1
|
Younus LA, Mahmoud ZH, Hamza AA, Alaziz KMA, Ali ML, Yasin Y, Jihad WS, Rasheed T, Alkhawaldeh AK, Ali FK, Kianfar E. Photodynamic therapy in cancer treatment: properties and applications in nanoparticles. BRAZ J BIOL 2023; 84:e268892. [PMID: 37311125 DOI: 10.1590/1519-6984.268892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/06/2023] [Indexed: 06/15/2023] Open
Abstract
Most of the treatment strategies for tumors and other disorders is photodynamic therapy (PDT). For several years, increasing the efficiency of nanostructured treatment devices, including light therapy, has been considered in different treatment methods. Light Dynamics The use of nanomaterial in this method's production and progress. The use of nanoparticles as carriers is a promising accomplishment, since all the criteria for an ideal photodynamic therapy agent can be given with these nanomaterials. The kinds of nanoparticles that have recently been used in photodynamic therapy are mentioned in this article. Latest advancements are being explored in the use of inorganic nanoparticles and biodegradable polymer-based nanomaterial as carriers of photosynthetic agents. Photosynthetic nanoparticles, self-propagating nanoparticles, and conversion nanoparticles are among the successful photodynamic therapy nanoparticles addressed in this report.
Collapse
Affiliation(s)
- L A Younus
- Jabir Ibn Hayyan Medical University, Faculty of Pharmacy, Department of Clinical Laboratory Sciences, Al Najaf Al Ashraf, Iraq
| | - Z H Mahmoud
- University of Diyala, College of Sciences, Department of Chemistry, Diyala, Iraq
| | - A A Hamza
- University of Al-Ameed, Faculty of Pharmacy, Department of Pharmaceutics, Karbala, Iraq
| | - K M A Alaziz
- Al-Noor University College, Department of Pharmacy, Nineveh, Iraq
| | - M L Ali
- Al-Mustaqbal University College, Department of Dentistry, Babylon, Iraq
| | - Y Yasin
- Al-Farahidi University, College of Medical Technology, Baghdad, Iraq
| | - W S Jihad
- Mazaya University College, Department of Medical Technology, Dhi-Qar, Iraq
| | - T Rasheed
- Prince Sattam Bin Abdulaziz University, College of Science and Humanities, Department of English, Al-Kharj, Alkharj, Saudi Arabia
| | - A K Alkhawaldeh
- Al-Balqa Applied University, Zarqa University College, Department of Medical Allied Sciences, Zarqa, Jordan
| | - F K Ali
- University of Diyala, College of Sciences, Department of Chemistry, Diyala, Iraq
| | - E Kianfar
- Istanbul Medeniyet University, Faculty of Engineering and Pure Sciences, Mechanical Engineering Department, Istanbul, turkey
- Arak Branch, Islamic Azad University, Department of Chemical Engineering, Arak, Iran
- Islamic Azad University, Young Researchers and Elite Club, Gurcharan Branch, Gachsaran, Iran
| |
Collapse
|
2
|
Huerta-Aguilar CA, Srivastava R, Arenas-Alatorre JA, Thangarasu P. Reductive Oligomerization of Nitroaniline Catalyzed by Fe 3O 4 Spheres Decorated with Group 11 Metal Nanoparticles. ACS OMEGA 2023; 8:7459-7469. [PMID: 36873030 PMCID: PMC9979374 DOI: 10.1021/acsomega.2c06326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The present work demonstrates a simple and sustainable method for forming azo oligomers from low-value compounds such as nitroaniline. The reductive oligomerization of 4-nitroaniline was achieved via azo bonding using nanometric Fe3O4 spheres doped with metallic nanoparticles (Cu NPs, Ag NPs, and Au NPs), which were characterized by different analytical methods. The magnetic saturation (M s) of the samples showed that they are magnetically recoverable from aqueous environments. The effective reduction of nitroaniline followed pseudo-first-order kinetics, reaching a maximum conversion of about 97%. Fe3O4-Au is the best catalyst, its a reaction rate (k Fe3O4-Au = 0.416 mM L-1 min-1) is about 20 times higher than that of bare Fe3O4 (k Fe3O4 = 0.018 mM L-1 min-1). The formation of the two main products was determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS), evidencing the effective oligomerization of NA through N = N azo linkage. It is consistent with the total carbon balance and the structural analysis by density functional theory (DFT)-based total energy. The first product, a six-unit azo oligomer, was formed at the beginning of the reaction through a shorter, two-unit molecule. The nitroaniline reduction is controllable and thermodynamically viable, as shown in the computational studies.
Collapse
Affiliation(s)
| | - Rajendra Srivastava
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Panjab, India
| | - Jesús A. Arenas-Alatorre
- Instituto
de Física, Universidad Nacional Autónoma
de México (UNAM), Cd. Universitaria, 04510 México, D. F., México
| | - Pandiyan Thangarasu
- Faculty
of Chemistry, National Autonomous University
of Mexico (UNAM), 04510 Mexico City, Mexico
| |
Collapse
|
3
|
Lavorato GC, de Almeida AA, Vericat C, Fonticelli MH. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. NANOTECHNOLOGY 2023; 34:192001. [PMID: 36825776 DOI: 10.1088/1361-6528/acb943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Adriele A de Almeida
- Instituto de Física 'Gleb Wataghin' (IFGW), Universidade Estadual de Campinas-UNICAMP, R. Sérgio Buarque de Holanda, 777-CEP: 13083-859, Campinas - SP, Brazil
| | - Carolina Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Mariano H Fonticelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
4
|
Attanayake SB, Chanda A, Das R, Kapuruge N, Gutierrez HR, Phan MH, Srikanth H. Emergent magnetism and exchange bias effect in iron oxide nanocubes with tunable phase and size. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:495301. [PMID: 36223791 DOI: 10.1088/1361-648x/ac99cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We report a systematic investigation of the magnetic properties including the exchange bias (EB) effect in an iron oxide nanocube system with tunable phase and average size (10, 15, 24, 34, and 43 nm). X-ray diffraction and Raman spectroscopy reveal the presence of Fe3O4, FeO, andα-Fe2O3phases in the nanocubes, in which the volume fraction of each phase varies depending upon particle size. While the Fe3O4phase is dominant in all and tends to grow with increasing particle size, the FeO phase appears to coexist with the Fe3O4phase in 10, 15, and 24 nm nanocubes but disappears in 34 and 43 nm nanocubes. The nanocubes exposed to air resulted in anα-Fe2O3oxidized surface layer whose thickness scaled with particle size resulting in a shell made ofα-Fe2O3phase and a core containing Fe3O4or a mixture of both Fe3O4and FeO phases. Magnetometry indicates that the nanocubes undergo Morin (of theα-Fe2O3phase) and Verwey (of the Fe3O4phase) transitions at ∼250 K and ∼120 K, respectively. For smaller nanocubes (10, 15, and 24 nm), the EB effect is observed below 200 K, of which the 15 nm nanocubes showed the most prominent EB with optimal antiferromagnetic (AFM) FeO phase. No EB is reported for larger nanocubes (34 and 43 nm). The observed EB effect is ascribed to the strong interfacial coupling between the ferrimagnetic (FiM) Fe3O4phase and AFM FeO phase, while its absence is related to the disappearance of the FeO phase. The Fe3O4/α-Fe2O3(FiM/AFM) interfaces are found to have negligible influence on the EB. Our findings shed light on the complexity of the EB effect in mixed-phase iron oxide nanosystems and pave the way to design exchange-coupled nanomaterials with desirable magnetic properties for biomedical and spintronic applications.
Collapse
Affiliation(s)
- Supun B Attanayake
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Raja Das
- SEAM Research Centre, South East Technological University, Waterford, Ireland
| | - Nalaka Kapuruge
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Humberto R Gutierrez
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| |
Collapse
|
5
|
Márquez P, Patiño Vidal C, Pereira A, Vivas L, Palma JL, López de Dicastillo C, Escrig J. Hollow Iron Oxide Nanospheres Obtained through a Combination of Atomic Layer Deposition and Electrospraying Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3180. [PMID: 36144968 PMCID: PMC9505163 DOI: 10.3390/nano12183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In the present study, we report on the successful synthesis of hollow iron oxide nanospheres. The hollow Fe3O4 nanospheres were synthesized following a four-step procedure: electrospraying spherical PVP particles, coating these particles with alumina (Al2O3) and hematite (Fe2O3) through atomic layer deposition and, finally, a thermal reduction process to degrade the polymer (PVP) and convert hematite (Fe2O3) into magnetite (Fe3O4). A structural analysis using X-ray diffraction (XRD) confirmed the effectiveness of the thermal reduction process. A morphological analysis confirmed that the four-step procedure allowed for the obtainment of hollow iron oxide nanospheres, even though the reduction process caused a contraction in the diameter of the particles of almost 300 nm, but did not affect the thickness of the walls of the hollow spheres that remained at approximately 15 nm. Magnetic properties of the hollow iron oxide nanospheres enable their use in applications where the agglomeration of magnetic nanostructures in liquid media is commonly not allowed, such as in drug encapsulation and delivery.
Collapse
Affiliation(s)
- Paulina Márquez
- School of Engineering, Central University of Chile, Santiago 8330601, Chile
| | - Cristian Patiño Vidal
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
- Packaging Innovation Center (LABEN), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandro Pereira
- Departament of Sciences, Faculty of Liberal Arts, Adolfo Ibañez University, Santiago 7941169, Chile
| | - Leonardo Vivas
- Department of Physics, University of Santiago de Chile (USACH), Santiago 9170124, Chile
| | - Juan Luis Palma
- School of Engineering, Central University of Chile, Santiago 8330601, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Carol López de Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
- Department of Physics, University of Santiago de Chile (USACH), Santiago 9170124, Chile
| |
Collapse
|
6
|
del Campo A, Ruiz-Gómez S, Trapero EM, Granados-Miralles C, Quesada A, Foerster M, Aballe L, Prieto JE, de la Figuera J. Size Effects in the Verwey Transition of Nanometer-Thick Micrometer-Wide Magnetite Crystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13755-13761. [PMID: 36017359 PMCID: PMC9394756 DOI: 10.1021/acs.jpcc.2c03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
We have monitored the Verwey transition in micrometer-wide, nanometer-thick magnetite islands on epitaxial Ru films on Al2O3(0001) using Raman spectroscopy. The islands have been grown by high-temperature oxygen-assisted molecular beam epitaxy. Below 100 K and for thicknesses above 20 nm, the Raman spectra correspond to those observed in bulk crystals and high-quality thin films for the sub-Verwey magnetite structure. At room temperature, the width of the cubic phase modes is similar to the best reported for bulk crystals, indicating a similar strength of electron-phonon interaction. The evolution of the Raman spectra upon cooling suggests that for islands thicker than 20 nm, structural changes appear first at temperatures starting at 150 K while the Verwey transition itself takes place at around 115 K. However, islands thinner than 20 nm show very different Raman spectra, indicating that while a transition takes place, the charge order of the ultrathin islands differs markedly from their thicker counterparts.
Collapse
Affiliation(s)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut
für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | - Eva M. Trapero
- Instituto
de Química Física “Rocasolano”,
CSIC, Madrid E-28006, Spain
| | | | - Adrián Quesada
- Instituto
de Cerámica y Vidrio, CSIC, Madrid E-28049, Spain
| | - Michael Foerster
- Alba
Synchrotron Light Facility, Cerdanyola
del Valles E-08290, Spain
| | - Lucía Aballe
- Alba
Synchrotron Light Facility, Cerdanyola
del Valles E-08290, Spain
| | | | | |
Collapse
|
7
|
Sobiech M, Synoradzki K, Bednarchuk TJ, Sobczak K, Janczura M, Giebułtowicz J, Luliński P. Impact of structure and magnetic parameters of nanocrystalline cores on surface properties of molecularly imprinted nanoconjugates for analysis of biomolecules – A case of tyramine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Attfield JP. Magnetism and the Trimeron Bond. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:2877-2885. [PMID: 35814039 PMCID: PMC9261838 DOI: 10.1021/acs.chemmater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Indexed: 05/06/2023]
Abstract
A review of progress in understanding the Verwey transition in magnetite (Fe3O4) over the past decade is presented. This electronic and structural transition at T V ≈ 125 K was reported in 1939 and has since been a contentious issue in magnetism. Long range Fe2+/Fe3+ charge ordering has been confirmed below the transition from crystal structure refinement, and Fe2+ orbital ordering and formation of trimerons through weak bonding of Fe2+ states to two Fe neighbors has been discovered. This model has accounted for many spectroscopic observations such as the 57Fe NMR frequencies. The trimeron lifetime has been measured, and trimeron soft modes have been observed. The origin of the first to second order crossover of Verwey transitions in doped magnetites has been revealed by a nanoparticle study. Electronic and structural fluctuations are found to persist to temperatures far above T V and local structural distortions track the bulk magnetization, disappearing at the 850 K Curie transition. New binary mixed-valent iron oxides discovered at high pressure are found to have electronic transitions and orbital molecule ground states similar to those of magnetite.
Collapse
|
9
|
Kim T, Sim S, Lim S, Patino MA, Hong J, Lee J, Hyeon T, Shimakawa Y, Lee S, Attfield JP, Park JG. Slow oxidation of magnetite nanoparticles elucidates the limits of the Verwey transition. Nat Commun 2021; 12:6356. [PMID: 34737260 PMCID: PMC8568917 DOI: 10.1038/s41467-021-26566-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Magnetite (Fe3O4) is of fundamental importance for the Verwey transition near TV = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition: an initial drop of TV to a minimum at 70 K after 75 days and a followed recovery to 95 K after 160 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution between inhomogeneous to homogeneous doping regimes. This work demonstrates that slow oxidation of nanoparticles can give exquisite control and separation of homogeneous and inhomogeneous doping effects on the Verwey transition and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.
Collapse
Affiliation(s)
- Taehun Kim
- Center for Quantum Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Sim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | | | - Jaeyoung Hong
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisoo Lee
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuichi Shimakawa
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Soonchil Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - J Paul Attfield
- Center for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
| | - Je-Geun Park
- Center for Quantum Materials, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Jung H, Schimpf AM. Photochemical reduction of nanocrystalline maghemite to magnetite. NANOSCALE 2021; 13:17465-17472. [PMID: 34647940 DOI: 10.1039/d1nr02973h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a method for thephotochemical conversion of the inverse spinel iron oxides in which the mixed-valent magnetite phase (Fe3O4) is accessed from the maghemite phase (γ-Fe2O3) via a stable, colloidal nanocrystal-to-nanocrystal transformation. Anaerobic UV-irradiation of colloidal γ-Fe2O3 nanocrystals in the presence of ethanol as a sacrificial reductant yields reduction of some Fe3+ to Fe2+, resulting in a topotactic reduction of γ-Fe2O3 to Fe3O4. This reduction is evidenced by the emergence of charge-transfer absorption and increased d-spacing in UV-irradiated nanocrystals. Redox titrations reveal that ∼43% of Fe in <d> = 4.8 nm nanocrystals can be reduced with this method and comparison of optical data indicates similar reduction levels in <d> = 7.3 and 9.0 nm nanocrystals. Addition of excess acetaldehyde during photoreduction shows that the extent of reduction is likely pinned by the hydrogenation of acetaldehyde back to ethanol and can be increased with the use of an alkylborohydride sacrificial reductant. Photochemical reduction is accompanied by increased magnetization and emergence of magnetic features characteristic of Fe3O4. Overall, this work provides a reversible, post-synthetic strategy to obtain Fe3O4 nanocrystals with well-controlled Fe2+ compositions.
Collapse
Affiliation(s)
- Hankyeol Jung
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alina M Schimpf
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Tsuchida T, Fukushima J, Takizawa H. Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:984. [PMID: 33920397 PMCID: PMC8069712 DOI: 10.3390/nano11040984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
A decrease in the crystallite diameter of ferrites irradiated with microwaves has been considered as a non-thermal effect of so-called de-crystallization; however, its mechanism has not been elucidated. We hypothesized that a decrease in the crystallite diameter is caused by interaction between the ordered spins of ferrite and the magnetic field of microwaves. To verify this, we focused on magnetite with a Curie temperature of 585 °C. Temperature dependence around this temperature and time dependence of the crystallite diameter of the magnetite irradiated with microwaves at different temperatures and durations were investigated. From the X-ray diffraction data, the crystallite diameter of magnetite exhibited a minimum value at 500 °C, just below the Curie temperature of magnetite, where the energy loss of the interaction between magnetite's spins and the microwaves takes the maximum value. The crystallite diameter exhibited a minimum value at 5 min irradiation time, during which the microwaves were excessively absorbed. Transmission electron microscopy observations showed that the microstructure of irradiated magnetite in this study was different from that reported previously, indicating that a decrease in the crystallite diameter is not caused by de-crystallization but its similar phenomenon. A decrease in coercivity and lowering temperature of Verwey transition were observed, evidencing decreased crystallite diameter. This study can thus contribute to the development of the theory of a non-thermal effect.
Collapse
Affiliation(s)
- Takayuki Tsuchida
- School of Engineering, Department of Applied Chemistry, Tohoku University, Sendai 980-8578, Japan; (J.F.); (H.T.)
| | | | | |
Collapse
|
12
|
Nickel R, Chi CC, Ranjan A, Ouyang C, Freeland JW, van Lierop J. Reverse-Engineering Strain in Nanocrystallites by Tracking Trimerons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007413. [PMID: 33710686 DOI: 10.1002/adma.202007413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Although strain underpins the behavior of many transition-oxide-based magnetic nanomaterials, it is elusive to quantify. Since the formation of orbital molecules is sensitive to strain, a metal-insulator transition should be a window into nanocrystallite strain. Using three sizes of differently strained Fe3 O4 polycrystalline nanorods, the impact of strain on the Verwey transition and the associated formation and dissolution processes of quasiparticle trimerons is tracked. In 40 and 50 nm long nanorods, increasing isotropic strain results in Verwey transitions going from TV ≈ 60 K to 20 K. By contrast, 700 nm long nanorods with uniaxial strain along the (110) direction have TV ≈ 150 K-the highest value reported thus far. A metal-insulator transition, like TV in Fe3 O4 , can be used to determine the effective strain within nanocrystallites, thus providing new insights into nanoparticle properties and nanomagnetism.
Collapse
Affiliation(s)
- Rachel Nickel
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - C-C Chi
- Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ashok Ranjan
- Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chuenhou Ouyang
- Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
13
|
González-Alonso D, González J, Gavilán H, Fock J, Zeng L, Witte K, Bender P, Barquín LF, Johansson C. Revealing a masked Verwey transition in nanoparticles of coexisting Fe-oxide phases. RSC Adv 2020; 11:390-396. [PMID: 35423016 PMCID: PMC8690849 DOI: 10.1039/d0ra09226f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
The attractive electronic and magnetic properties together with their biocompatibility make iron-oxide nanoparticles appear as functional materials. In Fe-oxide nanoparticle (IONP) ensembles, it is crucial to enhance their performance thanks to controlled size, shape, and stoichiometry ensembles. In light of this, we conduct a comprehensive investigation in an ensemble of ca. 28 nm cuboid-shaped IONPs in which all the analyses concur with the coexistence of magnetite/maghemite phases in their cores. Here, we are disclosing the Verwey transition by temperature dependent (4–210 K) Raman spectroscopy. We provide direct evidence of a Verwey transition in a nanoparticle ensemble of mixed iron-oxide phases via temperature-dependent Raman spectroscopy.![]()
Collapse
Affiliation(s)
- David González-Alonso
- Department CITIMAC, Faculty of Science, University of Cantabria 39005 Santander Spain
| | - Jesús González
- Department CITIMAC, Faculty of Science, University of Cantabria 39005 Santander Spain
| | - Helena Gavilán
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC 28049 Madrid Spain
| | - Jeppe Fock
- Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Lunjie Zeng
- Chalmers University of Technology 41296 Göteborg Sweden
| | - Kerstin Witte
- Institute of Physics, University of Rostock 18051 Rostock Germany
| | - Philipp Bender
- Department CITIMAC, Faculty of Science, University of Cantabria 39005 Santander Spain
| | | | | |
Collapse
|
14
|
Kubiak A, Kubacka M, Gabała E, Dobrowolska A, Synoradzki K, Siwińska-Ciesielczyk K, Czaczyk K, Jesionowski T. Hydrothermally Assisted Fabrication of TiO 2-Fe 3O 4 Composite Materials and Their Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4715. [PMID: 33105776 PMCID: PMC7660073 DOI: 10.3390/ma13214715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023]
Abstract
The TiO2-Fe3O4 composite materials were fabricated via the hydrothermal-assisted technique. It was determined how the molar ratio of TiO2 to Fe3O4 influences the crystalline structure and morphology of the synthesized composite materials. The effect of the molar ratio of components on the antibacterial activity was also analyzed. On the basis of XRD patterns for the obtained titanium(IV) oxide-iron(II, III) oxide composites, the two separate crystalline forms-anatase and magnetite -were observed. Transmission electron microscopy revealed particles of cubic and tetragonal shape for TiO2 and spherical for Fe3O4. The results of low-temperature nitrogen sorption analysis indicated that an increase in the iron(II, III) oxide content leads to a decrease in the BET surface area. Moreover, the superparamagnetic properties of titanium(IV) oxide-iron(II, III) oxide composites should be noted. An important aim of the work was to determine the antibacterial activity of selected TiO2-Fe3O4 materials. For this purpose, two representative strains of bacteria, the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, were used. The titanium(IV) oxide-iron(II, III) oxide composites demonstrated a large zone of growth inhibition for both Gram-positive and Gram-negative bacteria. Moreover, it was found that the analyzed materials can be reused as antibacterial agents in three consecutive cycles with good results.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Marta Kubacka
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Elżbieta Gabała
- National Research Institute, Institute of Plant Protection, Węgorka 20, PL-60318 Poznan, Poland;
| | - Anna Dobrowolska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60637 Poznan, Poland; (A.D.); (K.C.)
| | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, PL-60179 Poznan, Poland;
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50422 Wrocław, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60637 Poznan, Poland; (A.D.); (K.C.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| |
Collapse
|
15
|
Jiang N, Bai Y, Yang B, Wang D, Zhao S. Switchable metal-insulator transition in core-shell cluster-assembled nanostructure films. NANOSCALE 2020; 12:18144-18152. [PMID: 32852508 DOI: 10.1039/d0nr04681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fe/Fe3O4 core-shell-cluster-assembled nanostructured films were prepared using the low-energy cluster beam deposition technique. The temperature-dependent resistivity behaviors were investigated for the films with changing core-occupation ratio of clusters. Much interestingly and surprisingly, a switchable metal-insulator transition can be observed, featuring the rapid switching from the metal state to the insulation state and then back to the metal state, for films within a specific range of core-occupation ratio. Further, the resistivity change rate used to characterize the metal-insulator transition can reach as high as two orders of magnitude over a very narrow temperature region. The design of Fe/Fe3O4 core-shell clusters plays a decisive role in the mechanism of the switchable metal-insulator transition in these films. The assembled core-shell clusters in the films form current conduction channels that are switchable between the cores and shells of clusters as the temperature changes. The switching of the current conduction channels can be regulated by controlling the core-occupation ratios of clusters, which induce a switchable metal-insulator transition and can be verified by the effective medium theory over a specific core-occupation ratio range.
Collapse
Affiliation(s)
- Ning Jiang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Yulong Bai
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Bo Yang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Dezhi Wang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Shifeng Zhao
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
16
|
Lavorato GC, Rubert AA, Xing Y, Das R, Robles J, Litterst FJ, Baggio-Saitovitch E, Phan MH, Srikanth H, Vericat C, Fonticelli MH. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles. NANOSCALE 2020; 12:13626-13636. [PMID: 32558841 DOI: 10.1039/d0nr02069a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetite (Fe3O4) nanoparticles are one of the most studied nanomaterials for different nanotechnological and biomedical applications. However, Fe3O4 nanomaterials gradually oxidize to maghemite (γ-Fe2O3) under conventional environmental conditions leading to changes in their functional properties that determine their performance in many applications. Here we propose a novel strategy to control the surface chemistry of monodisperse 12 nm magnetite nanoparticles by means of a 3 nm-thick Zn-ferrite epitaxial coating in core/shell nanostructures. We have carried out a combined Mössbauer spectroscopy, dc magnetometry, X-ray photoelectron spectroscopy and spatially resolved electron energy loss spectroscopy study on iron oxide and Fe3O4/Zn0.6Fe2.4O4 core/shell nanoparticles aged under ambient conditions for 6 months. Our results reveal that while the aged iron oxide nanoparticles consist of a mixture of γ-Fe2O3 and Fe3O4, the Zn-ferrite-coating preserves a highly stoichiometric Fe3O4 core. Therefore, the aged core/shell nanoparticles present a sharp Verwey transition, an increased saturation magnetization and the possibility of tuning the effective anisotropy through exchange-coupling at the core/shell interface. The inhibition of the oxidation of the Fe3O4 cores can be accounted for in terms of the chemical nature of the shell layer and an epitaxial crystal symmetry matching between the core and the shell.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bhattacharjee S, Mazumder N, Mondal S, Panigrahi K, Banerjee A, Das D, Sarkar S, Roy D, Chattopadhyay KK. Size-modulation of functionalized Fe 3O 4: nanoscopic customization to devise resolute piezoelectric nanocomposites. Dalton Trans 2020; 49:7872-7890. [PMID: 32469013 DOI: 10.1039/d0dt01167c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Magnetite (Fe3O4), a representative relaxor multiferroic material, possesses fundamentally appealing multifaceted size-dependent properties. Herein, to evaluate a prototype spinel transition metal oxide (STMO), monodispersed and highly water-dispersible spherical magnetite nanoparticles (MNPs) with an enormous size range (3.7-242.8 nm) were synthesized via a facile microwave-assisted and polyol-mediated solvothermal approach at a controlled temperature and pressure using unique crystallite growth inhibitors. The excellent long-term colloidal stability of the MNPs in a polar environment and increase in their zeta potential confirmed the coordinative effect of the carboxylate groups derived from the covalent surface functionalization, which was also validated by FTIR spectroscopy, TGA and XPS analysis. The optical bandgap (Eg) between the crystal field split-off bands, which was calculated using the absorption spectra, increased gradually with a decrease in size of the MNPs within a broad UV-Vis range (1.59-4.92 eV). The red-shifting of the asymmetric Raman peaks with a smaller size and short-range electron-phonon coupling could be explained by the modified phonon confinement model (MPCM), whereas ferrimagnetic nature rejigged by superparamagnetism was verified from Mössbauer analysis. These stoichiometric, non-toxic, polar and magnetic nanocrystals are not only ideal for biomedical applications, but also suitable as electroactive porous host networks. Finally, the size-modulated MNPs were incorporated in poly(vinylidene fluoride) [PVDF]-based polytype nanogenerators as an electret filler to demonstrate their piezoelectric performance (VOC∼115.95 V and ISC∼1.04 μA), exhibiting substantial electromagnetic interference shielding.
Collapse
|
18
|
Anahory Y, Naren HR, Lachman EO, Buhbut Sinai S, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber ME, Klajn R, Zeldov E. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. NANOSCALE 2020; 12:3174-3182. [PMID: 31967152 DOI: 10.1039/c9nr08578e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scanning nanoscale superconducting quantum interference devices (nanoSQUIDs) are of growing interest for highly sensitive quantitative imaging of magnetic, spintronic, and transport properties of low-dimensional systems. Utilizing specifically designed grooved quartz capillaries pulled into a sharp pipette, we have fabricated the smallest SQUID-on-tip (SOT) devices with effective diameters down to 39 nm. Integration of a resistive shunt in close proximity to the pipette apex combined with self-aligned deposition of In and Sn, has resulted in SOTs with a flux noise of 42 nΦ0 Hz-1/2, yielding a record low spin noise of 0.29 μB Hz-1/2. In addition, the new SOTs function at sub-Kelvin temperatures and in high magnetic fields of over 2.5 T. Integrating the SOTs into a scanning probe microscope allowed us to image the stray field of a single Fe3O4 nanocube at 300 mK. Our results show that the easy magnetization axis direction undergoes a transition from the 〈111〉 direction at room temperature to an in-plane orientation, which could be attributed to the Verwey phase transition in Fe3O4.
Collapse
Affiliation(s)
- Y Anahory
- Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel.
| | - H R Naren
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - E O Lachman
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - S Buhbut Sinai
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - A Uri
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - L Embon
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - E Yaakobi
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Y Myasoedov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - M E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver 80217, USA
| | - R Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - E Zeldov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Banerjee A, Pal AJ. Track the bands: Verwey phase transition in single magnetite nanocrystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:055701. [PMID: 31604335 DOI: 10.1088/1361-648x/ab4d27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Verwey transition in magnetite is known for ages as an opening of bandgap below a transition temperature. With scanning tunneling spectroscopy (STS) in obtaining density of states in an extremely localized manner, STS has revealed Verwey transition in a single nanocrystal of Fe3O4 as a transition between a gapless state and a gapped state at around 110 K. In this work, we deliberate on the band-edges responsible during opening/collapse of the bandgap. We observe that the change in the conduction band is larger than the change in the valence band during the transition. The larger change in conduction band position has been explained in terms of antibonding nature of iron and oxygen orbitals in forming the conduction band and thereby its proneness to be affected upon the phase-change involved during a Verwey transition. The non-bonding nature of oxygen in forming the valence band has made the band less vulnerable during the transition.
Collapse
Affiliation(s)
- Arnab Banerjee
- School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | | |
Collapse
|
20
|
Bhattacharjee S, Banerjee A, Mazumder N, Chanda K, Sarkar S, Chattopadhyay KK. Negative capacitance switching in size-modulated Fe 3O 4 nanoparticles with spontaneous non-stoichiometry: confronting its generalized origin in non-ferroelectric materials. NANOSCALE 2020; 12:1528-1540. [PMID: 31854416 DOI: 10.1039/c9nr07902e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Persistent low-frequency negative capacitance (NC) dispersion has been detected in half-metallic polycrystalline magnetite (Fe3O4) nanoparticles with varying sizes from 13 to 236 nm under the application of moderate dc bias. Using the Havriliak-Negami model, 3D Cole-Cole plots were employed to recapitulate the relaxation times (τ) of the associated oscillating dipoles, related shape parameters (α, β) and resistivity for the nanoparticles with different sizes. The universal Debye relaxation (UDR) theory requires a modification to address the shifted quasi-static NC-dispersion plane in materials showing both +ve and -ve capacitances about a transition/switching frequency (f0). A consistent blue-shift in 'f0' is observed with increasing external dc field and decreasing particle size. Based on this experimental data, a generalized dispersion scheme is proposed to fit the entire positive and negative capacitance regime, including the diverging transition point. In addition, a comprehensive model is discussed using phasor diagrams to differentiate the underlying mechanisms of the continuous transition from -ve to +ve capacitance involving localized charge recombination or time-dependent injection/displacement currents, which has been adequately explored in the scientific literature, and the newly proposed 'capacitive switching' phenomenon. An inherent non-stoichiometry due to iron vacancies [Fe3(1-δ)O4], duly validated from first principles calculations, builds up p-type nature, which consequently promotes more covalent and heavier dipoles and slows the dipolar relaxations; this is incommensurate with Maxwell-Wagner interfacial polarization (MWIP) dynamics. This combinatorial effect is likely responsible for the sluggish response of the associated dipoles and the stabilization of NC.
Collapse
|
21
|
Cursaru LM, Piticescu RM, Dragut DV, Tudor IA, Kuncser V, Iacob N, Stoiciu F. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. NANOMATERIALS 2020; 10:nano10010085. [PMID: 31906420 PMCID: PMC7022685 DOI: 10.3390/nano10010085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Magnetic iron oxides have been used in biomedical applications, such as contrast agents for magnetic resonance imaging, carriers for controlled drug delivery and immunoassays, or magnetic hyperthermia for the past 40 years. Our aim is to investigate the effect of pressure and temperature on the structural, thermal, and magnetic properties of iron oxides prepared by hydrothermal synthesis at temperatures of 100–200 °C and pressures of 20–1000 bar. It has been found that pressure influences the type of iron oxide crystalline phase. Thus, the results obtained by Mössbauer characterization are in excellent agreement with X-ray diffraction and optical microscopy characterization, showing that, for lower pressure values (<100 bar), hematite is formed, while, at pressures >100 bar, the major crystalline phase is goethite. In addition, thermal analysis results are consistent with particle size analysis by X-ray diffraction, confirming the crystallization of the synthesized iron oxides. One order of magnitude higher magnetization has been obtained for sample synthesized at 1000 bar. The same sample provides after annealing treatment, the highest amount of good quality magnetite leading to a magnetization at saturation of 30 emu/g and a coercive field of 1000 Oe at 10 K and 450 Oe at 300 K, convenient for various applications.
Collapse
Affiliation(s)
- Laura Madalina Cursaru
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
- Correspondence: (R.M.P.); (L.M.C.); Tel.: +40-21-352-2048 (R.M.P.); +40-21-352-2048 (L.M.C.)
| | - Roxana Mioara Piticescu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
- Correspondence: (R.M.P.); (L.M.C.); Tel.: +40-21-352-2048 (R.M.P.); +40-21-352-2048 (L.M.C.)
| | - Dumitru Valentin Dragut
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| | - Ioan Albert Tudor
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| | - Victor Kuncser
- National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania; (V.K.); (N.I.)
| | - Nicusor Iacob
- National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania; (V.K.); (N.I.)
| | - Florentin Stoiciu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| |
Collapse
|
22
|
Wu X, Hao C, Xu L, Kuang H, Xu C. Chiromagnetic Plasmonic Nanoassemblies with Magnetic Field Modulated Chiral Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905734. [PMID: 31851415 DOI: 10.1002/smll.201905734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Chiral plasmonic nanoassemblies, which exhibit outstanding chiroptical activity in the visible or near-infrared region, are popular candidates in molecular sensing, polarized nanophotonics, and biomedical applications. Their optical chirality can be modulated by manipulating chemical molecule stimuli or replacing the building blocks. However, instead of irreversible chemical or material changes, real-time control of optical activity is desired for reversible and noninvasive physical regulating methods, which is a challenging research field. Here, the directionally and reversibly switching optical chirality of magneto-plasmonic nanoassemblies is demonstrated by the application of an external magnetic field. The gold-magnetic nanoparticles core-satellite (Au@Fe3 O4 ) nanostructures exhibit chiral activity in the UV-visible range, and the circular dichroism signal is 12 times greater under the magnetic field. Significantly, the chiral signal can be reversed by regulating the direction of the applied magnetic field. The attained magnetic field-regulated chirality is attributed to the large contributions of the magnetic dipole moments to polarization rotation. This magnetic field-modulated optical activity may be pivotal for photonic devices, information communication, as well as chiral metamaterials.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
23
|
Calais T, Valdivia y Alvarado P. Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab4f9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
León Félix L, Sanz B, Sebastián V, Torres TE, Sousa MH, Coaquira JAH, Ibarra MR, Goya GF. Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 2019; 9:4185. [PMID: 30862882 PMCID: PMC6414712 DOI: 10.1038/s41598-019-40769-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes = 3.9 ± 0.2 nm attached to Fe3O4 nanoparticle cores ( = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe3O4 (Au@PEI-Fe3O4) nanoparticles are able to retain bulk magnetic moment MS = 82-84 Am2/kgFe3O4, with the Verwey transition observed at TV = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 μW/cell for PEI-Fe3O4 and Au@PEI-Fe3O4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.
Collapse
Affiliation(s)
- L León Félix
- Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain.
| | - B Sanz
- nB nanoScale Biomagnetics S.L., Zaragoza, Spain
| | - V Sebastián
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - T E Torres
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - M H Sousa
- Green Nanotechnology Group, University of Brasília, Brasília, DF, 72220-900, Brazil
| | - J A H Coaquira
- Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - M R Ibarra
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - G F Goya
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain.
| |
Collapse
|
25
|
Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, Lotfabadi A, Hosseini M, Nezamtaheri MS, Amanlou M, Sharifzadeh M, Khoobi M. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:805-815. [PMID: 30889755 DOI: 10.1016/j.msec.2019.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
In this work, a multifunctional magnetic Bio-Metal-Organic Framework (Fe3O4@Bio-MOF) coated with folic acid-chitosan conjugate (FC) was successfully prepared for tumor-targeted delivery of curcumin (CUR) and 5-fluorouracil (5-FU) simultaneously. Bio-MOF nanocomposite based on CUR as organic linker and zinc as metal ion was prepared by hydrothermal method in the presence of amine-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@NH2 MNPs). 5-FU was loaded in the magnetic Bio-MOF and the obtained nanocarrier was then coated with FC network. The prepared nanocomposite (NC) was fully characterized by high resolution-transmission electron microscope (HR-TEM), field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), nuclear magnetic resonance (NMR), and UV-vis analyses. In vitro release study showed controlled release of CUR and 5-FU in acidic pH confirming high selectivity and performance of the carrier in cancerous microenvironments. The selective uptake of 5-FU-loaded Fe3O4@Bio-MOF-FC by folate receptor-positive MDA-MB-231 cells was investigated and verified. The ultimate nanocarrier exhibited no significant toxicity, while drug loaded nanocarrier showed selective and higher toxicity against the cancerous cells than normal cells. SDS PAGE was also utilized to determine the protein pattern attached on the surface of the nanocarriers. In vitro and in vivo MRI studies showed negative signal enhancement in tumor confirming the ability of the nanocarrier to be applied as diagnostic agent. Owing to the selective anticancer release and cellular uptake, acceptable blood compatibility as well as suitable T2 MRI contrast performance, the target nanocarrier could be considered as favorable theranostic in breast cancer.
Collapse
Affiliation(s)
- Vajihe Nejadshafiee
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Armin Sadighi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Sadegh Dehghani
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hosseini
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Sadat Nezamtaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-53955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Lak A, Cassani M, Mai BT, Winckelmans N, Cabrera D, Sadrollahi E, Marras S, Remmer H, Fiorito S, Cremades-Jimeno L, Litterst FJ, Ludwig F, Manna L, Teran FJ, Bals S, Pellegrino T. Fe 2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. NANO LETTERS 2018; 18:6856-6866. [PMID: 30336062 DOI: 10.1021/acs.nanolett.8b02722] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+-deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects. This phase transformation causes a 10-fold increase in the magnetic losses of the nanocubes, which remain exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of these nanoparticles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance into intracellular environment.
Collapse
Affiliation(s)
- Aidin Lak
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Marco Cassani
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Binh T Mai
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Naomi Winckelmans
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - David Cabrera
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
| | - Elaheh Sadrollahi
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Sergio Marras
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Hilke Remmer
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Sergio Fiorito
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | | | - Fred Jochen Litterst
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Liberato Manna
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
27
|
Zhang B, Zhu T, Ou M, Rowell N, Fan H, Han J, Tan L, Dove MT, Ren Y, Zuo X, Han S, Zeng J, Yu K. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat Commun 2018; 9:2499. [PMID: 29950666 PMCID: PMC6021431 DOI: 10.1038/s41467-018-04842-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Structural isomerism of colloidal semiconductor nanocrystals has been largely unexplored. Here, we report one pair of structural isomers identified for colloidal nanocrystals which exhibit thermally-induced reversible transformations behaving like molecular isomerization. The two isomers are CdS magic-size clusters with sharp absorption peaks at 311 and 322 nm. They have identical cluster masses, but slightly different structures. Furthermore, their interconversions follow first-order unimolecular reaction kinetics. We anticipate that such isomeric kinetics are applicable to a variety of small-size functional nanomaterials, and that the methodology developed for our kinetic study will be helpful to investigate and exploit solid–solid transformations in other semiconductor nanocrystals. The findings on structural isomerism should stimulate attention toward advanced design and synthesis of functional nanomaterials enabled by structural transformations. Few structural isomers of colloids, with identical masses but different structures, have been identified. Here, the authors observe an interesting example of structural isomerism in a pair of semiconductor magic-size clusters, which reversibly transform between one another with first-order unimolecular reaction kinetics.
Collapse
Affiliation(s)
- Baowei Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, PR China
| | - Tingting Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, PR China
| | - Mingyang Ou
- School of Materials Science and Engineering, Huazhong University of Science & Technology, 430074, Wuhan, PR China
| | - Nelson Rowell
- National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, PR China
| | - Jiantao Han
- School of Materials Science and Engineering, Huazhong University of Science & Technology, 430074, Wuhan, PR China
| | - Lei Tan
- School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK
| | - Martin T Dove
- School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK.,School of Physical Science and Technology, Sichuan University, 610065, Chengdu, PR China
| | - Yang Ren
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shuo Han
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, PR China.
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, PR China. .,Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, PR China. .,School of Chemical Engineering, Sichuan University, 610065, Chengdu, PR China.
| |
Collapse
|
28
|
Bennett RA, Etman HA, Hicks H, Richards L, Wu C, Castell MR, Dhesi SS, Maccherozzi F. Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting. NANO LETTERS 2018; 18:2365-2372. [PMID: 29561625 DOI: 10.1021/acs.nanolett.7b05310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe3O4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.
Collapse
Affiliation(s)
- Roger A Bennett
- Department of Chemistry , University of Reading , Reading, Berkshire RG6 6AD , United Kingdom
| | - Haitham A Etman
- Department of Chemistry , University of Reading , Reading, Berkshire RG6 6AD , United Kingdom
| | - Hannah Hicks
- Department of Chemistry , University of Reading , Reading, Berkshire RG6 6AD , United Kingdom
| | - Leah Richards
- Department of Chemistry , University of Reading , Reading, Berkshire RG6 6AD , United Kingdom
| | - Chen Wu
- Department of Materials , University of Oxford , Parks Road, Oxford , OX1 3PH , United Kingdom
| | - Martin R Castell
- Department of Materials , University of Oxford , Parks Road, Oxford , OX1 3PH , United Kingdom
| | - Sarnjeet S Dhesi
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE , United Kingdom
| | - Francesco Maccherozzi
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE , United Kingdom
| |
Collapse
|
29
|
Kim T, Lim S, Hong J, Kwon SG, Okamoto J, Chen ZY, Jeong J, Kang S, Leiner JC, Lim JT, Kim CS, Huang DJ, Hyeon T, Lee S, Park JG. Giant thermal hysteresis in Verwey transition of single domain Fe 3O 4 nanoparticles. Sci Rep 2018; 8:5092. [PMID: 29572467 PMCID: PMC5865112 DOI: 10.1038/s41598-018-23456-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
Most interesting phenomena of condensed matter physics originate from interactions among different degrees of freedom, making it a very intriguing yet challenging question how certain ground states emerge from only a limited number of atoms in assembly. This is especially the case for strongly correlated electron systems with overwhelming complexity. The Verwey transition of Fe3O4 is a classic example of this category, of which the origin is still elusive 80 years after the first report. Here we report, for the first time, that the Verwey transition of Fe3O4 nanoparticles exhibits size-dependent thermal hysteresis in magnetization, 57Fe NMR, and XRD measurements. The hysteresis width passes a maximum of 11 K when the size is 120 nm while dropping to only 1 K for the bulk sample. This behavior is very similar to that of magnetic coercivity and the critical sizes of the hysteresis and the magnetic single domain are identical. We interpret it as a manifestation of charge ordering and spin ordering correlation in a single domain. This work paves a new way of undertaking researches in the vibrant field of strongly correlated electron physics combined with nanoscience.
Collapse
Affiliation(s)
- Taehun Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea.,Department of Physics & Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Sumin Lim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Jaeyoung Hong
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Soon Gu Kwon
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Jun Okamoto
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhi Ying Chen
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jaehong Jeong
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea.,Department of Physics & Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Soonmin Kang
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea.,Department of Physics & Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jonathan C Leiner
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea.,Department of Physics & Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jung Tae Lim
- Department of Physics, Kookmin University, Seoul, 02703, Korea
| | - Chul Sung Kim
- Department of Physics, Kookmin University, Seoul, 02703, Korea
| | - Di Jing Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, 08826, Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Soonchil Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Je-Geun Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea. .,Department of Physics & Astronomy, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
30
|
Ji H, Wang YG, Li Y. Charge screening-controlled Verwey phase transition in Fe 3O 4/SrTiO 3 heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:11LT01. [PMID: 29465039 DOI: 10.1088/1361-648x/aaae37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite intensive investigations into the Verwey phase transition of Fe3O4 over half a century, the mechanism of this phase transition remains controversial and needs further research. In this work, we build the Fe3O4/SrTiO3 multiferroic heterostructure and investigate the temperature dependence of its saturation magnetization under various electric fields. It is found that the charge-screening effect not only influences the magnetization but also induces the temperature of the Verwey phase transition shifting ~13 K. It suggests that the Verwey phase transition has certain correlations with the electron distribution and the change of the number of minority spin electrons in the trimerons plays a dominant role in the temperature shift of the phase transition.
Collapse
Affiliation(s)
- H Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | | | | |
Collapse
|
31
|
Lim S, Choi B, Lee SY, Lee S, Nahm HH, Kim YH, Kim T, Park JG, Lee J, Hong J, Kwon SG, Hyeon T. Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance. NANO LETTERS 2018; 18:1745-1750. [PMID: 29461844 DOI: 10.1021/acs.nanolett.7b04866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
57Fe nuclear magnetic resonance (NMR) of magnetite nanocrystals ranging in size from 7 nm to 7 μm is measured. The line width of the NMR spectra changes drastically around 120 K, showing microscopic evidence of the Verwey transition. In the region above the transition temperature, the line width of the spectrum increases and the spin-spin relaxation time decreases as the nanocrystal size decreases. The line-width broadening indicates the significant deformation of magnetic structure and reduction of charge order compared to bulk crystals, even when the structural distortion is unobservable. The reduction of the spin-spin relaxation time is attributed to the suppressed polaron hopping conductivity in ferromagnetic metals, which is a consequence of the enhanced electron-phonon coupling in the quantum-confinement regime. Our results show that the magnetic distortion occurs in the entire nanocrystal and does not comply with the simple model of the core-shell binary structure with a sharp boundary.
Collapse
|
32
|
Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, Ruby C, Kappler A, Haderlein SB. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem Rev 2018; 118:3251-3304. [PMID: 29465223 DOI: 10.1021/acs.chemrev.7b00224] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mixed-valent iron [Fe(II)-Fe(III)] minerals such as magnetite and green rust have received a significant amount of attention over recent decades, especially in the environmental sciences. These mineral phases are intrinsic and essential parts of biogeochemical cycling of metals and organic carbon and play an important role regarding the mobility, toxicity, and redox transformation of organic and inorganic pollutants. The formation pathways, mineral properties, and applications of magnetite and green rust are currently active areas of research in geochemistry, environmental mineralogy, geomicrobiology, material sciences, environmental engineering, and environmental remediation. These aspects ultimately dictate the reactivity of magnetite and green rust in the environment, which has important consequences for the application of these mineral phases, for example in remediation strategies. In this review we discuss the properties, occurrence, formation by biotic as well as abiotic pathways, characterization techniques, and environmental applications of magnetite and green rust in the environment. The aim is to present a detailed overview of the key aspects related to these mineral phases which can be used as an important resource for researchers working in a diverse range of fields dealing with mixed-valent iron minerals.
Collapse
Affiliation(s)
- M Usman
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany.,Institute of Soil and Environmental Sciences , University of Agriculture , Faisalabad 38040 , Pakistan
| | - J M Byrne
- Geomicrobiology, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - A Chaudhary
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany.,Department of Environmental Science and Engineering , Government College University Faisalabad 38000 , Pakistan
| | - S Orsetti
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - K Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes , CNRS, ISCR - UMR6226 , F-35000 Rennes , France
| | - C Ruby
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement , UMR 7564 CNRS-Université de Lorraine , 54600 Villers-Lès-Nancy , France
| | - A Kappler
- Geomicrobiology, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - S B Haderlein
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
33
|
Yeo S, Choi H, Kim CS, Lee GT, Seo JH, Cha HJ, Park JC. Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles. NANOSCALE 2017; 9:13976-13982. [PMID: 28920122 DOI: 10.1039/c7nr03684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Collapse
Affiliation(s)
- Sunmog Yeo
- Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, 305-353, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3O 4 nanoparticles. Sci Rep 2017; 7:9894. [PMID: 28855564 PMCID: PMC5577113 DOI: 10.1038/s41598-017-09897-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
Highly crystalline single-domain magnetite Fe3O4 nanoparticles (NPs) are important, not only for fundamental understanding of magnetic behaviour, but also for their considerable potential applications in biomedicine and industry. Fe3O4 NPs with sizes of 10–300 nm were systematically investigated to reveal the fundamental relationship between the crystal domain structure and the magnetic properties. The examined Fe3O4 NPs were prepared under well-controlled crystal growth conditions using a large-scale liquid precipitation method. The crystallite size of cube-like NPs estimated from X-ray diffraction pattern increased linearly as the particle size (estimated by transmission electron microscopy) increased from 10 to 64.7 nm, which indicates that the NPs have a single-domain structure. This was further confirmed by the uniform lattice fringes. The critical size of approximately 76 nm was obtained by correlating particle size with both crystallite size and magnetic coercivity; this was reported for the first time in this study. The coercivity of cube-like Fe3O4 NPs increased to a maximum of 190 Oe at the critical size, which suggests strong exchange interactions during spin alignment. Compared with cube-like NPs, sphere-like NPs have lower magnetic coercivity and remanence values, which is caused by the different orientations of their polycrystalline structure.
Collapse
|
35
|
Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s10751-017-1414-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:48-84. [PMID: 27477792 PMCID: PMC7306924 DOI: 10.1016/j.jhazmat.2016.06.060] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 05/12/2023]
Abstract
This review focuses on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that exhibits superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition and combustion, hydrothermal process, emulsion, microbial process, and green approaches. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for constructing chemical/biosensors and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are designed as antimicrobial agents for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dyes, oil, arsenic, phosphate, molybdate, fluoride, selenium, Cr(VI), heavy metal cations, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or catalyze chemical oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization.
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
37
|
Marcano L, García-Prieto A, Muñoz D, Fernández Barquín L, Orue I, Alonso J, Muela A, Fdez-Gubieda ML. Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochim Biophys Acta Gen Subj 2017; 1861:1507-1514. [PMID: 28093197 DOI: 10.1016/j.bbagen.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions. METHODS We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure. RESULTS When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry. CONCLUSIONS Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase. GENERAL SIGNIFICANCE The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- L Marcano
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - A García-Prieto
- Dpto. de Física Aplicada I, Universidad del País Vasco - UPV/EHU, Bilbao 48013, Spain; BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| | - D Muñoz
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain; Dpto. de Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | | | - I Orue
- SGIker, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - J Alonso
- BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| | - A Muela
- BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain; Dpto. de Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - M L Fdez-Gubieda
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain; BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| |
Collapse
|
38
|
Yoo K, Jeon BG, Chun SH, Patil DR, Lim YJ, Noh SH, Gil J, Cheon J, Kim KH. Quantitative Measurements of Size-Dependent Magnetoelectric Coupling in Fe 3O 4 Nanoparticles. NANO LETTERS 2016; 16:7408-7413. [PMID: 27801590 DOI: 10.1021/acs.nanolett.6b02978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bulk magnetite (Fe3O4), the loadstone used in magnetic compasses, has been known to exhibit magnetoelectric (ME) properties below ∼10 K; however, corresponding ME effects in Fe3O4 nanoparticles have been enigmatic. We investigate quantitatively the ME coupling of spherical Fe3O4 nanoparticles with uniform diameters (d) from 3 to 15 nm embedded in an insulating host, using a sensitive ME susceptometer. The intrinsic ME susceptibility (MES) of the Fe3O4 nanoparticles is measured, exhibiting a maximum value of ∼0.6 ps/m at 5 K for d = 15 nm. We found that the MES is reduced with reduced d but remains finite until d = ∼5 nm, which is close to the critical thickness for observing the Verwey transition. Moreover, with reduced diameter the critical temperature below which the MES becomes conspicuous increased systematically from 9.8 K in the bulk to 19.7 K in the nanoparticles with d = 7 nm, reflecting the core-shell effect on the ME properties. These results point to a new pathway for investigating ME effect in various nanomaterials.
Collapse
Affiliation(s)
- Kyongjun Yoo
- Center for Novel States of Complex Materials Research and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University , Seoul 151-747, South Korea
| | - Byung-Gu Jeon
- Center for Novel States of Complex Materials Research and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University , Seoul 151-747, South Korea
| | - Sae Hwan Chun
- Center for Novel States of Complex Materials Research and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University , Seoul 151-747, South Korea
| | - Deepak Rajaram Patil
- Center for Novel States of Complex Materials Research and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University , Seoul 151-747, South Korea
| | - Yong-Jun Lim
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, South Korea
| | - Seung-Hyun Noh
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, South Korea
| | - Jihyo Gil
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, South Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, South Korea
| | - Kee Hoon Kim
- Center for Novel States of Complex Materials Research and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University , Seoul 151-747, South Korea
| |
Collapse
|
39
|
Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. Sci Rep 2016; 6:30969. [PMID: 27492680 PMCID: PMC4974511 DOI: 10.1038/srep30969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023] Open
Abstract
The ability for magnetite to act as a recyclable electron donor and acceptor for Fe-metabolizing bacteria has recently been shown. However, it remains poorly understood whether microbe-mineral interfacial electron transfer processes are limited by the redox capacity of the magnetite surface or that of whole particles. Here we examine this issue for the phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas palustris TIE-1 and the Fe(III)-reducing bacteria Geobacter sulfurreducens, comparing magnetite nanoparticles (d ≈ 12 nm) against microparticles (d ≈ 100–200 nm). By integrating surface-sensitive and bulk-sensitive measurement techniques we observed a particle surface that was enriched in Fe(II) with respect to a more oxidized core. This enables microbial Fe(II) oxidation to occur relatively easily at the surface of the mineral suggesting that the electron transfer is dependent upon particle size. However, microbial Fe(III) reduction proceeds via conduction of electrons into the particle interior, i.e. it can be considered as more of a bulk electron transfer process that is independent of particle size. The finding has potential implications on the ability of magnetite to be used for long range electron transport in soils and sediments.
Collapse
|
40
|
Hevroni A, Bapna M, Piotrowski S, Majetich SA, Markovich G. Tracking the Verwey Transition in Single Magnetite Nanocrystals by Variable-Temperature Scanning Tunneling Microscopy. J Phys Chem Lett 2016; 7:1661-6. [PMID: 27088645 DOI: 10.1021/acs.jpclett.6b00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Variable-temperature scanning tunneling spectroscopy revealed a sharp Verwey transition in individual ∼10 nm magnetite nanocrystals prepared by the coprecipitation technique and embedded in the surface of a gold film. The transition was observed as a significant change in the electronic structure around the Fermi level, with an apparent band gap of ∼140-250 meV appearing below the transition temperature and a pseudogap of ∼75 ± 10 meV appearing above it. The transition temperature was invariably observed around 101 ± 2 K for different nanocrystals, as opposed to 123 K typically reported for stoichiometric bulk crystals. This suggests that the lowering of the transition temperature is an intrinsic finite size effect, probably due to the presence of the surface.
Collapse
Affiliation(s)
- Amir Hevroni
- School of Chemistry and Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| | - Mukund Bapna
- Department of Physics, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Stephan Piotrowski
- Department of Physics, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Sara A Majetich
- Department of Physics, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Gil Markovich
- School of Chemistry and Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Li S, Wu X, Zhang Q, Li P. Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1765-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Chen R, Christiansen MG, Sourakov A, Mohr A, Matsumoto Y, Okada S, Jasanoff A, Anikeeva P. High-Performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning. NANO LETTERS 2016; 16:1345-51. [PMID: 26756463 DOI: 10.1021/acs.nanolett.5b04761] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
From magnetic resonance imaging to cancer hyperthermia and wireless control of cell signaling, ferrite nanoparticles produced by thermal decomposition methods are ubiquitous across biomedical applications. While well-established synthetic protocols allow for precise control over the size and shape of the magnetic nanoparticles, structural defects within seemingly single-crystalline materials contribute to variability in the reported magnetic properties. We found that stabilization of metastable wüstite in commonly used hydrocarbon solvents contributed to significant cation disorder, leading to nanoparticles with poor hyperthermic efficiencies and transverse relaxivities. By introducing aromatic ethers that undergo radical decomposition upon thermolysis, the electrochemical potential of the solvent environment was tuned to favor the ferrimagnetic phase. Structural and magnetic characterization identified hallmark features of nearly defect-free ferrite nanoparticles that could not be demonstrated through postsynthesis oxidation with nearly 500% increase in the specific loss powers and transverse relaxivity times compared to similarly sized nanoparticles containing defects. The improved crystallinity of the nanoparticles enabled rapid wireless control of intracellular calcium. Our work demonstrates that redox tuning during solvent thermolysis can generate potent theranostic agents through selective phase control in ferrites and can be extended to other transition metal oxides relevant to memory and electrochemical storage devices.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael G Christiansen
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alexandra Sourakov
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alan Mohr
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yuri Matsumoto
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Satoshi Okada
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alan Jasanoff
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Li J, Ma Q, Dong X, Li D, Xi X, Yu W, Wang J, Liu G. Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity–magnetism at one layer and upconversion luminescence–photocatalysis at the other layer. RSC Adv 2016. [DOI: 10.1039/c6ra20591g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel [PANI/Fe3O4/PAN]/[Bi2WO6:Yb3+,Er3+/PAN] bilayered composite, fibrous membrane with tunable quadrifunctionality of electricity, magnetism, upconversion luminescence and photocatalysis has been successfully synthesized.
Collapse
Affiliation(s)
- Jiaorui Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xue Xi
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|