10.1039/d2sc02728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/13/2022] [Indexed: 09/21/2023] Open
Abstract
Combination therapies based on immune checkpoint blockade (ICB) are currently the mainstay of cancer treatment, in which the synergetic delivery of multiple drugs is the essential step. Although nanoparticle drugs (NPDs) show satisfactory anticancer effects, the promotion of active co-delivery of NPDs is premature, since the processes are usually difficult to predict and control. Targeting peptide self-assemblies have been widely used as carriers for small-molecular drugs, but remain elusive for NPDs. We describe here peptide-based nano 'bead-grafting' for the active delivery of quantum-dot NPDs through a co-assembly method. Based on a 'de novo' design, we used a 'one-bead-one-compound (OBOC)' combinatorial chemical screening method to select a peptide RT with high affinity for the immune checkpoint CD47, which could also form biocompatible nanofibers and efficiently trap Ag2S quantum dots along the self-assembly path. This system can combine ICB therapy and sonodynamic therapy (SDT) to effectively inhibit tumor growth. Moreover, the tumor antigen produced by SDT can activate the adaptive immune system, which enhances the anti-tumor immune response of the ICB and shows efficient inhibition of both primary and distant tumors. This study provides a new strategy for the active control and delivery of NPDs and a new option for ICB therapy with immune checkpoints that are highly susceptible to systemic side effects.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Yuwei Tian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
25
|
Huang X, Hürlimann D, Spanke HT, Wu D, Skowicki M, Dinu IA, Dufresne ER, Palivan CG. Cell-Derived Vesicles with Increased Stability and On-Demand Functionality by Equipping Their Membrane with a Cross-Linkable Copolymer. Adv Healthc Mater 2022; 11:e2202100. [PMID: 36208079 PMCID: PMC11469159 DOI: 10.1002/adhm.202202100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.
Collapse
Affiliation(s)
- Xinan Huang
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Dimitri Hürlimann
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Hendrik T. Spanke
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Dalin Wu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Michal Skowicki
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Ionel Adrian Dinu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Eric R. Dufresne
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| |
Collapse
|
26
|
Ghosh P, Tiwari H, Lakkakula J, Roy A, Emran TB, Rashid S, Alghamdi S, Rajab BS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Sharma R, Babalghith AO. A decade's worth of impact: Dox loaded liposomes in anticancer activity. MATERIALS TODAY ADVANCES 2022; 16:100313. [DOI: 10.1016/j.mtadv.2022.100313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
27
|
Li X, Wang ZG, Zhu H, Wen HP, Ning D, Liu HY, Pang DW, Liu SL. Inducing Autophagy and Blocking Autophagic Flux via a Virus-Mimicking Nanodrug for Cancer Therapy. NANO LETTERS 2022; 22:9163-9173. [PMID: 36374537 DOI: 10.1021/acs.nanolett.2c04091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Maximizing the therapeutic capacity of drugs by allowing them to escape lysosomal degradation is a long-term challenge for nanodrug delivery. Japanese encephalitis virus (JEV) has evolved the ability to escape the endosomal region to avoid degradation of internal genetic material by lysosomes and further induce upregulation of cellular autophagy for the purpose of their mass reproduction. In this work, to exploit the lysosome escape and autophagy-inducing properties of JEV for cancer therapy, we constructed a virus-mimicking nanodrug consisting of anti-PDL1 antibody-decorated JEV-mimicking virosome encapsulated with a clinically available autophagy inhibitor, hydroxychloroquine (HCQ). Our study indicated that the nanodrug can upregulate the autophagy level and inhibit the autophagic flux, thereby inducing the apoptosis of tumor cells, and further activating the immune response, which can greatly improve the antitumor and tumor metastasis suppression effects and provide a potential therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hui-Ping Wen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
28
|
Ghosh A, Rajdev B, Parihar N, Ponneganti S, Das P, Naidu VGM, Krishnanand P R, USN M, Kumar J, Pemmaraju DB. Bio-nanoconjugates of lithocholic acid/IR 780 for ROS-mediated apoptosis and optoacoustic imaging applications in breast cancer. Colloids Surf B Biointerfaces 2022; 221:113023. [DOI: 10.1016/j.colsurfb.2022.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
|
29
|
Chen Y, Luo X, Liu Y, Zou Y, Yang S, Liu C, Zhao Y. Targeted Nanobubbles of PD-L1 mAb Combined with Doxorubicin as a Synergistic Tumor Repressor in Hepatocarcinoma. Int J Nanomedicine 2022; 17:3989-4008. [PMID: 36105615 PMCID: PMC9464779 DOI: 10.2147/ijn.s376172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Ultrasound nanobubbles (NBs) can kill tumor cells, mediated by their effects of cavitation and acoustic perforation through ultrasound, while as novel drug carriers, biomaterial-modified NBs release drugs at a target region. In this work, the ultrasound NBs bridged by biotin-streptavidin were prepared simultaneously to be loaded with both programmed death ligand 1 monoclonal antibody (PD-L1 mAb) and doxorubicin (DOX), which are immune checkpoint inhibitors (ICIs) and chemotherapeutic agents, to synergize immunotherapy and chemotherapy combined with sonodynamic therapy (SDT). Methods The PD-L1 mAb/DOX NBs, using bridging affinity biotin (BRAB) technology as a bridge, were prepared by thin-film hydration and mechanical oscillation for the targeted delivery of biotinylated PD-L1 mAb and DOX. Characterization and pharmacokinetic studies of PD-L1 mAb/DOX NBs were performed in vitro and in vivo. The antitumor effect of ultrasound-mediated PD-L1 mAb/DOX-NBs was studied in the subcutaneously transplanted tumor of the H22 hepatoma model, and the mechanism of synergistic tumor repression was investigated. Results The data of in vitro targeting experiments, contrast-enhanced ultrasound imaging (CEUS), in vivo imaging of the small animals imaging system (IVIS), and frozen sections showed that PD-L1 mAb/DOX-NBs have well-targeted aggregation in the tumor. By observing tumor inhibition rate, tissue cell apoptosis, and apoptosis-related gene and protein expression, the PD-L1 mAb/DOX-NBs group showed the best immunotherapy effects, and its tumor volume and mass inhibition rates were about 69.64% and 75.97%, respectively (P < 0.01). Therefore, blocking the PD-1/PD-L1 pathway could improve immune cells’ tumor-killing ability. Antitumor immune cytokines were further enhanced when combined with DOX-induced tumor cell apoptosis and immunogenic cell death (ICD). Conclusion In summary, ultrasound-mediated PD-L1 mAb/DOX-NBs showed significant synergistic antitumor effects, providing a potential combined immunotherapy strategy for HCC.
Collapse
Affiliation(s)
- Yezi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Xiaoqin Luo
- Medical College of China Three Gorges University, Yichang, People's Republic of China.,Department of Medical Imaging Center, Renmin Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Yun Liu
- Department of Ultrasonography, Yichang Central People's Hospital, Yichang, People's Republic of China
| | - Yunlei Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Shiqi Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Chaoqi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Yun Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| |
Collapse
|
30
|
Gbian DL, Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022; 10:2137. [PMID: 36140237 PMCID: PMC9495957 DOI: 10.3390/biomedicines10092137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
31
|
Rethi L, Mutalik C, Anurogo D, Lu LS, Chu HY, Yougbaré S, Kuo TR, Cheng TM, Chen FL. Lipid-Based Nanomaterials for Drug Delivery Systems in Breast Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2948. [PMID: 36079985 PMCID: PMC9458017 DOI: 10.3390/nano12172948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients. In a drug delivery system, lipid nanomaterials have revealed distinctive features, including high biocompatibility and efficient drug delivery. Specifically, a targeted drug delivery system based on lipid nanomaterials has inherited the advantage of optimum dosage and low side effects. In this review, insights on currently used potential lipid-based nanomaterials are collected and introduced. The review sheds light on conjugation, targeting, diagnosis, treatment, and clinical significance of lipid-based nanomaterials to treat breast cancer. Furthermore, a brighter side of lipid-based nanomaterials as future potential drug delivery systems for breast cancer therapy is discussed.
Collapse
Affiliation(s)
- Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dito Anurogo
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan or
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City 90221, South Sulawesi, Indonesia
| | - Long-Sheng Lu
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Lun Chen
- Department of Internal Medicine, Division of Infectious Diseases, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
32
|
Tian Y, Zheng Z, Wang X, Liu S, Gu L, Mu J, Zheng X, Li Y, Shen S. Establishment and evaluation of glucose-modified nanocomposite liposomes for the treatment of cerebral malaria. J Nanobiotechnology 2022; 20:318. [PMID: 35794597 PMCID: PMC9258070 DOI: 10.1186/s12951-022-01493-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening neurological complication caused by Plasmodium falciparum. About 627,000 patients died of malaria in 2020. Currently, artemisinin and its derivatives are the front-line drugs used for the treatment of cerebral malaria. However, they cannot target the brain, which decreases their effectiveness. Therefore, increasing their ability to target the brain by the nano-delivery system with brain-targeted materials is of great significance for enhancing the effects of antimalarials and reducing CM mortality. This study used glucose transporter 1 (GLUT1) on the blood-brain barrier as a target for a synthesized cholesterol-undecanoic acid-glucose conjugate. The molecular dynamics simulation found that the structural fragment of glucose in the conjugate faced the outside the phospholipid bilayers, which was conducive to the recognition of brain-targeted liposomes by GLUT1. The fluorescence intensity of the brain-targeted liposomes (na-ATS/TMP@lipoBX) in the mouse brain was significantly higher than that of the non-targeted liposomes (na-ATS/TMP@lipo) in vivo (P < 0.001) after intranasal administration. The infection and recurrence rate of the mice receiving na-ATS/TMP@lipoBX treatment were significantly decreased, which had more advantages than those of other administration groups. The analysis of pharmacokinetic data showed that na-ATS/TMP@lipoBX could enter the brain in both systemic circulation and nasal-brain pathway to treat malaria. Taken together, these results in this study provide a new approach to the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Ya Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- The Hospital of Nanbu County, Sichuan, People's Republic of China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shuzhi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jing Mu
- Chinese Traditional Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaojun Zheng
- Pharmacy Department of the first hospital of Shanxi Medical University, Shanxi, 10114, People's Republic of China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
33
|
Duan Y, Wang J, Cheng L, Duan H, Tian P, Zhang Y, Cao L. A fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container for drug delivery. Org Biomol Chem 2022; 20:3998-4005. [PMID: 35504031 DOI: 10.1039/d2ob00520d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the rational design and construction of drug delivery systems (DDSs) via a supramolecular approach for improving chemical therapeutics have gained significant attention. Here, we report a host-guest DDS formed from a fluorescent, chirality-responsive, and water-soluble tetraphenylethene-based octacationic cage as a fluorescent/chiral probe, solubilizer, and molecular cargo, which can recognize chiral nucleoside drugs, enhance the solubility of insoluble drugs, and protect drugs from the outside environment by forming host-guest complexes in aqueous solution. Given the fluorescence properties and dynamically rotational conformation of tetraphenylethene (TPE) units, this fluorescent and chirality-responsive cage exhibits different responses including turn-on/turn-off fluorescence and negative/positive circular dichroism (CD) when binding with different chiral nucleoside drugs in water, resulting in multiple-responsive photophysical behaviors for these chiral drugs. Furthermore, this water-soluble cationic cage with a hydrophobic cavity can improve the water solubility of insoluble drugs (e.g., CPT) by forming host-guest complexes in water. More importantly, this multifunctional cage exhibits a low toxicity to both human colon and breast cancer cell lines in vitro, and drugs encapsulated by the cage are more effective in killing cancer cells than drugs alone. Finally, the on-off-on fluorescence responses in the formation and dissociation processes of the cage⊃drug complexes have been successfully used to monitor drug release and track drug delivery by fluorescence microscopy in vitro. Therefore, this fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container can be used to construct a smart drug delivery system with several functions of fluorescence and CD detection, water solubilization, real-time monitoring, and chemotherapy.
Collapse
Affiliation(s)
- Yanjuan Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Ping Tian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
34
|
Zhang N, Xin X, Feng N, Wu D, Zhang J, Yu T, Jiang Q, Gao M, Yang H, Zhao S, Tian Q, Zhang Z. Combining Fruquintinib and Doxorubicin in Size-Converted Nano-Drug Carriers for Tumor Therapy. ACS Biomater Sci Eng 2022; 8:1907-1920. [PMID: 35482571 DOI: 10.1021/acsbiomaterials.1c01606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-modality tumor therapy confronts many challenges, such as incomplete tumor ablation, tumor metastasis, and limited tumor tissue penetration. Combination therapy simultaneously achieves deep drug delivery to fully exert synergistic effects and has received increasing attention. Herein, based on the excellent efficacy of anti-angiogenesis therapy combined with chemotherapy and the specific size of the poly-amidoamine dendrimer (PAMAM), we developed a pH-triggered size-converted nano-drug delivery system to co-deliver fruquintinib (FRU) and doxorubicin (DOX). This study used cyclic Arg-Gly-Asp (cRGD) as the target, pH-responsive liposomes (PRLs), and PAMAM as the drug carrier. The FRU and DOX-loaded small-particle-size complex polyamide-amine-doxorubicin (PD) was encapsulated into PRLs with the target to construct a size-converted nano-drug delivery system, PRL-PD/FRU-cRGD. This nanoparticle (∼120 nm) actively targeted tumor tissues and used the acidic microenvironment outside tumor cells to release FRU and small-particle-size complex PD (∼15 nm), enabling the conversion of large-size nanoparticles to small-size nanoparticles and resulting in efficient tumor accumulation. In addition, the released PD could realize the deep delivery of DOX, showing efficient deep tumor penetration and further enhancing the tumor-suppressing effect. The results of in vivo and in vitro experiments showed that PRL-PD/FRU-cRGD exhibited the excellent synergistic effects of anti-angiogenesis therapy combined with chemotherapy and effectively inhibited tumor cell proliferation and metastasis, thereby achieving efficient tumor therapy. Thus, PRL-PD/FRU-cRGD shows great potential for combined tumor therapy.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangying Xin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Nannan Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Deqiao Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qianqian Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Siyuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qingfeng Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
35
|
Zhu L, Yan T, Alimu G, Zhang L, Ma R, Alifu N, Zhang X, Wang D. Liposome-Loaded Targeted Theranostic Fluorescent Nano-Probes for Diagnosis and Treatment of Cervix Carcinoma. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Near-infrared fluorescence imaging, with its high sensitivity, non-invasiveness, and superior real-time feedback properties, has become a powerful skill for accurate diagnosis in the clinic. Nanoparticle-assisted chemotherapy is an effective cure for cancer. Specifically, the combination
of near-infrared fluorescence imaging with chemotherapy represents a promising method for precise diagnosis and treatment of cervical cancer. To realize this approach, it is necessary to design and synthesize therapeutic nano-probes with detection abilities. In this work, an organic NIRF emissive
heptamethine cyanine dye, IR783, was utilized and encapsulated in biocompatible drug-carrier liposomes). Then, the anticancer drug doxorubicin was loaded, to form LP-IR783-DOX nanoparticles. The LP-IR783-DOX nanoparticles had spherical shapes and were smoothly dispersed in aqueous solutions.
Favorable absorption (a peak of 800 nm) and fluorescence (a peak of 896 nm) features were obtained from LP-IR783-DOX nanoparticles in the near-infrared region. Moreover, the specific detection abilities of nanoparticles were confirmed in different cell lines, and nanoparticles exhibited strong
detection abilities in human cervix carcinoma cells in particular. To analyze the chemotherapeutic properties of LP-IR783-DOX nanoparticles, live HeLa cells were studied in detail, and the application of these NPs resulted in a chemotherapeutic efficiency of 56.75% based on fluorescein isothiocyanate
staining and flow cytometry. The results indicate that nanoparticles have great potential for theranostic application of fluorescence imaging and chemotherapy in cases of cervical cancer.
Collapse
Affiliation(s)
- Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Ting Yan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Gulinigaer Alimu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Linxue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Duoqiang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
36
|
Sun H, Zhou X, Leng Y, Li X, Du J. Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by Trans-Cis Isomerization of Azobenzene. Macromol Rapid Commun 2022; 43:e2200131. [PMID: 35322512 DOI: 10.1002/marc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
The stimuli-responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, we demonstrate the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans-cis isomerization, using an azobenzene-containing amphiphilic homopolymer (PAzoAA) as building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π-π interaction, which promotes the formation of nanobowls rather than spherical nanostructures. Upon exposed to UV irradiation, trans-cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π-π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re-assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70°C without UV light. We further confirm that the high incubation temperature after UV irradiation is critical for the cis-trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, we propose a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
37
|
Born LJ, Kai-Hua Chang, Shoureshi P, Lay F, Bengali S, Hsu ATW, Abadchi SN, Harmon JW, Jay SM. HOTAIR-Loaded Mesenchymal Stem/Stromal Cell Extracellular Vesicles Enhance Angiogenesis and Wound Healing. Adv Healthc Mater 2022; 11:e2002070. [PMID: 33870645 PMCID: PMC8522167 DOI: 10.1002/adhm.202002070] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Chronic wounds remain a substantial source of morbidity worldwide. An emergent approach that may be well-suited to induce the complex, multicellular processes such as angiogenesis that are required for wound repair is the use of extracellular vesicles (EVs). EVs contain a wide variety of proteins and nucleic acids that enable multifactorial signaling. Here, the capability of EVs is leveraged to be engineered via producer cell modification to investigate the therapeutic potential of EVs from mesenchymal stem/stromal cells (MSCs) transfected to overexpress long non-coding RNA HOX transcript antisense RNA (HOTAIR). HOTAIR is previously shown by the authors' group to be critical in mediating angiogenic effects of endothelial cell EVs, and MSCs are chosen as EV producer cells for this study due to their widely reported intrinsic angiogenic properties. The results indicate that MSCs overexpressing HOTAIR (HOTAIR-MSCs) produce EVs with increased HOTAIR content that promote angiogenesis and wound healing in diabetic (db/db) mice. Further, endothelial cells exposed to HOTAIR-MSC EVs exhibit increased HOTAIR content correlated with upregulation of the angiogenic protein vascular endothelial growth factor. Thus, this study supports EV-mediated HOTAIR delivery as a strategy for further exploration toward healing of chronic wounds.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pouria Shoureshi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA,Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
38
|
Lai X, Liu XL, Pan H, Zhu MH, Long M, Yuan Y, Zhang Z, Dong X, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C. Light-Triggered Efficient Sequential Drug Delivery of Biomimetic Nanosystem for Multimodal Chemo-, Antiangiogenic, and Anti-MDSC Therapy in Melanoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106682. [PMID: 34989039 DOI: 10.1002/adma.202106682] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In view of the multiple pathological hallmarks of tumors, nanosystems for the sequential delivery of various drugs whose targets are separately located inside and outside tumor cells are desired for improved cancer therapy. However, current sequential delivery is mainly achieved through enzyme- or acid-dependent degradation of the nanocarrier, which would be influenced by the heterogeneous tumor microenvironment, and unloading efficiency of the drug acting on the target outside tumor cells is usually unsatisfactory. Here, a light-triggered sequential delivery strategy based on a liposomal formulation of doxorubicin (DOX)-loaded small-sized polymeric nanoparticles (DOX-NP) and free sunitinib in the aqueous cavity, is developed. The liposomal membrane is doped with photosensitizer porphyrin-phospholipid (PoP) and hybridized with red blood cell membrane to confer biomimetic features. Near-infrared light-induced membrane permeabilization triggers the "ultrafast" and "thorough" release of sunitinib (100% release in 5 min) for antiangiogenic therapy and also myeloid-derived suppressor cell (MDSC) inhibition to reverse the immunosuppressive tumor environment. Subsequently, the small-sized DOX-NP liberated from the liposomes is more easily uptaken by tumor cells for improved immunogenic chemotherapy. RNA sequencing and immune-related assay indicates therapeutic immune enhancement. This light-triggered sequential delivery strategy demonstrates the potency in cancer multimodal therapy against multiple targets in different spatial positions in tumor microenvironment.
Collapse
Affiliation(s)
- Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Hong Pan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei Long
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| |
Collapse
|
39
|
Yin X, Yang J, Zhang M, Wang X, Xu W, Price CAH, Huang L, Liu W, Su H, Wang W, Chen H, Hou G, Walker M, Zhou Y, Shen Z, Liu J, Qian K, Di W. Serum Metabolic Fingerprints on Bowl-Shaped Submicroreactor Chip for Chemotherapy Monitoring. ACS NANO 2022; 16:2852-2865. [PMID: 35099942 PMCID: PMC9007521 DOI: 10.1021/acsnano.1c09864] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemotherapy is a primary cancer treatment strategy, the monitoring of which is critical to enhancing the survival rate and quality of life of cancer patients. However, current chemotherapy monitoring mainly relies on imaging tools with inefficient sensitivity and radiation invasiveness. Herein, we develop the bowl-shaped submicroreactor chip of Au-loaded 3-aminophenol formaldehyde resin (denoted as APF-bowl&Au) with a specifically designed structure and Au loading content. The obtained APF-bowl&Au, used as the matrix of laser desorption/ionization mass spectrometry (LDI MS), possesses an enhanced localized electromagnetic field for strengthened small metabolite detection. The APF-bowl&Au enables the extraction of serum metabolic fingerprints (SMFs), and machine learning of the SMFs achieves chemotherapy monitoring of ovarian cancer with area-under-the-curve (AUC) of 0.81-0.98. Furthermore, a serum metabolic biomarker panel is preliminarily identified, exhibiting gradual changes as the chemotherapy cycles proceed. This work provides insights into the development of nanochips and contributes to a universal detection platform for chemotherapy monitoring.
Collapse
Affiliation(s)
- Xia Yin
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
| | - Jing Yang
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Mengji Zhang
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Xinyao Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Wei Xu
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Cameron-Alexander H. Price
- The
University of Manchester at Harwell, Diamond
Light Source, Didcot, Oxfordshire OX11 0DE, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratories, Harwell Campus, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Lin Huang
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Wanshan Liu
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Haiyang Su
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Wenjing Wang
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
| | - Hongyu Chen
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Guangjin Hou
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Mark Walker
- Department
of Obstetrics and Gynecology, University
of Ottawa, Ottawa, Ontario ON K1H 8L6, Canada
| | - Ying Zhou
- Department
of Obstetrics and Gynecology, The First Affiliated Hospital of USTC,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Auhui 230001, P.R. China
| | - Zhen Shen
- Department
of Obstetrics and Gynecology, The First Affiliated Hospital of USTC,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Auhui 230001, P.R. China
| | - Jian Liu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, U.K.
| | - Kun Qian
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Wen Di
- State
Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory
of Gynecologic Oncology, Department of Obstetrics and Gynecology,
Renji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, 200127, P.R. China
| |
Collapse
|
40
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
41
|
Xiao Q, Li X, Liu C, Yang Y, Hou Y, Wang Y, Su M, He W. Liposome-based anchoring and core-encapsulation for combinatorial cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Liu XY, Zhu MH, Wang XY, Dong X, Liu HJ, Li RY, Jia SC, Lu Q, Zhao M, Sun P, Chen HZ, Fang C. A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model. J Nanobiotechnology 2022; 20:54. [PMID: 35093074 PMCID: PMC8800325 DOI: 10.1186/s12951-022-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Harnessing the immune system to fight cancer has led to prominent clinical successes. Strategies to stimulate innate immune effectors are attracting considerable interest in cancer therapy. Here, through conjugating multivalent Fc fragments onto the surface of mesoporous silica nanoparticles (MSN), we developed a nanoparticle-based innate immune system activator (NISA) for breast cancer immunotherapy. Methods NISA was prepared through conjugating mouse IgG3 Fc to MSN surface. Then, long-chain PEG5000, which was used to shield Fc to confer nanoparticle colloidal stability, was linked to the MSN surface via matrix metalloprotease-2 (MMP-2)-cleavable peptide (GPLGIAGQC). The activation of multiple components of innate immune system, including complement and the innate cells (macrophages and dendritic cells) and the associated anticancer effect were investigated. Results Fc fragments of NISA can be exposed through hydrolysis of long-chain PEG5000 by highly expressed MMP-2 in tumor microenvironment. Then, effective stimulation and activation of multiple components of innate immune system, including complement, macrophages, and dendritic cells were obtained, leading to efficient antitumor effect in 4T1 breast cancer cells and orthotopic breast tumor model in mice. Conclusions The antitumor potency conferred by NISA highlights the significance of stimulating multiple innate immune elements in cancer immunotherapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01265-4.
Collapse
|
43
|
Jie Z, Mu W, Fu B, He G, Ding S, Li Y, Jia Z. Synthesis, mechanism and characterization of Urchin-like Ga2O3 microspheres. CrystEngComm 2022. [DOI: 10.1039/d2ce00055e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective method without catalyst and template was developed to synthesize a novel micro-/nanostructures of gallium oxide (Ga2O3) for the first time. The urchin-like microspheres with uniformly distributed nanowires were...
Collapse
|
44
|
Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021; 14:197. [PMID: 35008362 PMCID: PMC8750546 DOI: 10.3390/cancers14010197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Vladimir Plekhanov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Alexey Kurnikov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Wang J, Gong J, Wei Z. Strategies for Liposome Drug Delivery Systems to Improve Tumor Treatment Efficacy. AAPS PharmSciTech 2021; 23:27. [PMID: 34907483 DOI: 10.1208/s12249-021-02179-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
In the advancement of tumor therapy, in addition to the search for new antitumor compounds, the development of nano-drug delivery systems has opened up new pathways for tumor treatment by addressing some of the limitations of traditional drugs. Liposomes have received much attention for their high biocompatibility, low toxicity, high inclusivity, and improved drug bioavailability. They are one of the most studied nanocarriers, changing the size and surface characteristics of liposomes to better fit the tumor environment by taking advantage of the unique pathophysiology of tumors. They can also be designed as tumor targeting drug delivery vehicles for the precise delivery of active drugs into tumor cells. This paper reviews the current development of liposome formulations, summarizes the characterization methods of liposomes, and proposes strategies to improve the effectiveness of tumor treatment. Finally, it provides an outlook on the challenges and future directions of the field. Graphical abstract.
Collapse
|
46
|
Ravula V, Muripiti V, Manthurthi S, Patri SV. α‐Tocopherol‐Conjugated, Open Chain Sugar‐Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Venkatesh Ravula
- National Institute of Technology Warangal Telangana 506004 India
| | | | | | | |
Collapse
|
47
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021; 60:26357-26362. [PMID: 34580967 PMCID: PMC8629958 DOI: 10.1002/anie.202110829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time-consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox-mediated kinetic strategy from two simple molecules: dopamine and benzene-1,4-dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti-oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk-shell nanoparticles.
Collapse
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| |
Collapse
|
48
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Ming Xu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jingcheng Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhuohong Wu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yash Mantri
- Department of Bioengineering University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| |
Collapse
|
49
|
Demirdogen RE, Emen FM, Karaçolak AI, Kılıç D, Kutlu E, Meral O. Preparation of novel CaMoO4:Eu3+-MCM-41 nanocomposites and their applications and monitoring as drug release systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|