1
|
Chen S, Liang Z, Miao J, Yu XL, Wang S, Zhang Y, Wang H, Wang Y, Cheng C, Long G, Wang T, Wang L, Zhang H, Chen X. Infrared optoelectronics in twisted black phosphorus. Nat Commun 2024; 15:8834. [PMID: 39397018 PMCID: PMC11471851 DOI: 10.1038/s41467-024-53125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrons and holes, fundamental charge carriers in semiconductors, dominate optical transitions and detection processes. Twisted van der Waals (vdW) heterostructures offer an effective approach to manipulate radiation, separation, and collection processes of electron-hole pairs by creating an atomically sharp interface. Here, we demonstrate that twisted interfaces in vdW layered black phosphorus (BP), an infrared semiconductor with highly anisotropic crystalline structure and properties, can significantly alter both recombination and separation processes of electron-hole pairs. On the one hand, the twisted interface breaks the symmetry of optical transition states resulting in infrared light emission of originally symmetry-forbidden optical states along the zigzag direction. On the other hand, spontaneous electronic polarization/bulk photovoltaic effect is generated at the twisted interface enabling effective separation of electron-hole pairs without external voltage bias. This is supported by first-principles calculations and repeated experiments at various twisted angles from 0 to 90°. Importantly, these phenomena can be observed in twisted heterostructures with thickness beyond two-dimensional. Our results suggest that the engineering of vdW twisted interfaces is an effective strategy for manipulating the optoelectronic properties of materials and constructing functional devices.
Collapse
Affiliation(s)
- Shouheng Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Zihan Liang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Xiang-Long Yu
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shuo Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yule Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Han Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Yun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Gen Long
- Suzhou Laboratory, Suzhou, 215123, China
| | - Taihong Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China.
| | - Xiaolong Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Wang Y, Guo R, Zou C, Zhang Z, Liu K, Jiang J, Liu T, Cheng Z. Broadband and low-reflection mid-infrared grating coupler for a perfectly vertical fiber-chip interface. OPTICS LETTERS 2024; 49:5511-5514. [PMID: 39352994 DOI: 10.1364/ol.532893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Short-wavelength mid-infrared (SWMIR) silicon photonics has gained significant attention due to its applications in sensing, spectroscopy, and communications. A perfectly vertical grating coupler is a valuable packaging technique that is convenient for chip-to-chip optical interconnects and has low risks of mechanical failure during testing. However, SWMIR grating couplers have fewer periods to tailor the diffracted light, hindering the improvement of bandwidths and backreflections. Herein, we demonstrate a perfectly vertical subwavelength grating coupler by using a modified inverse design approach. The device exhibits a coupling efficiency of -5.9 dB with a 1-dB bandwidth of ∼122 nm and a low backreflection of -19.2 dB at 2200 nm wavelengths. Besides, the device also exhibits exceptional spatial fiber misalignment tolerance. The study underscores the effectiveness of the inverse design strategy in subwavelength grating couplers, charting a path to advance the mid-infrared silicon photonic packaging.
Collapse
|
3
|
Yang Z, Yu Q, Wu J, Deng H, Zhang Y, Wang W, Xian T, Huang L, Zhang J, Yuan S, Leng J, Zhan L, Jiang Z, Wang J, Zhang K, Zhou P. Ultrafast laser state active controlling based on anisotropic quasi-1D material. LIGHT, SCIENCE & APPLICATIONS 2024; 13:81. [PMID: 38584173 PMCID: PMC11251271 DOI: 10.1038/s41377-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.
Collapse
Affiliation(s)
- Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yan Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenchao Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyi Huang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junrong Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shuai Yuan
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyong Leng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Li Zhan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongfu Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Junyong Wang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Kai Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
4
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Shi X, Li W, Lan X, Guo Q, Zhu G, Du W, Wang T. Room-Temperature Polarized Light-Emitting Diode-Based on a 2D Monolayer Semiconductor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301949. [PMID: 37357166 DOI: 10.1002/smll.202301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Transition metal dichalcogenide (TMD)-based 2D monolayer semiconductors, with the direct bandgap and the large exciton binding energy, are widely studied to develop miniaturized optoelectronic devices, e.g., nanoscale light-emitting diodes (LEDs). However, in terms of polarization control, it is still quite challenging to realize polarized electroluminescence (EL) from TMD monolayers, especially at room temperature. Here, by using Ag nanowire top electrode, polarized LEDs are demonstrated based on 2D monolayer semiconductors (WSe2 , MoSe2 , and WS2 ) at room temperature with a degree of polarization (DoP) ranging from 50% to 63%. The highly anisotropic EL emission comes from the 2D/Ag interface via the electron/hole injection and recombination process, where the EL emission is also enhanced by the polarization-dependent plasmonic resonance of the Ag nanowire. These findings introduce new insights into the design of polarized 2D LED devices at room temperature and may promote the development of miniaturized 2D optoelectronic devices.
Collapse
Affiliation(s)
- Xiuqi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinhui Lan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qianqian Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guangpeng Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Zhang M, Yang L, Wu X, Wang J. Black Phosphorus for Photonic Integrated Circuits. RESEARCH (WASHINGTON, D.C.) 2023; 6:0206. [PMID: 37593339 PMCID: PMC10430873 DOI: 10.34133/research.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Black phosphorus gives several advantages and complementarities over other two-dimensional materials. It has drawn extensive interest owing to its relatively high carrier mobility, wide tunable bandgap, and in-plane anisotropy in recent years. This manuscript briefly reviews the structure and physical properties of black phosphorus and targets on black phosphorus for photonic integrated circuits. Some of the applications are discussed including photodetection, optical modulation, light emission, and polarization conversion. Corresponding recent progresses, associated challenges, and future potentials are covered.
Collapse
Affiliation(s)
| | | | | | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering,
Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
7
|
Higashitarumizu N, Tajima S, Kim J, Cai M, Javey A. Long operating lifetime mid-infrared LEDs based on black phosphorus. Nat Commun 2023; 14:4845. [PMID: 37563157 PMCID: PMC10415361 DOI: 10.1038/s41467-023-40602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Black phosphorus (BP) is a narrow bandgap layered semiconductor promising for mid-infrared optoelectronic applications. BP-based devices have been shown to surpass state-of-the-art mid-infrared detectors and light-emitting diodes (LEDs) in terms of performance. Despite their device advantages, the material's inherent instability in the air could hinder its use in practical optoelectronic applications. Here, we investigated the impact of passivation on the device lifetime of BP LEDs, which deteriorate in a matter of seconds without using passivation. The lifetime is significantly extended with an Al2O3 passivation layer and nitrogen packaging via atomic layer deposition and ultra-violet curable resin sealing. The operational lifetime (half-life) at room temperature is extrapolated to be ~15,000 h with an initial power density of 340 mW/cm2 based on accelerated life testing. The present results indicate that efficient BP optoelectronics can be highly robust through simple and scalable packaging technologies, with important practical implications for mid-infrared applications.
Collapse
Affiliation(s)
- Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Berkeley Sensor & Actuator Center, University of California, Berkeley, CA, 94720, USA
| | - Shogo Tajima
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor & Actuator Center, University of California, Berkeley, CA, 94720, USA
| | - Jongchan Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Berkeley Sensor & Actuator Center, University of California, Berkeley, CA, 94720, USA
- Department of Integrated Display, Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mingyang Cai
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor & Actuator Center, University of California, Berkeley, CA, 94720, USA
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Berkeley Sensor & Actuator Center, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Misenan MSM, Hempelmann R, Gallei M, Eren T. Phosphonium-Based Polyelectrolytes: Preparation, Properties, and Usage in Lithium-Ion Batteries. Polymers (Basel) 2023; 15:2920. [PMID: 37447565 DOI: 10.3390/polym15132920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphorous is an essential element for the life of organisms, and phosphorus-based compounds have many uses in industry, such as flame retardancy reagents, ingredients in fertilizers, pyrotechnics, etc. Ionic liquids are salts with melting points lower than the boiling point of water. The term "polymerized ionic liquids" (PILs) refers to a class of polyelectrolytes that contain an ionic liquid (IL) species in each monomer repeating unit and are connected by a polymeric backbone to form macromolecular structures. PILs provide a new class of polymeric materials by combining some of the distinctive qualities of ILs in the polymer chain. Ionic liquids have been identified as attractive prospects for a variety of applications due to the high stability (thermal, chemical, and electrochemical) and high mobility of their ions, but their practical applicability is constrained because they lack the benefits of both liquids and solids, suffering from both leakage issues and excessive viscosity. PILs are garnering for developing non-volatile and non-flammable solid electrolytes. In this paper, we provide a brief review of phosphonium-based PILs, including their synthesis route, properties, advantages and drawbacks, and the comparison between nitrogen-based and phosphonium-based PILs. As phosphonium PILs can be used as polymer electrolytes in lithium-ion battery (LIB) applications, the conductivity and the thermo-mechanical properties are the most important features for this polymer electrolyte system. The chemical structure of phosphonium-based PILs that was reported in previous literature has been reviewed and summarized in this article. Generally, the phosphonium PILs that have more flexible backbones exhibit better conductivity values compared to the PILs that consist of a rigid backbone. At the end of this section, future directions for research regarding PILs are discussed, including the use of recyclable phosphorus from waste.
Collapse
Affiliation(s)
| | - Rolf Hempelmann
- Transfercentre Sustainable Electrochemistry, Saarland University and KIST Europe, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene-Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Tarik Eren
- Department of Chemistry, College of Arts and Science, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
9
|
Elbanna A, Jiang H, Fu Q, Zhu JF, Liu Y, Zhao M, Liu D, Lai S, Chua XW, Pan J, Shen ZX, Wu L, Liu Z, Qiu CW, Teng J. 2D Material Infrared Photonics and Plasmonics. ACS NANO 2023; 17:4134-4179. [PMID: 36821785 DOI: 10.1021/acsnano.2c10705] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials including graphene, transition metal dichalcogenides, black phosphorus, MXenes, and semimetals have attracted extensive and widespread interest over the past years for their many intriguing properties and phenomena, underlying physics, and great potential for applications. The vast library of 2D materials and their heterostructures provides a diverse range of electrical, photonic, mechanical, and chemical properties with boundless opportunities for photonics and plasmonic devices. The infrared (IR) regime, with wavelengths across 0.78 μm to 1000 μm, has particular technological significance in industrial, military, commercial, and medical settings while facing challenges especially in the limit of materials. Here, we present a comprehensive review of the varied approaches taken to leverage the properties of the 2D materials for IR applications in photodetection and sensing, light emission and modulation, surface plasmon and phonon polaritons, non-linear optics, and Smith-Purcell radiation, among others. The strategies examined include the growth and processing of 2D materials, the use of various 2D materials like semiconductors, semimetals, Weyl-semimetals and 2D heterostructures or mixed-dimensional hybrid structures, and the engineering of light-matter interactions through nanophotonics, metasurfaces, and 2D polaritons. Finally, we give an outlook on the challenges in realizing high-performance and ambient-stable devices and the prospects for future research and large-scale commercial applications.
Collapse
Affiliation(s)
- Ahmed Elbanna
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
| | - Hao Jiang
- Department of Electrical and Electronic Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Juan-Feng Zhu
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yuanda Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Dongjue Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Samuel Lai
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Wei Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jisheng Pan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ze Xiang Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
- Interdisciplinary Graduate Program, Energy Research Institute@NTU, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore
| | - Lin Wu
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Electronic Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
10
|
Chandrasekaran S, Jayakumar A, Velu R. A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4251. [PMID: 36500874 PMCID: PMC9740290 DOI: 10.3390/nano12234251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Printable electronics is emerging as one of the fast-growing engineering fields with a higher degree of customization and reliability. Ironically, sustainable printing technology is essential because of the minimal waste to the environment. To move forward, we need to harness the fabrication technology with the potential to support traditional process. In this review, we have systematically discussed in detail the various manufacturing materials and processing technologies. The selection criteria for the assessment are conducted systematically on the manuscript published in the last 10 years (2012-2022) in peer-reviewed journals. We have discussed the various kinds of printable ink which are used for fabrication based on nanoparticles, nanosheets, nanowires, molecular formulation, and resin. The printing methods and technologies used for printing for each technology are also reviewed in detail. Despite the major development in printing technology some critical challenges needed to be addressed and critically assessed. One such challenge is the coffee ring effect, the possible methods to reduce the effect on modulating the ink environmental condition are also indicated. Finally, a summary of printable electronics for various applications across the diverse industrial manufacturing sector is presented.
Collapse
Affiliation(s)
- Sridhar Chandrasekaran
- Center for System Design, Department of Electronics and Communication Engineering, Chennai Institute of Technology, Kundrathur, Chennai 600069, India
| | - Arunkumar Jayakumar
- Green Vehicle Technology Research Centre, Department of Automobile Engineering, SRM-Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajkumar Velu
- Additive Manufacturing Research Laboratory (AMRL), Indian Institute of Technology Jammu, Jammu 181221, Jammu & Kashmir, India
| |
Collapse
|
11
|
Antonatos N, Šturala J, Mazánek V, Sedmidubský D, Veselý M, Růžička K, Hejtmánek J, Levinsky P, Sofer Z. Black Phosphorus: Fundamental Properties and Influence of Impurities Induced by Its Synthesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34867-34874. [PMID: 35856643 DOI: 10.1021/acsami.2c08714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Black phosphorus (BP) has been among the most widely explored materials in recent years because of its exceptional properties. A vapor transport method using tin and iodide as mineralizers was used to synthesize large crystals which can be used for fundamental physical characterization including electrical and heat transport and heat capacity. This method is compared to other reported procedures (high-pressure crystal growth and mercury catalysis) which are broadly used and the most dominant procedures for the obtainment of bulk layered BP. In addition, we have investigated any possible impurities which could have been introduced by synthesis and their possible incorporation into BP and their influence on the physical properties of BP.
Collapse
Affiliation(s)
- Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiří Šturala
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Veselý
- Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiři Hejtmánek
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 112/10, 162 00 Prague, Czech Republic
| | - Petr Levinsky
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 112/10, 162 00 Prague, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
Chang TY, Chen PL, Chen PS, Li WQ, Li JX, He MY, Chao JT, Ho CH, Liu CH. Van der Waals Heterostructure Photodetectors with Bias-Selectable Infrared Photoresponses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32665-32674. [PMID: 35797527 DOI: 10.1021/acsami.2c06088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A bias-selectable photodetector, which can sense the wavelength of interest by tuning the polarity of applied bias, is useful for target discrimination and identification applications. So far, those detectors are generally based on the back-to-back photodiode configuration via exploiting epitaxial semiconductors as optoelectronic materials, which inevitably lead to high fabrication costs and complex device architectures. Here, we demonstrate that our band-engineered van der Waals heterostructures can be applied as bias-selectable photodetectors. Our first prototypical device is mainly composed of black phosphorus (BP) and MoTe2 light absorbers sandwiching a thin MoS2 hole blocking layer. By varying the bias polarity, its spectral photoresponse can be switched between near-infrared and short-wave infrared bands, and our optoelectronic characterizations indicate that the detector can exhibit high external quantum efficiency (EQE) and fast operation speed. With this framework, we further demonstrate the detector with bias-selectable photoresponses within the mid-wave infrared band using BP/MoS2/arsenic-doped BP heterostructures and show that our developed detectors can be integrated into a single-pixel imaging system to capture dual-band infrared imaging.
Collapse
Affiliation(s)
- Tian-Yun Chang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Liang Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pei-Sin Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Qing Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Xin Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Yuan He
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Te Chao
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chang-Hua Liu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
13
|
Cui X, Du M, Das S, Yoon HH, Pelgrin VY, Li D, Sun Z. On-chip photonics and optoelectronics with a van der Waals material dielectric platform. NANOSCALE 2022; 14:9459-9465. [PMID: 35735657 PMCID: PMC9261272 DOI: 10.1039/d2nr01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
During the last few decades, photonic integrated circuits have increased dramatically, facilitating many high-performance applications, such as on-chip sensing, data processing, and inter-chip communications. The currently dominating material platforms (i.e., silicon, silicon nitride, lithium niobate, and indium phosphide), which have exhibited great application successes, however, suffer from their own disadvantages, such as the indirect bandgap of silicon for efficient light emission, and the compatibility challenges of indium phosphide with the silicon industry. Here, we report a new dielectric platform using nanostructured bulk van der Waals materials. On-chip light propagation, emission, and detection are demonstrated by taking advantage of different van der Waals materials. Low-loss passive waveguides with MoS2 and on-chip light sources and photodetectors with InSe have been realised. Our proof-of-concept demonstration of passive and active on-chip photonic components endorses van der Waals materials for offering a new dielectric platform with a large material-selection degree of freedom and unique properties toward close-to-atomic scale manufacture of on-chip photonic and optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoqi Cui
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Mingde Du
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
| | - Hoon Hahn Yoon
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Vincent Yves Pelgrin
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - Diao Li
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
14
|
Chen PL, Chen Y, Chang TY, Li WQ, Li JX, Lee S, Fang Z, Li M, Majumdar A, Liu CH. Waveguide-Integrated van der Waals Heterostructure Mid-Infrared Photodetector with High Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24856-24863. [PMID: 35476925 DOI: 10.1021/acsami.2c01094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extending the operation wavelength of silicon photonics to the mid-infrared (mid-IR) band will significantly benefit critical application areas, including health care, astronomy, and chemical sensing. However, a major hurdle for mid-IR silicon photonics has been the lack of high-speed, high-responsivity, and low noise-equivalent power (NEP) photodetectors. Here, we demonstrate a van der Waals (vdW) heterostructure mid-IR photodetector integrated on a silicon-on-insulator (SOI) waveguide. The detector is composed of vertically stacked black phosphorus (BP)/molybdenum ditelluride (MoTe2). We measured high responsivity (up to 0.85 A/W) over a 3-4 μm spectral range, indicating that waveguide-confined light could strongly interact with vdW heterostructures on top. In addition, the waveguide-integrated detector could be modulated at high speed (>10 MHz) and its switching performance shows excellent stability. These results, together with the noise analysis, indicate that the NEP of the detector is as low as 8.2 pW/Hz1/2. This reported critical missing piece in the silicon photonic toolbox will enable the wide-spread adoption of mid-IR integrated photonic circuits.
Collapse
Affiliation(s)
- Po-Liang Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueyang Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Tian-Yun Chang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Qing Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Xin Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhuoran Fang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mo Li
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chang-Hua Liu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Liu Y, Zou J, Chen S, Zhong B, Wang Y, Wang H, Huang X. Raman spectroscopy studies of black phosphorus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120861. [PMID: 35051798 DOI: 10.1016/j.saa.2022.120861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Black phosphorus has important applications in many fields such as optics, optoelectronics and thermals. Many of its excellent properties are related to its special anisotropy. In this work, we adopted Raman spectroscopy, which can obtain fast response optical signals without destroying the structure of the sample, to identify its crystal orientation and explore its thermal and SERS properties. We successfully distinguished the armchair and zigzag directions of black phosphorus by angle-resolved polarized Raman spectroscopy of Ag mode in a less studied orthogonal polarization configuration. Then we used temperature dependent Raman spectroscopy to study its thermal properties. It is found that the first order temperature coefficients of its three Raman vibration modes Ag1, B2g, and Ag2 are -0.0133 cm-1 K-1, -0.0232 cm-1 K-1 and -0.0229 cm-1 K-1, respectively for the 3.2 nm sample. Furthermore, we studied the surface enhancement effect of black phosphorus with different thicknesses as SERS substrates. We found that few-layer black phosphorus has better enhancement effects and its limit of detection for MB and CV are both 10-6M. The analytical enhancement factor of black phosphorus substrates on CV can achieve 1.2 × 103 by calculation. These methods can be extended to other similar two-dimensional materials.
Collapse
Affiliation(s)
- Yue Liu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China
| | - Jiaxin Zou
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China
| | - Shurui Chen
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China.
| | - Yingying Wang
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China.
| | - Huatao Wang
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
16
|
Gupta N, Kim H, Azar NS, Uddin SZ, Lien DH, Crozier KB, Javey A. Bright Mid-Wave Infrared Resonant-Cavity Light-Emitting Diodes Based on Black Phosphorus. NANO LETTERS 2022; 22:1294-1301. [PMID: 35072481 DOI: 10.1021/acs.nanolett.1c04557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mid-wave infrared (MWIR) wavelength range plays a central role in a variety of applications, including optical gas sensing, industrial process control, spectroscopy, and infrared (IR) countermeasures. Among the MWIR light sources, light-emitting diodes (LEDs) have the advantages of simple design, room-temperature operation, and low cost. Owing to the low Auger recombination at high carrier densities and direct bandgap of black phosphorus (bP), it can serve as a high quantum efficiency emitting layer in LEDs. In this work, we demonstrate bP-LEDs exhibiting high external quantum efficiencies and wall-plug efficiencies of up to 4.43 and 1.78%, respectively. This is achieved by integrating the device with an Al2O3/Au optical cavity, which enhances the emission efficiency, and a thin transparent conducing oxide [indium tin oxide (ITO)] layer, which reduces the parasitic resistance, both resulting in order of magnitude improvements to performance.
Collapse
Affiliation(s)
- Niharika Gupta
- Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyungjin Kim
- Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nima Sefidmooye Azar
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiekh Zia Uddin
- Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Der-Hsien Lien
- Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth B Crozier
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ali Javey
- Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Zhang L, Zhong Y, Qian X, Song Q, Zhou J, Li L, Guo L, Chen G, Wang EN. Toward Optimal Heat Transfer of 2D-3D Heterostructures via van der Waals Binding Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46055-46064. [PMID: 34529424 DOI: 10.1021/acsami.1c08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials and their heterogeneous integration have enabled promising electronic and photonic applications. However, significant thermal challenges arise due to numerous van der Waals (vdW) interfaces limiting the dissipation of heat generated in the device. In this work, we investigate the vdW binding effect on heat transport through a MoS2-amorphous silica heterostructure. We show using atomistic simulations that the cross-plane thermal conductance starts to saturate with the increase of vdW binding energy, which is attributed to substrate-induced localized phonons. With these atomistic insights, we perform device-level heat transfer optimizations. Accordingly, we identify a regime, characterized by the coupling of in-plane and cross-plane heat transport mediated by vdW binding energy, where maximal heat dissipation in the device is achieved. These results elucidate fundamental heat transport through the vdW heterostructure and provide a pathway toward optimizing thermal management in 2D nanoscale devices.
Collapse
Affiliation(s)
- Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xin Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qichen Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiawei Zhou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Long Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Kim H, Uddin SZ, Lien DH, Yeh M, Azar NS, Balendhran S, Kim T, Gupta N, Rho Y, Grigoropoulos CP, Crozier KB, Javey A. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021; 596:232-237. [PMID: 34381234 DOI: 10.1038/s41586-021-03701-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022]
Abstract
Room-temperature optoelectronic devices that operate at short-wavelength and mid-wavelength infrared ranges (one to eight micrometres) can be used for numerous applications1-5. To achieve the range of operating wavelengths needed for a given application, a combination of materials with different bandgaps (for example, superlattices or heterostructures)6,7 or variations in the composition of semiconductor alloys during growth8,9 are used. However, these materials are complex to fabricate, and the operating range is fixed after fabrication. Although wide-range, active and reversible tunability of the operating wavelengths in optoelectronic devices after fabrication is a highly desirable feature, no such platform has been yet developed. Here we demonstrate high-performance room-temperature infrared optoelectronics with actively variable spectra by presenting black phosphorus as an ideal candidate. Enabled by the highly strain-sensitive nature of its bandgap, which varies from 0.22 to 0.53 electronvolts, we show a continuous and reversible tuning of the operating wavelengths in light-emitting diodes and photodetectors composed of black phosphorus. Furthermore, we leverage this platform to demonstrate multiplexed nondispersive infrared gas sensing, whereby multiple gases (for example, carbon dioxide, methane and water vapour) are detected using a single light source. With its active spectral tunability while also retaining high performance, our work bridges a technological gap, presenting a potential way of meeting different requirements for emission and detection spectra in optoelectronic applications.
Collapse
Affiliation(s)
- Hyungjin Kim
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shiekh Zia Uddin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Der-Hsien Lien
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Yeh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nima Sefidmooye Azar
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Taehun Kim
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Niharika Gupta
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yoonsoo Rho
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Kenneth B Crozier
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.,School of Physics, University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Melbourne, Melbourne, Victoria, Australia
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
19
|
An S, Shang W, Jiang M, Luo Y, Fu B, Song C, Tao P, Deng T. Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. Proc Natl Acad Sci U S A 2021; 118:e2021077118. [PMID: 33876757 PMCID: PMC8054021 DOI: 10.1073/pnas.2021077118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the increasing pursuit of intelligent systems, the integration of human components into functional systems provides a promising route to the ultimate human-compatible intelligent systems. In this work, we explored the integration of the human hand as the powerless and multiplexed infrared (IR) light source in different functional systems. With the spontaneous IR radiation, the human hand provides a different option as an IR light source. Compared to engineered IR light sources, the human hand brings sustainability with no need of external power and also additional level of controllability to the functional systems. Besides the whole hand, each finger of the hand can also independently provide IR radiation, and the IR radiation from each finger can be selectively diffracted by specific gratings, which helps the hand serve as a multiplexed IR light source. Considering these advantages, we show that the human hand can be integrated into various engineered functional systems. The integration of hand in an encryption/decryption system enables both unclonable and multilevel information encryption/decryption. We also demonstrate the use of the hand in complex signal generation systems and its potential application in sign language recognition, which shows a simplified recognition process with a high level of accuracy and robustness. The use of the human hand as the IR light source provides an alternative sustainable solution that will not only reduce the power used but also help move forward the effort in the integration of human components into functional systems to increase the level of intelligence and achieve ultimate control of these systems.
Collapse
Affiliation(s)
- Shun An
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Shang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Modi Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yini Luo
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Benwei Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengyi Song
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Tao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Deng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Mao J, Ortiz O, Wang J, Malinge A, Badia A, Kéna-Cohen S. Langmuir-Blodgett fabrication of large-area black phosphorus-C 60 thin films and heterojunction photodetectors. NANOSCALE 2020; 12:19814-19823. [PMID: 32966495 DOI: 10.1039/d0nr04537c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Black phosphorus (BP) has emerged as a promising two-dimensional (2D) semiconductor for applications in electronics, optoelectronics, and energy storage. As is the case for many 2D materials, the fabrication of large-area BP thin films remains a considerable challenge. Here, we report the assembly of BP nanosheets into compact thin films using the Langmuir-Blodgett (LB) technique. The overlapping stacking between BP nanosheets is suppressed when the nanosheets are surrounded by fullerene C60 molecules due to physisorption. This allows for the fabrication of large-area BP films (20 mm × 18 mm) with a homogenous nanosheet distribution and negligible oxidation. The fabricated films show measurable absorption up to 2.3 μm. We use these films as active layers to demonstrate mm-sized BP heterojunction photodetectors with mA W-1 scale responsivities from the visible to the near-infrared. Photodetector internal quantum efficiencies at 660 nm and 808 nm are 5% and 1%, respectively.
Collapse
Affiliation(s)
- Jian Mao
- Department of Engineering Physics, Polytechnique Montréal, Montréal, H3C3A7, QC, Canada.
| | | | | | | | | | | |
Collapse
|