1
|
Jiménez-Duro M, Martínez-Periñán E, Martínez-Fernández M, Martínez JI, Lorenzo E, Segura JL. Robust Amide-Linked Fluorinated Covalent Organic Framework for Long-Term Oxygen Reduction Reaction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402082. [PMID: 38773891 DOI: 10.1002/smll.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/14/2024] [Indexed: 05/24/2024]
Abstract
The high energy demand of the evolving world opens the door to develop more sustainable and environmentally friendly energy sources. Oxygen reduction reaction (ORR) is a promising candidate, being the 2e- pathway of great interest for the green production of hydrogen peroxide. Metal-free covalent organic frameworks (COFs) electrocatalysts present a suitable alternative to substitute the noble-metals more commonly employed in this application. However, the lability of the linkages building up the framework raises an issue for their long-term use and application in aggressive media. Herein, a stable amide-linked COF is reported through post-synthetic modification of a previously reported imine-linked COF proven to be effective as an electrocatalyst, enhancing its chemical stability and electrochemical response. It is found that after the linkage transformation, the new electrocatalyst displays a higher selectivity toward the H2O2 production (98.5%) and an enhanced turnover frequency of 0.155 s-1, which is among the bests reported to date for metal-free and COF based electrocatalysts. The results represent a promising step forward for metal-free non pyrolyzed electrocatalysts, improving their properties through post-synthetic linkage modification for long-term operation.
Collapse
Affiliation(s)
- Miguel Jiménez-Duro
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco-Crta. Colmenar, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Campus de Cantoblanco, Madrid, 28049, Spain
| | - Marcos Martínez-Fernández
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - José I Martínez
- Departamento de Nanoestructuras, Superficies, Recubrimientos y Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, 28049, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco-Crta. Colmenar, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Campus de Cantoblanco, Madrid, 28049, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia) Cantoblanco, Madrid, 28049, Spain
| | - José L Segura
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| |
Collapse
|
2
|
Wang X, Huang R, Mao X, Liu T, Guo P, Sun H, Mao Z, Han C, Zheng Y, Du A, Liu J, Jia Y, Wang L. Coupling Ni Single Atomic Sites with Metallic Aggregates at Adjacent Geometry on Carbon Support for Efficient Hydrogen Peroxide Electrosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402240. [PMID: 38605604 PMCID: PMC11220688 DOI: 10.1002/advs.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Run Huang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Xin Mao
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Tian Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleInstitute of EnergyHefei Comprehensive National Science CenterDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryAnhui Engineering Laboratory of Biomimetic MaterialsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Panjie Guo
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Hai Sun
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Zhelin Mao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Chao Han
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yarong Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringHefei University of TechnologyHefei230041P. R. China
| | - Aijun Du
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Jianwei Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleInstitute of EnergyHefei Comprehensive National Science CenterDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryAnhui Engineering Laboratory of Biomimetic MaterialsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Yi Jia
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical SynthesisCollege of Chemical EngineeringZhejiang Carbon Neutral Innovation InstituteZhejiang University of Technology (ZJUT)Hangzhou310014P. R. China
- Moganshan Institute ZJUTDeqing313200P. R. China
| | - Lei Wang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| |
Collapse
|
3
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
5
|
Zhao G, Chen T, Tang A, Yang H. Roles of Oxygen-Containing Functional Groups in Carbon for Electrocatalytic Two-Electron Oxygen Reduction Reaction. Chemistry 2024; 30:e202304065. [PMID: 38487973 DOI: 10.1002/chem.202304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/05/2024]
Abstract
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Tianci Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
6
|
Shi S, Song Y, Jiao Y, Jin D, Li Z, Xie H, Gao L, Sun L, Hou J. BiVO 4-Based Heterojunction Photocathode for High-Performance Photoelectrochemical Hydrogen Peroxide Production. NANO LETTERS 2024; 24:6051-6060. [PMID: 38682868 DOI: 10.1021/acs.nanolett.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 μmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 μmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.
Collapse
Affiliation(s)
- Shaobo Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yurou Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuye Jiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dingfeng Jin
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huimin Xie
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lihua Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Jin H, Yu R, Ji P, Zeng W, Li Z, He D, Mu S. Sharply expanding single-atomically dispersed Fe-N active sites through bidirectional coordination for oxygen reduction. Chem Sci 2024; 15:7259-7268. [PMID: 38756823 PMCID: PMC11095370 DOI: 10.1039/d4sc01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
For Fe-NC systems, high-density Fe-N sites are the basis for high-efficiency oxygen reduction reaction (ORR), and P doping can further lower the reaction energy barrier, especially in the form of metal-P bonding. However, limited to the irregular agglomeration of metal atoms at high temperatures, Fe-P bonds and high-density Fe-N cannot be guaranteed simultaneously. Here, to escape the random and violent agglomeration of Fe species during high-temperature carbonization, triphenylphosphine and 2-methylimidazole with a strong metal coordination capability are introduced together to confine Fe growth. With the aid of such bidirectional coordination, the high-density Fe-N site with Fe-P bonds is realized by in situ phosphorylation of Fe in an Fe-NC system (Fe-P-NC) at high temperatures. Impressively, the content of single-atomically dispersed Fe sites for Fe-P-NC dramatically increases from 2.8% to 65.3% compared with that of pure Fe-NC, greatly improving the ORR activity in acidic and alkaline electrolytes. The theoretical calculation results show that the generated Fe2P can simultaneously facilitate the adsorption of intermediates to Fe-N4 sites and the electron transfer, thereby reducing the reaction energy barrier and obtaining superior ORR activity.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
8
|
Lee Y, Lee C, Back S, Sa YJ. Electronic structure modification of metal phthalocyanines by a carbon nanotube support for efficient oxygen reduction to hydrogen peroxide. NANOSCALE 2024. [PMID: 38660774 DOI: 10.1039/d4nr00250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An active and selective two-electron oxygen reduction reaction (2e- ORR) is required for efficient electrosynthesis of H2O2. This reaction can be promoted by metal phthalocyanines (MPcs), which serve as model catalysts with well-defined structures. MPc molecules have mostly been evaluated on conductive carbon-based substrates, including glassy carbon (GC) and carbon nanotubes (CNTs), yet their influence on the electrocatalytic properties is not well understood. This study demonstrated that the ORR activity per surface area was improved by up to 4-fold with MPc molecules supported on CNTs (MPc/CNTs, M = Co, Mn, and Fe) compared to MPc loaded directly on GC. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the CNTs modified the electronic structure of the MPc molecules to optimize the *OOH binding energy and boost the heterogeneous electron transfer rates. Detailed kinetic analysis enabled multiple reaction pathways to be decoupled to extract the metal-dependent intrinsic 2e-/4e- ORR activities. Finally, MPc/CNT catalysts were employed in an H2O2 electrosynthesis flow cell, which delivered an industrial-scale current density of -200 mA cm-2 and an H2O2 faradaic efficiency of 88.7 ± 0.6% with the CoPc/CNT catalyst in a neutral electrolyte.
Collapse
Affiliation(s)
- Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
9
|
Castellino M, Sacco A, Fontana M, Chiodoni A, Pirri CF, Garino N. The Effect of Sulfur and Nitrogen Doping on the Oxygen Reduction Performance of Graphene/Iron Oxide Electrocatalysts Prepared by Using Microwave-Assisted Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:560. [PMID: 38607095 PMCID: PMC11013293 DOI: 10.3390/nano14070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
The synthesis of novel catalysts for the oxygen reduction reaction, by means of a fast one-pot microwave-assisted procedure, is reported herein and deeply explained. In particular, the important role of doping atoms, like sulfur and nitrogen, in Fe2O3-reduced graphene oxide nanocomposites is described to address the modification of catalytic performance. The presence of dopants is confirmed by X-ray Photoelectron Spectroscopy analysis, while the integration of iron oxide nanoparticles, by means of decoration of the graphene structure, is corroborated by electron microscopy, which also confirms that there is no damage to the graphene sheets induced by the synthesis procedure. The electrochemical characterizations put in evidence the synergistic catalysis effects of dopant atoms with Fe2O3 and, in particular, the importance of sulfur introduction into the graphene lattice. Catalytic performance of as-prepared materials toward oxygen reduction shows values close to the Pt/C reference material, commonly used for fuel cell and metal-air battery applications.
Collapse
Affiliation(s)
- Micaela Castellino
- Department of Applied Science and Technology—Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (C.F.P.); (N.G.)
| | - Adriano Sacco
- Center for Sustainable Future Technologies @Polito—Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (A.S.); (A.C.)
| | - Marco Fontana
- Department of Applied Science and Technology—Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (C.F.P.); (N.G.)
- Center for Sustainable Future Technologies @Polito—Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (A.S.); (A.C.)
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @Polito—Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (A.S.); (A.C.)
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology—Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (C.F.P.); (N.G.)
- Center for Sustainable Future Technologies @Polito—Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (A.S.); (A.C.)
| | - Nadia Garino
- Department of Applied Science and Technology—Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (C.F.P.); (N.G.)
| |
Collapse
|
10
|
Zhang J, Yang W, Liu X, Su F, Wang G, Zhan S, Li Y. Iron hydroxyphosphate electro-Fenton catalyst for efficient removal of sulfamethoxazole and resource recycling into slow-release fertiliser ammonium ferrous phosphate. ENVIRONMENTAL RESEARCH 2024; 244:117908. [PMID: 38092238 DOI: 10.1016/j.envres.2023.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Although the electro-Fenton (EF) process is effective for wastewater treatment, recycling spent catalysts remain a major challenge. Therefore, we introduce a reuse strategy for spent catalysts where an iron hydroxyphosphate [Fe5(PO4)4(OH)3·2H2O] catalyst is utilized. Fe5(PO4)4(OH)3·2H2O obtained •OH and •O2- by activating in-situ produced H2O2, and the degradation rate of sulfamethoxazole reached 94.5% after 120 min and showed excellent stability (maintained above 90%) for 10 cycles. Finally, the used catalyst was converted into slow-release ammonium ferrous phosphate (NH4FePO4·H2O) fertiliser at a conversion rate of 85.6%. NH4FePO4·H2O significantly promoted plant and seed growth within 6 days, highlighting the contribution of the resource recycling of the spent catalyst. This study serves as a valuable reference for the efficient utilization of spent catalysts. This study successfully applied EF catalysts and explored the recycling of spent catalysts.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xingyu Liu
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Fan Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China.
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|