1
|
Huijben TAPM, Mahajan S, Fahim M, Zijlstra P, Marie R, Mortensen KI. Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles. ACS NANO 2024; 18:29832-29845. [PMID: 39411831 DOI: 10.1021/acsnano.4c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nanoparticles (NPs) have proven their applicability in biosensing, drug delivery, and photothermal therapy, but their performance depends critically on the distribution and number of functional groups on their surface. When studying surface functionalization using super-resolution microscopy, the NP modifies the fluorophore's point-spread function (PSF). This leads to systematic mislocalizations in conventional analyses employing Gaussian PSFs. Here, we address this shortcoming by deriving the analytical PSF model for a fluorophore near a spherical NP. Its calculation is four orders of magnitude faster than numerical approaches and thus feasible for direct use in localization algorithms. We fit this model to individual 2D images from DNA-PAINT experiments on DNA-coated gold NPs and demonstrate extraction of the 3D positions of functional groups with <5 nm precision, revealing inhomogeneous surface coverage. Our method is exact, fast, accessible, and poised to become the standard in super-resolution imaging of NPs for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Teun A P M Huijben
- Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby 2800, Denmark
| | - Sarojini Mahajan
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Masih Fahim
- Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby 2800, Denmark
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby 2800, Denmark
| | - Kim I Mortensen
- Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby 2800, Denmark
| |
Collapse
|
2
|
Chattopadhyay S, Biteen JS. Achiral Plasmonic Antennas Enhance Differential Absorption To Increase Preferential Detection of Chiral Single Molecules. ACS MEASUREMENT SCIENCE AU 2024; 4:528-533. [PMID: 39430969 PMCID: PMC11487658 DOI: 10.1021/acsmeasuresciau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/22/2024]
Abstract
Plasmonic antennas increase the photon flux in their vicinity, which can lead to plasmon-enhanced fluorescence for molecules near these nanostructures. Here, we combine plasmon-coupled fluorescence and fluorescence-detected circular dichroism to build a specific and sensitive detection strategy for chiral single molecules. Electromagnetic simulations indicate that a two-dimensional gold nanoparticle dimer antenna enhances the electric field and optical chirality of a plane wave in its near field. Furthermore, this optical chirality enhancement can be tuned based on the polarization of the incident electric field, such that enhancing the optical chirality via these antennas will increase the differential absorption of parity-inverted fields. We measured the fluorescence from single molecules of chiral absorbers-Cy5 J-dimers assembled in double-stranded DNA backbones-and achieved increased detectability of these right-handed molecules near achiral gold nanoparticle dimer antennas under right circularly polarized illumination. This strategy offers a new approach to distinguishing weakly fluorescent enantiomers.
Collapse
Affiliation(s)
- Saaj Chattopadhyay
- Applied
Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Julie S. Biteen
- Applied
Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
3
|
Willets KA. Super-Resolution Surface-Enhanced Raman Scattering: Perspectives on the Past, Present, and Future. ACS NANO 2024; 18:27824-27832. [PMID: 39353138 DOI: 10.1021/acsnano.4c10655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Super-resolution surface-enhanced Raman scattering (SERS) allows researchers to overcome the resolution limit of far field optical microscopy and peer into electromagnetic hot spots with nanoscale resolution. By localizing the signal from single (or few) molecules on the surface of plasmonic nanoparticle aggregates, relationships between the spatial origin of the SERS signal, local electromagnetic field enhancements, and SERS intensity can be determined. This Perspective describes the successes and challenges of super-resolution SERS, from the earliest mapping of single-molecule SERS hot spots to the current state-of-the-art, while highlighting open questions and future opportunities to advance the field. Comparisons with fluorescence-based super-resolution imaging are discussed to help frame the unique challenges associated with performing SERS in the super-resolution regime.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Granizo E, Kriukova I, Escudero-Villa P, Samokhvalov P, Nabiev I. Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1520. [PMID: 39330676 PMCID: PMC11435064 DOI: 10.3390/nano14181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
Collapse
Affiliation(s)
- Evelyn Granizo
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Pedro Escudero-Villa
- Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | - Pavel Samokhvalov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- BioSpectroscopie Translationnelle (BioSpecT)-UR 7506, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
5
|
Chattopadhyay S, Lipok M, Pfaffenberger ZJ, Olesiak-Bańska J, Biteen JS. Single-Particle Photoluminescence Measures a Heterogeneous Distribution of Differential Circular Absorbance of Gold Nanoparticle Aggregates near Constricted Thioflavin T Molecules. J Phys Chem Lett 2024; 15:1618-1622. [PMID: 38306468 DOI: 10.1021/acs.jpclett.3c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The chirality of biomacromolecules is critical for their function, but the optical signal of this chirality is small in the visible range. Plasmonic nanoparticles are antennas that can couple to this chiral signal. Here, we examine the molecular-scale mechanism behind the induced circular dichroism of gold nanorods (AuNRs) in solution with insulin fibrils and the fibril-intercalating dye thioflavin T (ThT) with polarization-resolved single-molecule fluorescence and single-particle photoluminescence (PL) imaging. We compared the PL upon excitation by left- and right-handed circularly polarized light to calculate the differential absorbance of AuNRs near insulin fibrils with and without ThT. Overall, our results indicate that AuNRs do not act as chiral absorbers near constricted ThT molecules. Instead, we hypothesize that fibrils promote AuNR aggregation, and this templating is mediated by subtle changes in the solution conditions; under the right conditions, only a few chiral aggregates with significantly higher circular dichroism signal contribute to a large net circular dichroism.
Collapse
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Maciej Lipok
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | | | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | - Julie S Biteen
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
6
|
Córdova-Castro RM, van Dam B, Lauri A, Maier SA, Sapienza R, De Wilde Y, Izeddin I, Krachmalnicoff V. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas. LIGHT, SCIENCE & APPLICATIONS 2024; 13:7. [PMID: 38167240 PMCID: PMC10761855 DOI: 10.1038/s41377-023-01349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm. We measure, in the gap of the nanoantenna, decay rates that are almost 30 times larger than on a glass substrate. By comparing experimental results with numerical simulations we show that this large enhancement is essentially radiative, contrary to the case of plasmonic nanoantennas, and therefore has great potential for applications such as quantum optics and biosensing.
Collapse
Affiliation(s)
- R Margoth Córdova-Castro
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Bart van Dam
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Alberto Lauri
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
- Chair in Hybrid Nanosystems, Ludwig-Maximilians Universität München, Muenchen, Germany
| | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Yannick De Wilde
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Ignacio Izeddin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France.
| | | |
Collapse
|
7
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Moon G, Son T, Yoo H, Lee C, Lee H, Im S, Kim D. Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission. LIGHT, SCIENCE & APPLICATIONS 2023; 12:221. [PMID: 37718351 PMCID: PMC10505609 DOI: 10.1038/s41377-023-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Optical properties of single emitters can be significantly improved through the interaction with plasmonic structures, leading to enhanced sensing and imaging capabilities. In turn, single emitters can act as sensitive probes of the local electromagnetic field surrounding plasmonic structures, furnishing fundamental insights into their physics and guiding the design of novel plasmonic devices. However, the interaction of emitters in the proximity to a plasmonic nanostructure causes distortion, which hinders precise estimation of position and polarization state and is one of the reasons why detection and quantification of molecular processes yet remain fundamentally challenging in this era of super-resolution. Here, we investigate axially defocused images of a single fluorescent emitter near metallic nanostructure, which encode emitter positions and can be acquired in the far-field with high sensitivity, while analyzing the images with pattern matching algorithm to explore emitter-localized surface plasmon interaction and retrieve information regarding emitter positions. Significant distortion in defocused images of fluorescent beads and quantum dots near nanostructure was observed and analyzed by pattern matching and finite-difference time-domain methods, which revealed that the distortion arises from the emitter interaction with nanostructure. Pattern matching algorithm was also adopted to estimate the lateral positions of a dipole that models an emitter utilizing the distorted defocused images and achieved improvement by more than 3 times over conventional diffraction-limited localization methods. The improvement by defocused imaging is expected to provide a way of enhancing reliability when using plasmonic nanostructure and diversifying strategies for various imaging and sensing modalities.
Collapse
Affiliation(s)
- Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- LG Innotek, Seoul, 07796, South Korea
| | - Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hajun Yoo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- LG Display, Paju, Gyeonggi-do, 10845, South Korea
| | - Hyunwoong Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Seongmin Im
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
9
|
ter Huurne SET, Peeters DBL, Sánchez-Gil JA, Rivas JG. Direct Measurement of the Local Density of Optical States in the Time Domain. ACS PHOTONICS 2023; 10:2980-2986. [PMID: 37602289 PMCID: PMC10436706 DOI: 10.1021/acsphotonics.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/22/2023]
Abstract
One of the most fundamental and relevant properties of a photonic system is the local density of optical states (LDOS) as it defines the rate at which an excited emitter dissipates energy by coupling to its surrounding. However, the direct determination of the LDOS is challenging as it requires measurements of the complex electric field of a point dipole at its own position. We introduce here a near-field setup which can measure the terahertz electric field amplitude at the position of a point source in the time domain. From the measured amplitude, the frequency-dependent imaginary component of the electric field can be determined and the LDOS can be retrieved. As a proof of concept, this setup has been used to measure the partial LDOS (the LDOS for a defined dipole orientation) as a function of the distance to planar interfaces made of gold, InSb, and quartz. Furthermore, the spatially dependent partial LDOS of a resonant gold rod has been measured as well. These results have been compared with analytical results and simulations. The excellent agreement between measurements and theory demonstrates the applicability of this setup for the quantitative determination of the LDOS in complex photonic systems.
Collapse
Affiliation(s)
- Stan E. T. ter Huurne
- Department of Applied Physics and Science Education,
and Eindhoven Hendrik Casimir Institute, Eindhoven University of
Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Djero B. L. Peeters
- Department of Applied Physics and Science Education,
and Eindhoven Hendrik Casimir Institute, Eindhoven University of
Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Jose A. Sánchez-Gil
- Instituto de Estructura de La Materia,
Consejo Superior de Investigaciones Científicas
(IEM-CSIC), Serrano 121, Madrid 28006, Spain
| | - Jaime Gómez Rivas
- Department of Applied Physics and Science Education,
and Eindhoven Hendrik Casimir Institute, Eindhoven University of
Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| |
Collapse
|
10
|
Shen S, Wang J, Zhu Y, Yang W, Gao R, Li JF, Sun G, Zhilin Y. Large-area metal-dielectric heterostructures for surface-enhanced raman scattering. OPTICS EXPRESS 2022; 30:38256-38265. [PMID: 36258397 DOI: 10.1364/oe.464631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/17/2022] [Indexed: 06/16/2023]
Abstract
Metal-dielectric heterostructures have shown great application potentials in physics, chemistry and material science. In this work, we have designed and manufactured ordered metal-dielectric multiple heterostructures with tunable optical properties, which can be as large as the order of square centimeters in size. We experimentally realized that the surface-enhanced Raman scattering signal of the periodic multiple heterostructures increased 50 times compared with the silicon nanodisk-gold film arrays, which is attributed to the large-scale hotspots and high efficient coupling between the optical cavities and surface plasmon resonance modes. More importantly, the substrate also features a good uniformity and an excellent reproducible fabrication, which is very promising for practical applications.
Collapse
|
11
|
Miao Y, Boutelle RC, Blake A, Chandrasekaran V, Sheehan CJ, Hollingsworth J, Neuhauser D, Weiss S. Super-resolution Imaging of Plasmonic Near-Fields: Overcoming Emitter Mislocalizations. J Phys Chem Lett 2022; 13:4520-4529. [PMID: 35576273 PMCID: PMC9150090 DOI: 10.1021/acs.jpclett.1c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nano-objects have shown great potential in enhancing applications like biological/chemical sensing, light harvesting and energy transfer, and optical/quantum computing. Therefore, an extensive effort has been vested in optimizing plasmonic systems and exploiting their field enhancement properties. Super-resolution imaging with quantum dots (QDs) is a promising method to probe plasmonic near-fields but is hindered by the distortion of the QD radiation pattern. Here, we investigate the interaction between QDs and "L-shaped" gold nanoantennas and demonstrate both theoretically and experimentally that this strong interaction can induce polarization-dependent modifications to the apparent QD emission intensity, polarization, and localization. Based on FDTD simulations and polarization-modulated single-molecule microscopy, we show that the displacement of the emitter's localization is due to the position-dependent interference between the emitter and the induced dipole, and can be up to 100 nm. Our results help pave a pathway for higher precision plasmonic near-field mapping and its underlying applications.
Collapse
Affiliation(s)
- Yuting Miao
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert C. Boutelle
- National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Anastasia Blake
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | | | - Chris J. Sheehan
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Jennifer Hollingsworth
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Daniel Neuhauser
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Physiology, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
12
|
Dhiman S, Andrian T, Gonzalez BS, Tholen MME, Wang Y, Albertazzi L. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem Sci 2022; 13:2152-2166. [PMID: 35310478 PMCID: PMC8864713 DOI: 10.1039/d1sc05506b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio-Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
Collapse
Affiliation(s)
- Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Beatriz Santiago Gonzalez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Applied Physics, Eindhoven University of Technology Postbus 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
13
|
Winkler PM, García-Parajo MF. Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes. Biochem Soc Trans 2021; 49:2357-2369. [PMID: 34495333 PMCID: PMC8589428 DOI: 10.1042/bst20210457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal organization of the living cell membrane from the nano- up to the mesoscale. This non-arbitrary organization is intricately linked to cell function. On living cell membranes, dynamic domains or 'membrane rafts' enriched with cholesterol, sphingolipids and other certain proteins exist at the nanoscale serving as signaling and sorting platforms. Moreover, it has been postulated that other local organizers of the cell membrane such as intrinsic protein interactions, the extracellular matrix and/or the actin cytoskeleton synergize with rafts to provide spatiotemporal hierarchy to the membrane. Elucidating the intricate coupling of multiple spatial and temporal scales requires the application of correlative techniques, with a particular need for simultaneous nanometer spatial precision and microsecond temporal resolution. Here, we review novel fluorescence-based techniques that readily allow to decode nanoscale membrane dynamics with unprecedented spatiotemporal resolution and single-molecule sensitivity. We particularly focus on correlative approaches from the field of nanophotonics. Notably, we introduce a versatile planar nanoantenna platform combined with fluorescence correlation spectroscopy to study spatiotemporal heterogeneities on living cell membranes at the nano- up to the mesoscale. Finally, we outline remaining future technological challenges and comment on potential directions to advance our understanding of cell membrane dynamics under the influence of the actin cytoskeleton and extracellular matrix in uttermost detail.
Collapse
Affiliation(s)
- Pamina M. Winkler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - María F. García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Bloksma F, Zijlstra P. Imaging and Localization of Single Emitters near Plasmonic Particles of Different Size, Shape, and Material. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:22084-22092. [PMID: 34676018 PMCID: PMC8521989 DOI: 10.1021/acs.jpcc.1c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Colloidal plasmonic materials are increasingly used in biosensing and catalysis, which has sparked the use of super-resolution localization microscopy to visualize processes at the interface of the particles. We quantify the effect of particle-emitter coupling on super-resolution localization accuracy by simulating the point spread function (PSF) of single emitters near a plasmonic nanoparticle. Using a computationally inexpensive boundary element method, we investigate a broad range of conditions allowing us to compare the simulated localization accuracy to reported experimental results. We identify regimes where the PSF is not Gaussian anymore, resulting in large mislocalizations due to the appearance of multilobed PSFs. Such exotic PSFs occur when near-field excitation of quadrupole plasmons is efficient but unexpectedly also occur for large particle-emitter spacing where the coherent emission from the particle and emitter results in anisotropic emission patterns. We provide guidelines to enable faithful localization microscopy near colloidal plasmonic materials, which indicate that simply decreasing the coupling between particle and molecule is not sufficient for faithful super-resolution imaging.
Collapse
|
15
|
Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metallic nanowires have been utilized as a platform for propagating surface plasmon (SPs) fields. To be exploited for applications such as plasmonic circuits, manipulation of localized field propagating pattern is also important. In this study, we calculated the field distributions of localized surface plasmons (LSPs) on the specifically shaped nanostructures and explored the feasibility of manipulating LSP fields. Specifically, plasmonic fields were calculated at different wavelengths for a nanoscale rod array (I-shaped), an array connected with two nanoscale rods at right angles (T-shaped), and an array with three nanoscale rods at 120° to each other (Y-shaped). Three different types of nanostructures are suggested to manipulate the positions of LSP fields collaborating with adjustment of wavelength, polarization, and incident orientation of light source. The results of this study are important not only for the understanding of the wavelength-dependent surface plasmon field localization mechanism but also for the applicability of swept source-based plasmonic techniques or designing a plasmonic circuit.
Collapse
|
16
|
Gellé A, Price GD, Voisard F, Brodusch N, Gauvin R, Amara Z, Moores A. Enhancing Singlet Oxygen Photocatalysis with Plasmonic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35606-35616. [PMID: 34309350 DOI: 10.1021/acsami.1c05892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalysts able to trigger the production of singlet oxygen species are the topic of intense research efforts in organic synthesis. Yet, challenges still exist in improving their activity and optimizing their use. Herein, we exploited the benefits of plasmonic nanoparticles to boost the activity of such photocatalysts via an antenna effect in the visible range. We synthesized silica-coated silver nanoparticles (Ag@SiO2 NPs), with silica shells which thicknesses ranged from 7 to 45 nm. We showed that they served as plasmonically active supports for tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, and demonstrated an enhanced catalytic activity under white light-emitting diode (LED) irradiation for citronellol oxidation, a key step in the commercial production of rose oxide fragrance. A maximum enhancement of the plasmon-mediated reactivity of approximately 3-fold was observed with a 28 nm silica layer along with a 4-fold enhancement in the emission intensity of the photocatalyst. Using electron energy loss spectroscopy (EELS) and boundary element method simulations, we mapped the decay of the plasmonic signal around the Ag core and provided a rationale for the observed catalytic enhancement. This work provides a systematic analysis of the promising properties of plasmonic NPs used as catalysis-enhancing supports for common homogeneous photocatalysts and a framework for the successful design of such systems in the context of organic transformations.
Collapse
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Frédéric Voisard
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Nicolas Brodusch
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Raynald Gauvin
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Zacharias Amara
- Équipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, Cedex 03, France
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
17
|
Hamans RF, Parente M, Baldi A. Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields. NANO LETTERS 2021; 21:2149-2155. [PMID: 33606941 PMCID: PMC8023696 DOI: 10.1021/acs.nanolett.0c04837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic nanoparticles have recently emerged as promising photocatalysts for light-driven chemical conversions. Their illumination results in the generation of highly energetic charge carriers, elevated surface temperatures, and enhanced electromagnetic fields. Distinguishing between these often-overlapping processes is of paramount importance for the rational design of future plasmonic photocatalysts. However, the study of plasmon-driven chemical reactions is typically performed at the ensemble level and, therefore, is limited by the intrinsic heterogeneity of the catalysts. Here, we report an in situ single-particle study of a fluorogenic chemical reaction driven solely by plasmonic near-fields. Using super-resolution fluorescence microscopy, we map the position of individual product molecules with an ∼30 nm spatial resolution and demonstrate a clear correlation between the electric field distribution around individual nanoparticles and their super-resolved catalytic activity maps. Our results can be extended to systems with more complex electric field distributions, thereby guiding the design of future advanced photocatalysts.
Collapse
Affiliation(s)
- Ruben F. Hamans
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Matteo Parente
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
| | - Andrea Baldi
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Chattopadhyay S, Biteen JS. Super-Resolution Characterization of Heterogeneous Light-Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Anal Chem 2021; 93:430-444. [PMID: 33100005 DOI: 10.1021/acs.analchem.0c04280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Single Particle Approaches to Plasmon-Driven Catalysis. NANOMATERIALS 2020; 10:nano10122377. [PMID: 33260302 PMCID: PMC7761459 DOI: 10.3390/nano10122377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior. For this reason, single particle approaches are now emerging as a powerful tool to unveil the structure-function relationship of plasmonic nanocatalysts. In this Perspective, we highlight two such techniques based on far-field optical microscopy: surface-enhanced Raman spectroscopy and super-resolution fluorescence microscopy. We first discuss their working principles and then show how they are applied to the in-situ study of catalysis and photocatalysis on single plasmonic nanoparticles. To conclude, we provide our vision on how these techniques can be further applied to tackle current open questions in the field of plasmonic chemistry.
Collapse
|
20
|
de Albuquerque CDL, Schultz ZD. Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal Chem 2020; 92:9389-9398. [PMID: 32484329 PMCID: PMC7364441 DOI: 10.1021/acs.analchem.0c01864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to locate and identify molecular interactions in cells has significant importance for understanding protein function and molecular biology. Functionalized metallic nanoparticles have been used as probes for protein tracking and drug delivery because of their ability to carry therapeutic agents and readily functionalized surfaces. In this work, we present a super-resolution surface-enhanced Raman scattering (SERS) approach for imaging and tracking membrane receptors interacting with peptide-functionalized gold nanostars (AuNS). The αvβ3 integrin receptors in colon cancer cells are successfully targeted and imaged using AuNS with the high-affinity amino acid sequence arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) attached. The RGDFC peptide interaction with the integrin receptor provides a bright and fluctuating SERS signal that can be analyzed with localization microscopy algorithms. Additionally, the observed SERS spectrum is used to confirm protein-peptide interaction. Experiments with functionalized and bare AuNS illustrate specific and nonspecific binding events. Specific binding is monitored with a localization precision of ∼6 nm. The observed spatial resolution is associated with tight binding, which was confirmed by the slower diffusion coefficient measured from 4.4 × 10-11 cm2/s for the AuNS-RGDFC compared to 7.8 × 10-10 cm2/s for the bare AuNS. Super-resolution SERS images at different focal planes show evidence of internalized particles and suggest insights into protein orientation on the surface of cells. Our work demonstrates super-resolution SERS imaging to probe membrane receptor interactions in cells, providing chemical information and spatial resolution with potential for diverse applications in life science and biomedicine.
Collapse
Affiliation(s)
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
21
|
Lee YU, Wisna GBM, Hsu SW, Zhao J, Lei M, Li S, Tao AR, Liu Z. Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy. ACS NANO 2020; 14:7666-7672. [PMID: 32438800 DOI: 10.1021/acsnano.0c04019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The strongly enhanced and confined subwavelength optical fields near plasmonic nanoantennas have been extensively studied not only for the fundamental understanding of light-matter interactions at the nanoscale but also for their emerging practical application in enhanced second harmonic generation, improved inelastic electron tunneling, harvesting solar energy, and photocatalysis. However, owing to the deep subwavelength nature of plasmonic field confinement, conventional optical imaging techniques are incapable of characterizing the optical performance of these plasmonic nanoantennas. Here, we demonstrate super-resolution imaging of ∼20 nm optical field confinement by monitoring randomly moving dye molecules near plasmonic nanoantennas. This Brownian optical microscopy is especially suitable for plasmonic field characterization because of its capabilities for polarization sensitive wide-field super-resolution imaging.
Collapse
Affiliation(s)
- Yeon Ui Lee
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - G Bimananda M Wisna
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Su-Wen Hsu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ming Lei
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shilong Li
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Andrea R Tao
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Tóth E, Ungor D, Novák T, Ferenc G, Bánhelyi B, Csapó E, Erdélyi M, Csete M. Mapping Fluorescence Enhancement of Plasmonic Nanorod Coupled Dye Molecules. NANOMATERIALS 2020; 10:nano10061048. [PMID: 32485951 PMCID: PMC7352240 DOI: 10.3390/nano10061048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Plasmonically enhanced fluorescence is a widely studied and applied phenomenon, however, only a comparative theoretical and experimental analysis of coupled fluorophores and plasmonic nanoresonators makes it possible to uncover how this phenomenon can be controlled. A numerical optimization method was applied to design configurations that are capable of resulting in an enhancement of excitation and emission, moreover, of both phenomena simultaneously in coupled Cy5 dye molecule and gold nanorod systems. Parametric sensitivity studies revealed how the fluorescence enhancement depends on the molecule’s location, distance and orientation. Coupled systems designed for simultaneous improvement exhibited the highest (intermediate directional) total fluorescence enhancement, which is accompanied by intermediate sensitivity to the molecule’s parameters, except the location and orientation sensitivity at the excitation wavelength. Gold nanorods with a geometry corresponding to the predicted optimal configurations were synthesized, and DNA strands were used to control the Cy5 dye molecule distance from the nanorod surface via hybridization of the Cy5-labelled oligonucleotide. State-of-the-art dSTORM microscopy was used to accomplish a proof-of-concept experimental demonstration of the theoretically predicted (directional) total fluorescence enhancement. The measured fluorescence enhancement was in good agreement with theoretical predictions, thus providing a complete kit to design and prepare coupled nanosystems exhibiting plasmonically enhanced fluorescence.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Square 9, H-6720 Szeged, Hungary; (E.T.); (T.N.); (M.E.)
| | - Ditta Ungor
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich B. Square 1, H-6720 Szeged, Hungary; (D.U.); (E.C.)
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Square 9, H-6720 Szeged, Hungary; (E.T.); (T.N.); (M.E.)
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Balázs Bánhelyi
- Department of Computational Optimization, University of Szeged, Árpád Square 2, H-6720 Szeged, Hungary;
| | - Edit Csapó
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich B. Square 1, H-6720 Szeged, Hungary; (D.U.); (E.C.)
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Square 9, H-6720 Szeged, Hungary; (E.T.); (T.N.); (M.E.)
| | - Mária Csete
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Square 9, H-6720 Szeged, Hungary; (E.T.); (T.N.); (M.E.)
- Correspondence: ; Tel.: +36-62-544654
| |
Collapse
|
23
|
Horáček M, Engels DJ, Zijlstra P. Dynamic single-molecule counting for the quantification and optimization of nanoparticle functionalization protocols. NANOSCALE 2020; 12:4128-4136. [PMID: 32022064 DOI: 10.1039/c9nr10218c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Applications of colloidal particles in the fields of i.e. biosensors, molecular targeting, or drug-delivery require their functionalization with biologically active and specific molecular ligands. Functionalization protocols often result in a heterogeneous population of particles with a varying density, spatial distribution and orientation of the functional groups on the particle surface. A lack of methods to directly resolve these molecular properties of the particle's surface hampers optimization of functionalization protocols and applications. Here quantitative single-molecule interaction kinetics is used to count the number of ligands on the surface of hundreds of individual nanoparticles simultaneously. By analyzing the waiting-time between single-molecule binding events we quantify the particle functionalization both accurately and precisely for a large range of ligand densities. We observe significant particle-to-particle differences in functionalization which are dominated by the particle-size distribution for high molecular densities, but are substantially broadened for sparsely functionalized particles. From time-dependent studies we find that ligand reorganization on long timescales drastically reduces this heterogeneity, a process that has remained hidden up to now in ensemble-averaged studies. The quantitative single-molecule counting therefore provides a direct route to quantification and optimization of coupling protocols towards molecularly controlled colloidal interfaces.
Collapse
Affiliation(s)
- Matěj Horáček
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Dion J Engels
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Peter Zijlstra
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
24
|
Abstract
Imaging of single to a few molecules has received much recent interest. While superresolution microscopies access subdiffraction resolution, they do not work for plasmonic hot spots due to the loss of positional information that results from plasmonic coupling. Here, we show how to reconstruct the spatial locations of molecules within a plasmonic hot spot with 1-nm precision. We use a plasmonic nanoball lens to demonstrate that plasmonic nanocavities can be used simultaneously as a nanoscopic and spectroscopic tool. This work opens up possibilities for studying the behavior of a few to single molecules in plasmonic nanoresonators, while simultaneously tracking their movements and spectral features. Our plasmonic nanolens is useful for nanosensing, nanochemistry, and biofunctional imaging. Plasmonics now delivers sensors capable of detecting single molecules. The emission enhancements and nanometer-scale optical confinement achieved by these metallic nanostructures vastly increase spectroscopic sensitivity, enabling real-time tracking. However, the interaction of light with such nanostructures typically loses all information about the spatial location of molecules within a plasmonic hot spot. Here, we show that ultrathin plasmonic nanogaps support complete mode sets which strongly influence the far-field emission patterns of embedded emitters and allow the reconstruction of dipole positions with 1-nm precision. Emitters in different locations radiate spots, rings, and askew halo images, arising from interference of 2 radiating antenna modes differently coupling light out of the nanogap, highlighting the imaging potential of these plasmonic “crystal balls.” Emitters at the center are now found to live indefinitely, because they radiate so rapidly.
Collapse
|
25
|
Lee SA, Biteen JS. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. J Phys Chem Lett 2019; 10:5764-5769. [PMID: 31508965 DOI: 10.1021/acs.jpclett.9b02480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescent molecules are highly susceptible to their local environment. Thus, a fluorescent molecule near a plasmonic nanoparticle can experience changes in local electric field and local density of states that reshape its intrinsic emission spectrum. By avoiding ensemble averaging while simultaneously measuring the super-resolved position of the fluorophore and its emission spectrum, single-molecule hyperspectral imaging is uniquely suited to differentiate changes in the spectrum from heterogeneous ensemble effects. Thus, we uncover for the first time single-molecule fluorescence emission spectrum reshaping upon near-field coupling to individual gold nanoparticles using hyperspectral super-resolution fluorescence imaging, and we resolve this spectral reshaping as a function of the nanoparticle/dye spectral overlap and separation distance. We find that dyes bluer than the plasmon resonance maximum are red-shifted and redder dyes are blue-shifted. The primary vibronic peak transition probabilities shift to favor secondary vibronic peaks, leading to effective emission maxima shifts in excess of 50 nm, and we understand these light-matter interactions by combining super-resolution hyperspectral imaging and full-field electromagnetic simulations.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Julie S Biteen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
26
|
Lindquist NC, de Albuquerque CDL, Sobral-Filho RG, Paci I, Brolo AG. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. NATURE NANOTECHNOLOGY 2019; 14:981-987. [PMID: 31527841 DOI: 10.1038/s41565-019-0535-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 05/06/2023]
Abstract
The concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction. Since each of these mechanisms simultaneously contributes to a fluctuating SERS signal, probing their relative impact in SM-SERS remains an experimental challenge. Here, we introduce a super-resolution imaging technique with an acquisition rate of 800,000 frames per second to probe the spatial and temporal features of the SM-SERS fluctuations from single silver nanoshells. The technique has a spatial resolution of ~7 nm. The images reveal short ~10 µs scattering events localized in various regions on a single nanoparticle. Remarkably, even a fully functionalized nanoparticle was 'dark' more than 98% of the time. The sporadic SERS emission suggests a transient hotspot formation mechanism driven by a random reconstruction of the metallic surface, an effect that dominates over any plasmonic resonance of the particle itself. Our results provide the SERS community with a high-speed experimental approach to study the fast dynamic properties of SM-SERS hotspots in typical room-temperature experimental conditions, with possible implications in catalysis and sensing.
Collapse
Affiliation(s)
- Nathan C Lindquist
- Department of Physics and Engineering, Bethel University, St Paul, MN, USA
| | - Carlos Diego L de Albuquerque
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Regivaldo G Sobral-Filho
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
27
|
Kyeyune F, Botha JL, van Heerden B, Malý P, van Grondelle R, Diale M, Krüger TPJ. Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes. NANOSCALE 2019; 11:15139-15146. [PMID: 31372623 DOI: 10.1039/c9nr04558a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Collapse
Affiliation(s)
- Farooq Kyeyune
- Department of Physics, University of Pretoria, Hatfield, 0028 Pretoria, South Africa.
| | | | | | | | | | | | | |
Collapse
|
28
|
Oliveira-Silva R, Sousa-Jerónimo M, Botequim D, Silva NJO, Prazeres DMF, Paulo PMR. Density Gradient Selection of Colloidal Silver Nanotriangles for Assembling Dye-Particle Plasmophores. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E893. [PMID: 31216629 PMCID: PMC6631754 DOI: 10.3390/nano9060893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
A simple method based on sucrose density gradient centrifugation is proposed here for the fractionation of colloidal silver nanotriangles. This method afforded particle fractions with surface plasmon resonances, spanning from red to infrared spectral ranges that could be used to tune optical properties for plasmonic applications. This feature was exemplified by selecting silver nanotriangle samples with spectral overlap with Atto-655 dye's absorption and emission in order to assemble dye-particle plasmophores. The emission brightness of an individual plasmophore, as characterized by fluorescence correlation spectroscopy, is at least 1000-fold more intense than that of a single Atto-655 dye label, which renders them as promising platforms for the development of fluorescence-based nanosensors.
Collapse
Affiliation(s)
- Rui Oliveira-Silva
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Departamento de Física and CICECO, Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Mariana Sousa-Jerónimo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - David Botequim
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Nuno J O Silva
- Departamento de Física and CICECO, Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Duarte M F Prazeres
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
29
|
Hamans RF, Parente M, Castellanos GW, Ramezani M, Gómez Rivas J, Baldi A. Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances. ACS NANO 2019; 13:4514-4521. [PMID: 30938979 DOI: 10.1021/acsnano.9b00132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light-matter coupling, sensing, light harvesting, nonlinear nanophotonics, lasing, and solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods. Here, we map the enhanced emission of single fluorescent molecules coupled to a plasmonic particle array with ∼20 nm in-plane resolution by using stochastic super-resolution microscopy. We find that extended lattice resonances have minimal influence on the spontaneous decay rate of an emitter but instead can be exploited to enhance the outcoupling and directivity of the emission. Our results can guide the rational design of future optical devices based on plasmonic particle arrays.
Collapse
Affiliation(s)
- Ruben F Hamans
- Dutch Institute for Fundamental Energy Research (DIFFER) , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| | - Matteo Parente
- Dutch Institute for Fundamental Energy Research (DIFFER) , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| | | | - Mohammad Ramezani
- Dutch Institute for Fundamental Energy Research (DIFFER) , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| | - Jaime Gómez Rivas
- Dutch Institute for Fundamental Energy Research (DIFFER) , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| | - Andrea Baldi
- Dutch Institute for Fundamental Energy Research (DIFFER) , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| |
Collapse
|
30
|
Cheng X, Anthony TP, West CA, Hu Z, Sundaresan V, McLeod AJ, Masiello DJ, Willets KA. Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods. J Phys Chem Lett 2019; 10:1394-1401. [PMID: 30840464 DOI: 10.1021/acs.jpclett.9b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-molecule fluorescence microscopy is used to follow dynamic ligand reorganization on the surface of single plasmonic gold nanorods. Fluorescently labeled DNA is attached to gold nanorods via a gold-thiol bond using a low-pH loading method. No fluorescence activity is initially observed from the fluorescent labels on the nanorod surface, which we attribute to a collapsed geometry of DNA on the metal. Upon several minutes of laser illumination, a marked increase in fluorescence activity is observed, suggesting that the ligand shell reorganizes from a collapsed, quenched geometry to an upright, ordered geometry. The ligand reorganization is facilitated by plasmon-mediated photothermal heating, as verified by controls using an external heat source and simulated by coupled optical and heat diffusion modeling. Using super-resolution image reconstruction, we observe spatial variations in which ligand reorganization occurs at the single-particle level. The results suggest the possibility of nonuniform plasmonic heating, which would be hidden with traditional ensemble-averaged measurements.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Taryn P Anthony
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Claire A West
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Zhongwei Hu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Vignesh Sundaresan
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Aaron J McLeod
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - David J Masiello
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Katherine A Willets
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
31
|
Wiecha PR, Majorel C, Girard C, Arbouet A, Masenelli B, Boisron O, Lecestre A, Larrieu G, Paillard V, Cuche A. Enhancement of electric and magnetic dipole transition of rare-earth-doped thin films tailored by high-index dielectric nanostructures. APPLIED OPTICS 2019; 58:1682-1690. [PMID: 30874199 DOI: 10.1364/ao.58.001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
We propose a simple experimental technique to separately map the emission from electric and magnetic dipole transitions close to single dielectric nanostructures, using a few-nanometer thin film of rare-earth-ion-doped clusters. Rare-earth ions provide electric and magnetic dipole transitions of similar magnitude. By recording the photoluminescence from the deposited layer excited by a focused laser beam, we are able to simultaneously map the electric and magnetic emission enhancement on individual nanostructures. In spite of being a diffraction-limited far-field method with a spatial resolution of a few hundred nanometers, our approach appeals by its simplicity and high signal-to-noise ratio. We demonstrate our technique at the example of single silicon nanorods and dimers, in which we find a significant separation of electric and magnetic near-field contributions. Our method paves the way towards the efficient and rapid characterization of the electric and magnetic optical response of complex photonic nanostructures.
Collapse
|
32
|
Isaacoff BP, Li Y, Lee SA, Biteen JS. SMALL-LABS: Measuring Single-Molecule Intensity and Position in Obscuring Backgrounds. Biophys J 2019; 116:975-982. [PMID: 30846363 DOI: 10.1016/j.bpj.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Single-molecule and super-resolution imaging relies on successful, sensitive, and accurate detection of the emission from fluorescent molecules. Yet, despite the widespread adoption of super-resolution microscopies, single-molecule data processing algorithms can fail to provide accurate measurements of the brightness and position of molecules in the presence of backgrounds that fluctuate significantly over time and space. Thus, samples or experiments that include obscuring backgrounds can severely, or even completely, hinder this process. To date, no general data analysis approach to this problem has been introduced that is capable of removing obscuring backgrounds for a wide variety of experimental modalities. To address this need, we present the Single-Molecule Accurate LocaLization by LocAl Background Subtraction (SMALL-LABS) algorithm, which can be incorporated into existing single-molecule and super-resolution analysis packages to accurately locate and measure the intensity of single molecules, regardless of the shape or brightness of the background. Accurate background subtraction is enabled by separating the foreground from the background based on differences in the temporal variations of the foreground and the background (i.e., fluorophore blinking, bleaching, or moving). We detail the function of SMALL-LABS here, and we validate the SMALL-LABS algorithm on simulated data as well as real data from single-molecule imaging in living cells.
Collapse
Affiliation(s)
| | - Yilai Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Stephen A Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
33
|
Araneda G, Walser S, Colombe Y, Higginbottom DB, Volz J, Blatt R, Rauschenbeutel A. Wavelength-scale errors in optical localization due to spin-orbit coupling of light. NATURE PHYSICS 2019; 15:17-21. [PMID: 30854021 PMCID: PMC6398575 DOI: 10.1038/s41567-018-0301-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Far-field optical imaging techniques allow the determination of the position of point-like emitters and scatterers [1-3]. Although the optical wavelength sets a fundamental limit to the image resolution of unknown objects, the position of an individual emitter can in principle be estimated from the image with arbitrary precision. This is used for example in the determination of stars position [4] or in optical super-resolution microscopy [5]. Furthermore, precise position determination is an experimental prerequisite for the manipulation and measurement of individual quantum systems, such as atoms, ions, and solid-state-based quantum emitters [6-8]. Here we demonstrate that spin-orbit coupling of light in the emission of elliptically polarized emitters can lead to systematic, wavelength-scale errors in the estimation of the emitters position. Imaging a single trapped atom as well as a single sub-wavelength-diameter gold nanoparticle, we demonstrate a shift between the emitters measured and actual positions which is comparable to the optical wavelength. For certain settings, the expected shift can become arbitrarily large. Beyond optical imaging techniques, our findings could be relevant for the localization of objects using any type of wave that carries orbital angular momentum relative to the emitters position with a component orthogonal to the direction of observation.
Collapse
Affiliation(s)
- G. Araneda
- Institut für Experimentalphysik, Universität Innsbruck,
Technikerstraße 25, 6020 Innsbruck, Austria
| | - S. Walser
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut,
Stadionallee 2, 1020 Vienna, Austria
| | - Y. Colombe
- Institut für Experimentalphysik, Universität Innsbruck,
Technikerstraße 25, 6020 Innsbruck, Austria
| | - D. B. Higginbottom
- Institut für Experimentalphysik, Universität Innsbruck,
Technikerstraße 25, 6020 Innsbruck, Austria
- Centre for Quantum Computation and Communication Technology, Research School
of Physics and Engineering, The Australian National University, Canberra ACT 2601,
Australia
| | - J. Volz
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut,
Stadionallee 2, 1020 Vienna, Austria
| | - R. Blatt
- Institut für Experimentalphysik, Universität Innsbruck,
Technikerstraße 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation,
Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020
Innsbruck, Austria
| | - A. Rauschenbeutel
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut,
Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin,
Germany
| |
Collapse
|
34
|
Song KH, Dong B, Sun C, Zhang HF. Theoretical analysis of spectral precision in spectroscopic single-molecule localization microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:123703. [PMID: 30599574 PMCID: PMC6289825 DOI: 10.1063/1.5054144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spectroscopic single-molecule localization microscopy (sSMLM) is a novel super-resolution imaging technology, which simultaneously records the nanoscopic location and the corresponding full emission spectrum of every stochastic single-molecule emission event. This spectroscopic imaging capability of sSMLM necessitates the establishment of a theoretical foundation of the newly introduced spectral precision and to guide the system design and optimization. Based on numerical simulation and analytical solution, we introduced such a theoretical model to analyze spectral precision by considering the main system parameters, including signal and background shot noises, readout noise, and the spectral calibration procedure. Using this model, we demonstrated the delicate balance among these parameters in achieving the optimal spectral precision and discovered that the best spectral precision can only be achieved at a particular system spectral dispersion. For example, with a given signal of 3000 photons and a readout noise of 2 e-, a system spectral dispersion of 1.6 nm/pixel is required for sSMLM to achieve the highest spectral precision of 1.31 nm.
Collapse
Affiliation(s)
- Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Biqin Dong
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
35
|
Groß H, Heil HS, Ehrig J, Schwarz FW, Hecht B, Diez S. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots. NATURE NANOTECHNOLOGY 2018; 13:691-695. [PMID: 29713078 DOI: 10.1038/s41565-018-0123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude1,2. Control of such near-field light-matter interaction is essential for applications in biosensing3, light harvesting4 and quantum communication5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates7-11. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Collapse
Affiliation(s)
- Heiko Groß
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany
| | - Hannah S Heil
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Jens Ehrig
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Friedrich W Schwarz
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- cfaed - Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Kurfürst-Moritz-Schule, Moritzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany.
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
- cfaed - Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
36
|
Vestler D, Shishkin I, Gurvitz EA, Nasir ME, Ben-Moshe A, Slobozhanyuk AP, Krasavin AV, Levi-Belenkova T, Shalin AS, Ginzburg P, Markovich G, Zayats AV. Circular dichroism enhancement in plasmonic nanorod metamaterials. OPTICS EXPRESS 2018; 26:17841-17848. [PMID: 30114069 DOI: 10.1364/oe.26.017841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Optical activity is a fundamental phenomenon originating from the chiral nature of crystals and molecules. While intrinsic chiroptical responses of ordinary chiral materials to circularly polarized light are relatively weak, they can be enhanced by specially tailored nanostructures. Here, nanorod metamaterials, comprising a dense array of vertically aligned gold nanorods, is shown to provide a significant enhancement of the circular dichroism response of an embedded material. A nanorod composite, acting as an artificial uniaxial crystal, is filled with chiral mercury sulfide nanocrystals embedded in a transparent polymer. The metamaterial, being inherently achiral, enables optical activity enhancement or suppression. Unique properties of inherently achiral structures to tailor optical activities pave a way for flexible characterization of optical activity of molecules and nanocrystal-based compounds.
Collapse
|
37
|
Hoener BS, Kirchner SR, Heiderscheit TS, Collins SS, Chang WS, Link S, Landes CF. Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry. Chem 2018. [DOI: 10.1016/j.chempr.2018.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Simoncelli S, Li Y, Cortés E, Maier SA. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping. NANO LETTERS 2018; 18:3400-3406. [PMID: 29715431 DOI: 10.1021/acs.nanolett.8b00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.
Collapse
Affiliation(s)
- Sabrina Simoncelli
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Department of Physics and Randall Division of Cell and Molecular Biophysics , King's College London , London SE1 1UL , United Kingdom
| | - Yi Li
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics , Ludwig-Maximilians-Universität München , 80799 München , Germany
| |
Collapse
|
39
|
Panmai M, Xiang J, Sun Z, Peng Y, Liu H, Liu H, Dai Q, Tie S, Lan S. All-silicon-based nano-antennas for wavelength and polarization demultiplexing. OPTICS EXPRESS 2018; 26:12344-12362. [PMID: 29801270 DOI: 10.1364/oe.26.012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.
Collapse
|
40
|
Taylor A, Verhoef R, Beuwer M, Wang Y, Zijlstra P. All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:2336-2342. [PMID: 29422979 PMCID: PMC5797984 DOI: 10.1021/acs.jpcc.7b12473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/29/2023]
Abstract
We demonstrate the all-optical reconstruction of gold nanoparticle geometry using super-resolution microscopy. We employ DNA-PAINT to get exquisite control over the (un)binding kinetics by the number of complementary bases and salt concentration, leading to localization accuracies of ∼5 nm. We employ a dye with an emission spectrum strongly blue-shifted from the plasmon resonance to minimize mislocalization due to plasmon-fluorophore coupling. We correlate the all-optical reconstructions with atomic force microscopy images and find that reconstructed dimensions deviate by no more than ∼10%. Numerical modeling shows that this deviation is determined by the number of events per particle, and the signal-to-background ratio in our measurement. We further find good agreement between the reconstructed orientation and aspect ratio of the particles and single-particle scattering spectroscopy. This method may provide an approach to all-optically image the geometry of single particles in confined spaces such as microfluidic circuits and biological cells, where access with electron beams or tip-based probes is prohibited.
Collapse
|
41
|
Fu B, Isaacoff BP, Biteen JS. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna. ACS NANO 2017; 11:8978-8987. [PMID: 28806873 DOI: 10.1021/acsnano.7b03420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmonic nanoparticles (NPs) enhance the radiative decay rate of adjacent dyes and can significantly increase fluorescence intensity for improved spectroscopy. However, the NP nanoantenna complicates super-resolution imaging by introducing a mislocalization between the emitter position and its super-resolved emission position. The mislocalization magnitude depends strongly on the dye/NP coupling geometry. It is therefore crucial to quantify mislocalization to recover the actual emitter position in a coupled system. Here, we super-resolve in two and three dimensions the distance-dependent emission mislocalization of single fluorescent molecules coupled to gold NPs with precise distance tuning via double-stranded DNA. We develop an analytical framework to uncover detailed spatial information when direct 3D imaging is not accessible. Overall, we demonstrate that by taking measurements on a single, well-defined, and symmetric dye/NP assembly and by accounting explicitly for artifacts from super-resolution imaging, we can measure the true nanophotonic mislocalization. We measure up to 50 nm mislocalizations and show that smaller separation distances lead to larger mislocalizations, also verified by electromagnetic calculations. Overall, by quantifying the distance-dependent mislocalization shift in this gold NP/dye coupled system, we show that the actual physical position of a coupled single emitter can be recovered.
Collapse
Affiliation(s)
- Bing Fu
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Benjamin P Isaacoff
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
42
|
Frederiksen R, Tutuncuoglu G, Matteini F, Martinez KL, Fontcuberta i Morral A, Alarcon-Llado E. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS PHOTONICS 2017; 4:2235-2241. [PMID: 28966933 PMCID: PMC5617333 DOI: 10.1021/acsphotonics.7b00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 06/01/2023]
Abstract
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
Collapse
Affiliation(s)
- Rune Frederiksen
- Bio-Nanotechnology
and Nanomedicine Laboratory, Department of Chemistry & Nano-Science
Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Gozde Tutuncuoglu
- Laboratory
of Semiconductor Materials, Institute of
Materials, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Federico Matteini
- Laboratory
of Semiconductor Materials, Institute of
Materials, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Karen L. Martinez
- Bio-Nanotechnology
and Nanomedicine Laboratory, Department of Chemistry & Nano-Science
Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Anna Fontcuberta i Morral
- Laboratory
of Semiconductor Materials, Institute of
Materials, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Esther Alarcon-Llado
- Laboratory
of Semiconductor Materials, Institute of
Materials, School of Engineering, EPFL, 1015 Lausanne, Switzerland
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| |
Collapse
|
43
|
Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications. SENSORS 2017; 17:s17071530. [PMID: 28665308 PMCID: PMC5539500 DOI: 10.3390/s17071530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness.
Collapse
|
44
|
Wei L, Ma Y, Zhu X, Xu J, Wang Y, Duan H, Xiao L. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy. NANOSCALE 2017; 9:8747-8755. [PMID: 28616948 DOI: 10.1039/c7nr02474f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, with wavelength-resolved dark-field microscopy, the center-of-mass localization information from nanoparticle pairs (i.e., spherical (45 nm in diameter) and rod (45 × 70 nm) shaped gold nanoparticle pairs with different gap distances and orientations) was explored and compared with the results determined by scanning electron microscopy (SEM) measurements. When the gap distance was less than 20 nm, the scattering spectrum of the nanoparticle pair was seriously modulated by the plasmonic coupling effect. The measured coordinate information determined by the optical method (Gaussian fitting) was not consistent with the true results determined by SEM measurement. A good correlation between the optical and SEM measurements was achieved when the gap distance was further increased (e.g., 20, 40 and 60 nm). Under these conditions, well-defined scattering peaks assigned to the corresponding individual nanoparticles could be distinguished from the obtained scattering spectrum. These results would afford valuable information for the studies on single plasmonic nanoparticle imaging applications with the optical microscopy method such as super-localization imaging, high precision single particle tracking in a crowding environment and so on.
Collapse
Affiliation(s)
- Lin Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Heaps CW, Schatz GC. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. J Chem Phys 2017; 146:224201. [PMID: 29166054 PMCID: PMC5466450 DOI: 10.1063/1.4984120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
Collapse
Affiliation(s)
- Charles W Heaps
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
46
|
Ribeiro T, Baleizão C, Farinha JPS. Artefact-free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles. Sci Rep 2017; 7:2440. [PMID: 28550301 PMCID: PMC5446421 DOI: 10.1038/s41598-017-02678-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
Metal nanoparticles can either quench or enhance the emission of dyes in their vicinity, but the precise measurement and understanding of this effect is still hindered by experimental artifacts, especially for particles in colloidal dispersion. Here, we introduce a new methodology to correct the inner filter effect of the metal on the dye emission. To test the method, we developed new hybrid nanoparticles with a gold core and a silica shell of precise thickness (tuned from 7 to 13 nm), with a high quantum yield perylenediimide dye on the surface. This novel approach effectively avoids fluorescence quenching, allowing us to measure emission enhancements of 5 to 30 times, with no change on the dye fluorescence lifetime. Being able to measure the emission enhancement in dye-metal hybrid nanoparticles in dispersion, free from inner filter and quenching artifacts, offers excellent prospects to guide the development of more efficient fluorescent probes, sensors and photonic devices.
Collapse
Affiliation(s)
- Tânia Ribeiro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico - Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Carlos Baleizão
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico - Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - José Paulo S Farinha
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico - Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
47
|
Koenderink AF. Single-Photon Nanoantennas. ACS PHOTONICS 2017; 4:710-722. [PMID: 29354664 PMCID: PMC5770162 DOI: 10.1021/acsphotonics.7b00061] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/22/2023]
Abstract
Single-photon nanoantennas are broadband strongly scattering nanostructures placed in the near field of a single quantum emitter, with the goal to enhance the coupling between the emitter and far-field radiation channels. Recently, great strides have been made in the use of nanoantennas to realize fluorescence brightness enhancements, and Purcell enhancements, of several orders of magnitude. This perspective reviews the key figures of merit by which single-photon nanoantenna performance is quantified and the recent advances in measuring these metrics unambiguously. Next, this perspective discusses what the state of the art is in terms of fluoresent brightness enhancements, Purcell factors, and directivity control on the level of single photons. Finally, I discuss future challenges for single-photon nanoantennas.
Collapse
|
48
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
49
|
Mack DL, Cortés E, Giannini V, Török P, Roschuk T, Maier SA. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nat Commun 2017; 8:14513. [PMID: 28211479 PMCID: PMC5321739 DOI: 10.1038/ncomms14513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna via plasmonic states, whose presence increases the local density of states. Far-field collection of the emission of single molecules close to plasmonic antennas, therefore, provides mixed information of both the local EM field strength and the local density of states. Moreover, super-resolution localizations from these emission-coupled events do not report the real position of the molecules. Here we propose using a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission from the plasmonic system, leaving the absorption strongly resonant with the antenna's enhanced EM fields. We demonstrate that this technique provides an effective way of mapping the EM field or the local density of states with nanometre spatial resolution. Reporting the position of molecules and the electromagnetic enhancement in a plasmonic hotspot is difficult. Here Mack et al. use a large Stokes-shifted molecule to spectrally decouple the emission process of the dye from the plasmonic system, keeping the absorption on resonance with the plasmon resonance of the antenna.
Collapse
Affiliation(s)
- David L Mack
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vincenzo Giannini
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Peter Török
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tyler Roschuk
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
50
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|