1
|
Kędziora M, Opala A, Mastria R, De Marco L, Król M, Łempicka-Mirek K, Tyszka K, Ekielski M, Guziewicz M, Bogdanowicz K, Szerling A, Sigurðsson H, Czyszanowski T, Szczytko J, Matuszewski M, Sanvitto D, Piętka B. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. NATURE MATERIALS 2024; 23:1515-1522. [PMID: 39160353 DOI: 10.1038/s41563-024-01980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Perovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities.
Collapse
Affiliation(s)
- Mateusz Kędziora
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Andrzej Opala
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Mateusz Król
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Krzysztof Tyszka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marek Ekielski
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Marek Guziewicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Karolina Bogdanowicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
- Institute of Physics, Łódź University of Technology, Łódź, Poland
| | - Anna Szerling
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Helgi Sigurðsson
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Science Institute, University of Iceland, Reykjavik, Iceland
| | | | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Michał Matuszewski
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Barbara Piętka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Yin Z, Tang H, Wang K, Zhang X, Sha X, Wang W, Xiao S, Song Q. Ultracompact and Uniform Nanoemitter Array Based on Periodic Scattering. NANO LETTERS 2024; 24:12612-12619. [PMID: 39331014 DOI: 10.1021/acs.nanolett.4c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
As emerging gain materials, lead halide perovskites have drawn considerable attention in coherent light sources. With the development of patterning and integration techniques, a perovskite laser array has been realized by distributing perovskite microcrystals periodically. Nevertheless, the packing density is limited by the crystal size and the channel gap distance. More importantly, the lasing performance for individual laser units is quite random due to variation of size and crystal quality. Herein an ultracompact perovskite nanoemitter array with uniform emission has been demonstrated. Individual emitters are formed via scattering evanescent components from a shared Fabry-Perot laser, ensuring uniform lasing emission in a unit cell with a side length of 160 nm and lattice constant of 400 nm. And the periodic silicon scatterers do not deteriorate the lasing threshold dramatically. In addition, the surface emitting efficiency increased significantly. The direct integration of a densely packed nanoemitter array with a silicon platform promises high-throughput sensing and high-capacity optical interconnects.
Collapse
Affiliation(s)
- Zhen Yin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xudong Zhang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xinbo Sha
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Wenchao Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
3
|
Fu P, Liu M, Ge G, Wan J, Yang X. Carrier modulation of one-dimensional MAPb xSr 1-x(I yCl 1-y) 3 core-shell perovskite nanowires. NANOSCALE 2024; 16:15690-15698. [PMID: 39099400 DOI: 10.1039/d4nr01657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Low dimensional hybrid organic-inorganic perovskites (HOIPs) have become one of the most promising materials in solar cells, photodetectors, and lasers due to their low exciton binding energy, high bipolar carrier mobility, and long carrier lifetime. The effective separation and collection of photo-generated electrons and holes have always been crucial for a perovskite as a working medium for optoelectronic devices. However, the surface state of pristine perovskite nanowires causes recombination of electrons and holes at the edge of the energy band, leading to deactivation of charge carriers. In this work, we constructed MAPbxSr1-xI3 core-shell nanowires, which adjust the band gap and control the spatial distribution of charge carriers by changing the Pb composition ratio, achieving spontaneous separation of electron-hole pairs to avoid surface recombination. In addition, MAPbxSr1-x(IyCl1-y)3 core-shell nanowires with different component ratios (x, y) can be constructed by further doping the Cl element, and the spatial distribution of charge carriers in the nanowires can be flexibly manipulated to achieve exchange between type-I and type-II band alignment orders. This study provides a feasible method for enhancing the carrier separation of organic-inorganic hybrid perovskites and improving the performance of optoelectronic devices.
Collapse
Affiliation(s)
- Pengjie Fu
- College of Sciences, Shihezi University, Shihezi 832003, China.
| | - Mengni Liu
- College of Sciences, Shihezi University, Shihezi 832003, China.
| | - Guixian Ge
- College of Sciences, Shihezi University, Shihezi 832003, China.
| | - Jianguo Wan
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaodong Yang
- College of Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
4
|
Song H, Ji S, Kang SG, Shin N. Contact Geometry-Dependent Excitonic Emission in Mixed-Dimensional van der Waals Heterostructures. ACS NANO 2024; 18:19179-19189. [PMID: 38990759 PMCID: PMC11271179 DOI: 10.1021/acsnano.4c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Manipulation of excitonic emission in two-dimensional (2D) materials via the assembly of van der Waals (vdW) heterostructures unlocks numerous opportunities for engineering their photonic and optoelectronic properties. In this work, we introduce a category of mixed-dimensional vdW heterostructures, integrating 2D materials with one-dimensional (1D) semiconductor nanowires composed of vdW layers. This configuration induces spatially distinct localized excitonic emissions through a tailored interfacial heterolayer atomic arrangement. By precisely adjusting both the axial and sidewall facet orientations of bottom-up grown PbI2 vdW nanowires and by transferring them onto 1L WSe2 flakes, we establish vdW heterointerfaces with either perpendicular or parallel interatomic arrangements. The edge-standing heterojunction, featuring perpendicular PbI2 layers atop WSe2, promotes efficient charge transfer through the edges and coupled localized states, leading to an enhanced redshifted excitonic emission. Conversely, the layer-by-layer heterointerface, where PbI2 layers are in parallel contact with WSe2, exhibits substantial quenching due to deep midgap states in a type-II alignment, as evidenced by power-dependent measurements and first-principle calculations. Our results introduce a method for actively manipulating excitonic emissions in 2D transition metal dichalcogenides (TMDs) through edge engineering, highlighting their potential in the development of various quantum devices.
Collapse
Affiliation(s)
- Hyukjin Song
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sumin Ji
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Sung Gu Kang
- School
of Chemical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Naechul Shin
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Weng G, Su Z, Ye S, Sun X, Cao F, Wang C, Jiang D, Hu X, Tao J, Akiyama H, Chu J, Chen S. Continuous-wave quasi-single-mode random lasing in CH 3NH 3PbBr 3 perovskite films on patterned sapphire substrates. OPTICS LETTERS 2024; 49:3713-3716. [PMID: 38950249 DOI: 10.1364/ol.525331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024]
Abstract
We report intriguing continuous-wave quasi-single-mode random lasing in methylammonium lead bromide (CH3NH3PbBr3) perovskite films synthesized on a patterned sapphire substrate (PSS) under excitation of a 532-nm laser diode. The random laser emission evolves from a typical multi-mode to a quasi-single-mode with increasing pump fluences. The full width at half-maximum of the lasing peak is as narrow as 0.06 nm at ∼547.8 nm, corresponding to a high Q-factor of ∼9000. Such excellent random lasing performance is plausibly ascribed to the exciton resonance in optical absorption at 532 nm and the enhanced optical resonance due to the increased likelihood for randomly scattered light to re-enter the optical loops formed among the perovskite grains by multi-reflection at the perovskite/PSS interfaces. This work demonstrates the promise of single-mode perovskite random lasers by introducing the exciton resonance effect and ingeniously designed periodic nano/micro optical structure.
Collapse
|
6
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Zhang Y, Huang J, Zhu M, Zhang Z, Nie K, Wang Z, Liao X, Shu L, Tian T, Wang Z, Lu Y, Fei L. Significant hydrogen generation via photo-mechanical coupling in flexible methylammonium lead iodide nanowires. Chem Sci 2024; 15:1782-1788. [PMID: 38303930 PMCID: PMC10829025 DOI: 10.1039/d3sc05434a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
The flexoelectric effect, which refers to the mechanical-electric coupling between strain gradient and charge polarization, should be considered for use in charge production for catalytically driving chemical reactions. We have previously revealed that halide perovskites can generate orders of higher magnitude flexoelectricity under the illumination of light than in the dark. In this study, we report the catalytic hydrogen production by photo-mechanical coupling involving the photoflexoelectric effect of flexible methylammonium lead iodide (MAPbI3) nanowires (NWs) in hydrogen iodide solution. Upon concurrent light illumination and mechanical vibration, large strain gradients were introduced in flexible MAPbI3 NWs, which subsequently induced significant hydrogen generation (at a rate of 756.5 μmol g-1 h-1, surpassing those values from either photo- or piezocatalysis of MAPbI3 nanoparticles). This photo-mechanical coupling strategy of mechanocatalysis, which enables the simultaneous utilization of multiple energy sources, provides a potentially new mechanism in mechanochemistry for highly efficient hydrogen production.
Collapse
Affiliation(s)
- Yucheng Zhang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Jiawei Huang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Mengya Zhu
- Department of Mechanical Engineering, City University of Hong Kong Kowloon Hong Kong SAR China
| | - Zhouyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong Kowloon Hong Kong SAR China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Zhiguo Wang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Xiaxia Liao
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Longlong Shu
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Tingfang Tian
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Zhao Wang
- Hubei Key Laboratory of Micro- & Nano electronic Materials and Devices, School of Microelectronics, Hubei University Wuhan 430062 China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong Hong Kong SAR China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| |
Collapse
|
8
|
Zhang Y, Zhao Z, Liu Z, Tang A. The Scale Effects of Organometal Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2935. [PMID: 37999290 PMCID: PMC10674384 DOI: 10.3390/nano13222935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize the materials towards an enhanced performance. Generally speaking, organometal halide perovskites can be classified in two ways. By controlling the morphological dimensionality, 2D perovskite nanoplatelets, 1D perovskite nanowires, and 0D perovskite quantum dots have been studied. Using appropriate organic and inorganic components, low-dimensional organic-inorganic metal halide hybrids with 2D, quasi-2D, 1D, and 0D structures at the molecular level have been developed and studied. This provides opportunities to investigate the scale-dependent properties. Here, we present the progress on the characteristics of scale effects in organometal halide perovskites in these two classifications, with a focus on carrier diffusion, excitonic features, and defect properties.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Luminescence and Optical Information, School of Physical Science and Engineering, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
| | - Zhenze Zhao
- School of Chemistry, Food and Pharmacy, University of Reading, Reading RGE 6AH, UK;
| | - Zhe Liu
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, School of Physical Science and Engineering, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
| |
Collapse
|
9
|
Huang T, Zou B. Luminescent Behavior of Sb 3+-Activated Luminescent Metal Halide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2867. [PMID: 37947712 PMCID: PMC10649199 DOI: 10.3390/nano13212867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the development of such materials. Recently, Sb3+-activated luminescent metal halide perovskite materials with low toxicity, high efficiency, broadband, large Stokes shift, and emission wavelengths covering the entire visible and near-infrared regions have been considered one of the most likely luminescent materials to replace lead halide perovskites. This review reviews the synthesis, luminescence mechanism, structure, and luminescence properties of the compounds. The basic luminescence properties of Sb3+-activated luminescent metal halide perovskites and their applications in WLED, electroluminescence LED, temperature sensing, optical anti-counterfeiting, and X-ray scintillators are introduced. Finally, the development prospects and challenges of Sb3+-activated luminescent metal halide perovskites are discussed.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
| |
Collapse
|
10
|
Lu C, Dai Q, Tang C, Wang X, Xu S, Sun L, Peng Y, Lv W. Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector. NANOTECHNOLOGY 2023; 34:495201. [PMID: 37647872 DOI: 10.1088/1361-6528/acf502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
One-dimensional nanowire structures composed of perovskite are widely recognized for their exceptional optoelectronic performance and mechanical properties, making them a popular area of investigation in photodetection research. In this work, a perovskite nanowire/copper phthalocyanine heterojunction-based photodetector was fabricated, which exhibits high photoresponse in the visible-near-infrared region. The incorporation of a heterojunction significantly enhanced the photoelectric performance. Specifically, the photoresponsivity and external quantum efficiency of the nanowire-based device were elevated from 58.5 A W-1and 1.35 × 104% to 84.5 A W-1and 1.97 × 104% at 532 nm, respectively. The enhanced photoresponse of the heterojunction device can be attributed to the unique microstructure of nanowire arrays. The wrapping of the nanowires by copper phthalocyanine forms heterojunctions with a larger dissociation area, which facilitated exciton dissociation and enhanced device performance. This work provides a promising example for optimizing the performance of nanowire devices.
Collapse
Affiliation(s)
- Chengyu Lu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Qinyong Dai
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, People's Republic of China
| | - Chenyu Tang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyu Wang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Sunan Xu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Lei Sun
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Yingquan Peng
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenli Lv
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Tang H, Wang Y, Chen Y, Wang K, He X, Huang C, Xiao S, Yu S, Song Q. Ultrahigh-Q Lead Halide Perovskite Microlasers. NANO LETTERS 2023; 23:3418-3425. [PMID: 37042745 DOI: 10.1021/acs.nanolett.3c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.
Collapse
Affiliation(s)
- Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yuhan Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yimu Chen
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xianxiong He
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Can Huang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| | - Shaohua Yu
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| |
Collapse
|
12
|
Ma F, Huang Z, Ziółek M, Yue S, Han X, Rong D, Guo Z, Chu K, Jia X, Wu Y, Zhao J, Liu K, Xing J, Wang Z, Qu S. Template-Assisted Synthesis of a Large-Area Ordered Perovskite Nanowire Array for a High-Performance Photodetector. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12024-12031. [PMID: 36812095 DOI: 10.1021/acsami.2c20887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CH3NH3PbBr3 NWs and arrays. It is found that the as-synthesized NW array has designable shapes, low crystal defects, and ordered alignment, which is attributed to the sequestration of water and oxygen in air by the introduction of acetonitrile vapor. The photodetector based on the NWs exhibits an excellent response to light illumination. Under the illumination of a 532 nm laser with 0.1 μW and a bias of -1 V, the responsivity and detectivity of the device reach 1.55 A/W and 1.21 × 1012 Jones, respectively. The transient absorption spectrum (TAS) shows a distinct ground state bleaching signal only at 527 nm, which corresponds to the absorption peak induced by the interband transition of CH3NH3PbBr3. Narrow absorption peaks (a few nanometers) indicate that the energy-level structures of CH3NH3PbBr3 NWs only have a few impurity-level-induced transitions leading to additional optical loss. This work provides an effective and simple strategy to achieve high-quality CH3NH3PbBr3 NWs, which exhibit potential application in photodetection.
Collapse
Affiliation(s)
- Fangyuan Ma
- School of Science, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Zhitao Huang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marcin Ziółek
- Faculty of Physics, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Shizhong Yue
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Dongke Rong
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zihao Guo
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Kaiwen Chu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohao Jia
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Wu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xing
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| |
Collapse
|
13
|
Lu Y, Qu K, Zhang T, He Q, Pan J. Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:419. [PMID: 36770381 PMCID: PMC9919554 DOI: 10.3390/nano13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskites are promising energy materials because of their high absorption coefficients, long carrier lifetimes, strong photoluminescence, and low cost. Low-dimensional halide perovskites, especially one-dimensional (1D) halide perovskite nanowires (NWs), have become a hot research topic in optoelectronics owing to their excellent optoelectronic properties. Herein, we review the synthetic strategies and mechanisms of halide perovskite NWs in recent years, such as hot injection, vapor phase growth, selfassembly, and solvothermal synthesis. Furthermore, we summarize their applications in optoelectronics, including lasers, photodetectors, and solar cells. Finally, we propose possible perspectives for the development of halide perovskite NWs.
Collapse
Affiliation(s)
| | | | | | - Qingquan He
- Correspondence: (Q.H.); (J.P.); Tel.: +86-1-520-193-3096(Q.H.); +86-1-348-617-8387(J.P.)
| | - Jun Pan
- Correspondence: (Q.H.); (J.P.); Tel.: +86-1-520-193-3096(Q.H.); +86-1-348-617-8387(J.P.)
| |
Collapse
|
14
|
Synthesis and Applications of Halide Perovskite Nanocrystals in Optoelectronics. INORGANICS 2023. [DOI: 10.3390/inorganics11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The perovskites used for optoelectronic devices have been more attractive during recent years due to their wide variety of advantages, such as their low cost, high photoluminescence quantum yield (PLQY), high carrier mobility, flexible bandgap tunability, and high light absorption ability. However, optoelectronic applications for traditional inorganic and organic materials present dilemmas due to their hardly tunable bandgap and instability. On the other hand, there are some more important benefits for perovskite nanocrystals, such as a size-dependent bandgap and the availability of anion exchange at room temperature. Therefore, perovskite NC-based applications are currently favored, offering a research direction beyond perovskite, and much research has focused on the stability issue and device performance. Thus, the synthesis and applications of perovskite NCs need to be thoroughly discussed for the future development of solar cells, light-emitting diodes, photodetectors, and laser research.
Collapse
|
15
|
Xu Y, Hu X, Chen H, Tang H, Hu Q, Chen T, Jiang W, Wang L, Jiang W. In situ passivation of Pb 0 traps by fluoride acid-based ionic liquids enables enhanced emission and stability of CsPbBr 3 nanocrystals for efficient white light-emitting diodes. NANOSCALE 2022; 14:13779-13789. [PMID: 36102672 DOI: 10.1039/d2nr03861g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A great hurdle restricting the optoelectronic applications of cesium lead halide perovskite (CsPbX3) nanocrystals (NCs) is due to the uncoordinated lead atoms (Pb0) on the surface, where most attempts to address the challenges in the literature depend on complicated post-treatment processes. Here we report a simple in situ surface engineering strategy to obtain highly fluorescent and stable perovskite NCs, wherein the introduction of the multifunctional additive 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim]BF4) can significantly eliminate the Pb0 traps. The photoluminescence quantum yield (PLQY) of the as-synthesized NCs was improved from 63.82% to 94.63% due to the good passivation of the surface defects. We also confirm the universality of this in situ passivation pathway to remove Pb0 deep traps by using fluoride acid-based ionic liquids (ILs). Due to the high hydrophobicity of the cations of ILs, the as-prepared CsPbBr3 NCs exhibit robust water resistance stability, maintaining 67.5% of the initial photoluminescence (PL) intensity after immersion in water for 21 days. A white light emitting diode (LED), assembled by mixing the as-synthesized CsPbBr3 NCs and red K2SiF6:Mn4+ phosphors onto a blue chip, exhibits high luminous efficiency (100.07 lm W-1) and wide color gamut (140.64% of the National Television System Committee (NTSC) standard). This work provides a promising and facile technique to eliminate the Pb0 traps and improve the optical performance and stability of halide perovskite NCs, facilitating their applications in optoelectronic fields.
Collapse
Affiliation(s)
- Yanqiao Xu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Xiaobo Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haijie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huidong Tang
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Ting Chen
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Weihui Jiang
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Li JJ, Cui T, Yu J, Liang ZB, Liang Y, Li J, Chen S. Stable and large-scale organic-inorganic halide perovskite nanocrystal/polymer nanofiber films prepared via a green in situ fiber spinning chemistry method. NANOSCALE 2022; 14:11998-12006. [PMID: 35929526 DOI: 10.1039/d2nr01691e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic halide perovskite nanocrystals (PNCs) have shown great advantages in recent years due to their tunable emission wavelengths, narrow full-width at half-maximum (FWHM) and high photoluminescence quantum yield (PLQY). However, PNCs still face the challenges of poor stability, difficulty in processing and generation of heavy metal wastes; therefore, it is necessary to develop a green synthetic method to prepare PNCs. Here, we present for the first time a facile fiber spinning chemistry (FSC) method for the rapid preparation of organic-inorganic halide PAN/MAPbX3 (MA = CH3NH3, X = Cl, Br and I) nanofiber films at room temperature. The FSC process utilizes spinning fibers as the reactor, and polymer solidification and the in situ generation of PNCs occur simultaneously with solvent evaporation during the spinning process. This method not only achieves a continuous large-scale preparation of PNC/polymer nanofiber films but also avoids the generation of heavy metal waste. The organic-inorganic halide PAN/MAPbX3 nanofiber films fabricated by FSC demonstrated tunable emission in the range of 464-612 nm and PLQY of up to 58%, and the fluorescence intensity remained essentially unchanged after 90 days of storage in the atmospheric environment. Interestingly, we successfully prepared high-efficiency white light-emitting diodes (WLEDs) and wide color gamut liquid crystal displays (LCDs) with a color gamut of 116.1% using PAN/MAPbBr3 nanofiber films as fluorescence conversion materials. This study provides a novel way to construct high-performance PNC/polymer fiber composites on a large scale.
Collapse
Affiliation(s)
- Jing-Jing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| | - Jiafei Yu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhi-Bin Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
| |
Collapse
|
17
|
Su X, Pan Y, Gao D, Wang J, Chen R, Wang Y, Yang XY, Wang L. Ultrasimple and Ultrafast Method of Optical Modulation by Perovskite Quantum Dot Attachment to a Graphene Surface. ACS OMEGA 2022; 7:19606-19613. [PMID: 35721945 PMCID: PMC9202059 DOI: 10.1021/acsomega.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Optical modulation is the process of modifying the structure and elemental composition of materials so that the main optical parameters, including amplitude, frequency, and phase, are changed. Currently, much research attention has been directed toward ultrafast dynamics, but the process of modulation is often complex. To simplify the optical modulation process and improve the optical properties of perovskites for semiconductor quantum dot (QD) lasers, the process and physical mechanism underlying graphene QD ultrafast modulation of the optical properties of perovskite CsPbBr3 QDs were investigated. The typical cubic structure and square shape of CsPbBr3 QDs were characterized by transmission electron microscopy and X-ray diffraction, respectively. A luminescent peak centered near 540 nm and Stokes shift of 21.34 nm of CsPbBr3 QDs without graphene QDs were measured by absorption and photoluminescence spectroscopy. A maximum modulation shift of 133 nm and a modulation depth of 900% were achieved in CsPbBr3 with graphene. The results indicated that graphene QDs had the best modulation effect on perovskites when the drop volume was 0.05 mL. The process of ultrafast optical modulation via graphene QDs occurring within 1 ps was confirmed by the transient absorption spectrum. The modulation mechanism of graphene to perovskites is presented for guidance. This paper can be used as a reference for the optical modulation of perovskite materials.
Collapse
Affiliation(s)
- Xueqiong Su
- The
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Yong Pan
- College
of Science, Xi’an University of Architecture
and Technology, Xi’an 710055, China
| | - Dongwen Gao
- The
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jin Wang
- The
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Ruixiang Chen
- The
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Yimeng Wang
- The
School of Optical-Electrical and Computer Engineering, The University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin-yu Yang
- The
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou Zhejiang 325035, China
| | - Li Wang
- The
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Jin L, Chen X, Wu Y, Ai X, Yang X, Xiao S, Song Q. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat Commun 2022; 13:1727. [PMID: 35365646 PMCID: PMC8975839 DOI: 10.1038/s41467-022-29435-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
The development of multi-wavelength lasing, particularly with the wavelength tuning in a wide spectral range, is challenging but highly desirable for integrated photonic devices due to its dynamic switching functionality, high spectral purity and contrast. Here, we propose a general strategy, that relies on the simultaneous design on the electronic states and the optical states, to demonstrate dynamically switchable single-mode lasing spanning beyond the record range (300 nm). This is achieved through integrating the reversely designed nanocrystals with two size-mismatched coupled microcavities. We show an experimental validation of a crosstalk-free violet-to-red single-mode behavior through collective control of asymmetric excitation and excitation wavelength. The single-mode action persists for a wide power range, and presents significant enhancement when compared with that in the microdisk laser. These findings enlighten the reverse design of luminescent materials. Given the remarkable doping flexibility, our results may create new opportunities in a variety of frontier applications.
Collapse
Affiliation(s)
- Limin Jin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China.
| | - Xian Chen
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yunkai Wu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Xiangzhe Ai
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaoli Yang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| |
Collapse
|
19
|
Li S, She Y, Ding H, Yang J, Peng J, Wu M, Kong X, Han D, Pan N, Wang X. In Situ Low-Temperature Growth and Superior Luminescent Property of Well-Aligned, High-Quality Cubic CsPbBr 3 Micrometer-Scale Single Crystal Arrays on Transparent Conductive Substrates. J Phys Chem Lett 2022; 13:1114-1122. [PMID: 35080395 DOI: 10.1021/acs.jpclett.1c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct assembly of high-quality single-crystal perovskite microarrays on transparent conductive substrates and carrier injection layers is vital to realize high-performance optoelectronic devices. Although cubic-phase CsPbBr3 is considered to have a higher structural and optical quality than the orthorhombic one, obtaining a well-aligned assembly directly on the aforementioned substrates is still challenging. Here we developed a solvent-assisted crystallization strategy with the assistance of surface modifiers, through which the in situ low-temperature growth of well-aligned cubic single-crystal CsPbBr3 microarray with a preferential out-of-plane [100] orientation is achieved for the first time on commercial transparent conductive substrates. As compared with the control orthorhombic samples, the cubic CsPbBr3 single crystals possess superior properties including a higher photoluminescence internal quantum efficiency, fewer defect states, a weaker scattering by phonons, and an appearance of lasing. The results presented here can pave the way for future design and applications of optoelectronic devices based on perovskite microarrays.
Collapse
Affiliation(s)
- Sijia Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yongzhi She
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huaiyi Ding
- Department of Physics, Key Laboratory of Yunnan Provincial Higher Education Institutions for Optoelectronics Device Engineering, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jinlong Yang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Peng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Min Wu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiangdong Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengbao Han
- Hefei Innovation Research Institute, Beihang University, Hefei, Anhui 230013, P. R. China
| | - Nan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Xie G, Wang L, Ju D, Yao C, Wang X, Song S, Qu Y, Li H, Tao X. Thermochromism Perovskite (COOH(CH 2) 3NH 3) 2PbI 4 Crystals: Single-Crystal to Single-Crystal Phase Transition and Excitation-Wavelength-Dependent Emission. J Phys Chem Lett 2022; 13:214-221. [PMID: 34967626 DOI: 10.1021/acs.jpclett.1c03458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a potential multifunctional phase transition material, the organic-inorganic hybrid perovskite has attracted extensive attention in recent years. Here, we report the single-crystal to single-crystal phase transition and excitation-wavelength-dependent emission (EDE) of layered perovskite (COOH(CH2)3NH3)2PbI4. Single-crystal X-ray diffraction indicated that the crystal structure changes from layered Ruddlesden-Popper (RP) at 302 K to "X" network composed of face-sharing and corner-sharing [PbX6]4- octahedra at 425 K. The material exhibits thermochromic change from orange to yellow at higher temperature. Considering the thermochromism of the material, we apply it for anticounterfeiting and information encryption. The material exhibits EDE properties with a fluorescence color changing from green to red upon 420 and 546 nm excitation, respectively. Time-dependent density functional theory indicated that this phenomenon is mainly related to the laser-induced crystal structural transfer. Our research shows that the (COOH(CH2)3NH3)2PbI4 crystal has a potential application for multifunctional devices.
Collapse
Affiliation(s)
- Guanying Xie
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Lei Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dianxing Ju
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Changlin Yao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xinyuan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shuhong Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yaqian Qu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Huimin Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
21
|
Liang S, Zhang M, Biesold GM, Choi W, He Y, Li Z, Shen D, Lin Z. Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005888. [PMID: 34096108 DOI: 10.1002/adma.202005888] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/18/2021] [Indexed: 05/27/2023]
Abstract
Metal halide perovskite nanocrystals (PNCs) have recently garnered tremendous research interest due to their unique optoelectronic properties and promising applications in photovoltaics and optoelectronics. Metal halide PNCs can be combined with polymers to create nanocomposites that carry an array of advantageous characteristics. The polymer matrix can bestow stability, stretchability, and solution-processability while the PNCs maintain their size-, shape- and composition-dependent optoelectronic properties. As such, these nanocomposites possess great promise for next-generation displays, lighting, sensing, biomedical technologies, and energy conversion. The recent advances in metal halide PNC/polymer nanocomposites are summarized here. First, a variety of synthetic strategies for crafting PNC/polymer nanocomposites are discussed. Second, their array of intriguing properties is examined. Third, the broad range of applications of PNC/polymer nanocomposites is highlighted, including light-emitting diodes (LEDs), lasers, and scintillators. Finally, an outlook on future research directions and challenges in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yanjie He
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zili Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dingfeng Shen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
22
|
Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Kumar V, Nagal V, Srivastava S, Kumar M, Gupta BK, Hafiz AK, Singh K. Power Dependent Hot Carrier Cooling Dynamics in Trioctylphosphine Capped CsPbBr
3
Perovskite Quantum Dots Using Ultrafast Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Virendra Kumar
- Nanotechnology Lab School of Physical Sciences Jawaharlal Nehru University (JNU) New Delhi 110067 India
| | - Vandana Nagal
- Quantum and Nano-photonics Research Laboratory Centre for Nanoscience and Nanotechnology Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Shubhda Srivastava
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Mahesh Kumar
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Bipin K. Gupta
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Aurangzeb K. Hafiz
- Quantum and Nano-photonics Research Laboratory Centre for Nanoscience and Nanotechnology Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kedar Singh
- Nanotechnology Lab School of Physical Sciences Jawaharlal Nehru University (JNU) New Delhi 110067 India
| |
Collapse
|
24
|
Ahmad Kamal AS, Lin CC, Xing D, Lee YC, Wang Z, Chen MH, Ho YL, Chen CW, Delaunay JJ. Lithographic in-mold patterning for CsPbBr 3 nanocrystals distributed Bragg reflector single-mode laser. NANOSCALE 2021; 13:15830-15836. [PMID: 34516594 DOI: 10.1039/d1nr04543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique. However, due to the fragile nature of the lead halide perovskites which gives rise to significant material deterioration during the lithography and etching processes, realizing a small-size, low-roughness, and single-mode laser remains a challenge. Here, a lithographic in-mold patterning method realized by nanocrystal concentration control and a multi-step filling-drying process is proposed to demonstrate CsPbBr3 nanocrystals distributed-Bragg-reflector (DBR) waveguide lasers. This method realizes the patterning of the CsPbBr3 nanocrystal laser cavity and DBR grating without lift-off and etching processes, and the smallest fabricated structures are obtained in a few hundred nanometers. The single-mode lasing is demonstrated at room temperature with a threshold of 23.5 μJ cm-2. The smallest full width at half maximum FWHM of the laser output is 0.4 nm. Due to the fabrication process and the DBR laser geometry, the lasers can be fabricated in a compact array, which is important for incorporating perovskite-based lasers in complex optoelectronic circuits.
Collapse
Affiliation(s)
| | - Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), Taiwan International Graduate Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Di Xing
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Yang-Chun Lee
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Zhiyu Wang
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Mu-Hsin Chen
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Ya-Lun Ho
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), Taiwan International Graduate Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
25
|
Lin H, Wei Q, Ng KW, Dong JY, Li JL, Liu WW, Yan SS, Chen S, Xing GC, Tang XS, Tang ZK, Wang SP. Stable and Efficient Blue-Emitting CsPbBr 3 Nanoplatelets with Potassium Bromide Surface Passivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101359. [PMID: 34121319 DOI: 10.1002/smll.202101359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/08/2021] [Indexed: 05/14/2023]
Abstract
Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.
Collapse
Affiliation(s)
- Hao Lin
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Key Laboratory of Optoelectronic Technology & Systems, (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Qi Wei
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jia-Yi Dong
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jie-Lei Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Wei-Wei Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shan-Shan Yan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Gui-Chuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiao-Sheng Tang
- Key Laboratory of Optoelectronic Technology & Systems, (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Zi-Kang Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
26
|
Zhang B, Wang X, Yang Y, Hu B, Tong L, Liu Y, Zhao L, Lu Q. Sensing Mechanism of H 2O, NH 3, and O 2 on the Stability-Improved Cs 2Pb(SCN) 2Br 2 Surface: A Quantum Dynamics Investigation. ACS OMEGA 2021; 6:24244-24255. [PMID: 34568702 PMCID: PMC8459405 DOI: 10.1021/acsomega.1c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Although the perovskite sensing materials have shown high sensitivity and ideal selectivity toward neutral, oxidative, or reductive gases, their structural instability hampers the practical application. To exploit perovskite-based gas-sensing materials with improved stability and decent sensitivity, three adsorption complexes of H2O, NH3, and O2 on the Cs2Pb(SCN)2Br2 surface are built by doping Br- and Cs+ in the parent (CH3NH3)2Pb(SCN)2I2 structure and submitted to quantum dynamics simulations. Changes in the semiconductor material geometric structures during these dynamic processes are analyzed and adsorption ability and charge transfer between Cs2Pb(SCN)2Br2 and the gas molecules are explored so as to further establish a correlation between the geometrical structure variations and the charge transfer. By comparing with the previous CH3NH3PbI3 and (CH3NH3)2Pb(SCN)2I2 adsorption systems, we propose the key factors that enhance the stability of perovskite structures in different atmospheres. The current work is expected to provide clues for developing innovative perovskite sensing materials or for constructing reasonable sensing mechanisms.
Collapse
Affiliation(s)
- Bing Zhang
- National
Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 2 Beinong Road, Huilongguan Town, Changping District, Beijing 102206, P. R. China
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
- State
Key Laboratory of Alternate Electrical Power System with Renewable
Energy Sources, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Xiaogang Wang
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Yang Yang
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Bin Hu
- National
Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 2 Beinong Road, Huilongguan Town, Changping District, Beijing 102206, P. R. China
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
- State
Key Laboratory of Alternate Electrical Power System with Renewable
Energy Sources, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Lei Tong
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Ying Liu
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Li Zhao
- National
Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 2 Beinong Road, Huilongguan Town, Changping District, Beijing 102206, P. R. China
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| | - Qiang Lu
- National
Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 2 Beinong Road, Huilongguan Town, Changping District, Beijing 102206, P. R. China
- School
of New Energy, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
- State
Key Laboratory of Alternate Electrical Power System with Renewable
Energy Sources, North China Electric Power
University, 2 Beinong
Road, Huilongguan Town, Changping District, Beijing 102206, P. R.
China
| |
Collapse
|
27
|
Precise Control of Green to Blue Emission of Halide Perovskite Nanocrystals Using Terbium Chloride as Chlorine Source. NANOMATERIALS 2021; 11:nano11092390. [PMID: 34578706 PMCID: PMC8470515 DOI: 10.3390/nano11092390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room temperature, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission of CsPbClxBr3-x nanocrystals was easily controlled from green to blue by adjusting the amount of TbCl3, which realizes the continuous and accurate spectral regulation in the range of green to blue. This method provides a new scheme for fast anion exchange of all-inorganic perovskite nanocrystals in an open environment at room temperature.
Collapse
|
28
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
29
|
Chen J, Zhou Y, Fu Y, Pan J, Mohammed OF, Bakr OM. Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem Rev 2021; 121:12112-12180. [PMID: 34251192 DOI: 10.1021/acs.chemrev.1c00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Zhou
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Omar F Mohammed
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
30
|
Chen M, Hu S, Zhou Z, Huang N, Lee S, Zhang Y, Cheng R, Yang J, Xu Z, Liu Y, Lee H, Huan X, Feng SP, Shum HC, Chan BP, Seol SK, Pyo J, Tae Kim J. Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. NANO LETTERS 2021; 21:5186-5194. [PMID: 34125558 DOI: 10.1021/acs.nanolett.1c01261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid perovskites are emerging as a promising, high-performance luminescent material; however, the technological challenges associated with generating high-resolution, free-form perovskite structures remain unresolved, limiting innovation in optoelectronic devices. Here, we report nanoscale three-dimensional (3D) printing of colored perovskite pixels with programmed dimensions, placements, and emission characteristics. Notably, a meniscus comprising femtoliters of ink is used to guide a highly confined, out-of-plane crystallization process, which generates 3D red, green, and blue (RGB) perovskite nanopixels with ultrahigh integration density. We show that the 3D form of these nanopixels enhances their emission brightness without sacrificing their lateral resolution, thereby enabling the fabrication of high-resolution displays with improved brightness. Furthermore, 3D pixels can store and encode additional information into their vertical heights, providing multilevel security against counterfeiting. The proof-of-concept experiments demonstrate the potential of 3D printing to become a platform for the manufacture of smart, high-performance photonic devices without design restrictions.
Collapse
Affiliation(s)
- Mojun Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Shiqi Hu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Zhiwen Zhou
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Nan Huang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Sanghyeon Lee
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Rui Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Zhaoyi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Yu Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Heekwon Lee
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Xiao Huan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Barbara Pui Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Seung Kwon Seol
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electrical-Functionality Materials Engineering, Korea University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Jaeyeon Pyo
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
31
|
Lv Y, Li D, Ren A, Xiong Z, Yao Y, Cai K, Xiang S, Zhang Z, Zhao YS. Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28662-28667. [PMID: 34114811 DOI: 10.1021/acsami.1c06312] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous organic frameworks have emerged as the promising platforms to construct tunable microlasers. Most of these microlasers are achieved from metal-organic frameworks via meticulously accommodating the laser dyes with the sacrifice of the pore space, yet they often suffer from the obstacles of either relatively limited gain concentration or sophisticated fabrication techniques. Herein, we reported on the first hydrogen-bonded organic framework (HOF) microlasers with color-tunable performance based on conformation-dependent stimulated emissions. Two types of HOF microcrystals with the same gain lumnogen as the building block were synthesized via a temperature-controlled self-assembly method. The distinct frameworks offer different conformations of the gain building block, which lead to great impacts on their conjugation degrees and excited-state processes, resulting in remarkably distinct emission colors (blue and green). Accordingly, blue/green-color lasing actions were achieved in these two types of HOFs based on well-faceted assembled wire-like cavities. These results offer a deep insight on the exploitation of HOF-based miniaturized lasers with desired nanophotonics performances.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinan Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
32
|
Younis A, Lin CH, Guan X, Shahrokhi S, Huang CY, Wang Y, He T, Singh S, Hu L, Retamal JRD, He JH, Wu T. Halide Perovskites: A New Era of Solution-Processed Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005000. [PMID: 33938612 DOI: 10.1002/adma.202005000] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Indexed: 05/26/2023]
Abstract
Organic-inorganic mixed halide perovskites have emerged as an excellent class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to light-emitting diodes and photoelectrochemical devices. Recent works have showcased hybrid perovskites for electronic applications through improvements in materials design, processing, and device stability. Herein, a comprehensive up-to-date review is presented on hybrid perovskite electronics with a focus on transistors and memories. These applications are supported by the fundamental material properties of hybrid perovskite semiconductors such as tunable bandgap, ambipolar charge transport, reasonable mobility, defect characteristics, and solution processability, which are highlighted first. Then, recent progresses on perovskite-based transistors are reviewed, covering aspects of fabrication process, patterning techniques, contact engineering, 2D versus 3D material selection, and device performance. Furthermore, applications of perovskites in nonvolatile memories and artificial synaptic devices are presented. The ambient instability of hybrid perovskites and the strategies to tackle this bottleneck are also discussed. Finally, an outlook and opportunities to develop perovskite-based electronics as a competitive and feasible technology are highlighted.
Collapse
Affiliation(s)
- Adnan Younis
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Zallaq, Kingdom of Bahrain
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shamim Shahrokhi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yutao Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tengyue He
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jose Ramon Duran Retamal
- Computer, Electrical and Mathematical Sciences and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
33
|
Miyadera T, Auchi Y, Yamamoto K, Ohashi N, Koganezawa T, Yaguchi H, Yoshida Y, Chikamatsu M. Insights into Microscopic Crystal Growth Dynamics of CH 3NH 3PbI 3 under a Laser Deposition Process Revealed by In Situ X-ray Diffraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22559-22566. [PMID: 33961389 DOI: 10.1021/acsami.1c04488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The process dynamics for the vacuum deposition of methylammonium lead iodide (MAPbI3) perovskite was analyzed by in situ X-ray diffraction using synchrotron radiation. MAPbI3 was fabricated by alternatingly supplying PbI2 and methylammonium iodide via a laser deposition system installed at the synchrotron beamline BL46XU at SPring-8, and in situ crystallization analysis was conducted. Microscopic insights into the crystallization were obtained, including observation of Laue oscillation during the PbI2 growth and octahedral unit (PbI6) rotation during the transformation into perovskite. On the basis of this analysis, conditions that favor the construction of atomically flat MAPbI3 perovskite films were deduced.
Collapse
Affiliation(s)
- Tetsuhiko Miyadera
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuto Auchi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kohei Yamamoto
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Noboru Ohashi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomoyuki Koganezawa
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroyuki Yaguchi
- Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Yuji Yoshida
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masayuki Chikamatsu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
34
|
Jiang H, Cui S, Chen Y, Zhong H. Ion exchange for halide perovskite: From nanocrystal to bulk materials. NANO SELECT 2021. [DOI: 10.1002/nano.202100084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Haotian Jiang
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and Devices School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Siqi Cui
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and Devices School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Yu Chen
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and Devices School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and Devices School of Materials Science and Engineering Beijing Institute of Technology Beijing China
- Beijing Institute of Technology Shenzhen Research Institute Nanshan District Shenzhen China
| |
Collapse
|
35
|
Wang Y, Fan Y, Zhang X, Tang H, Song Q, Han J, Xiao S. Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum. ACS NANO 2021; 15:7386-7391. [PMID: 33729762 DOI: 10.1021/acsnano.1c00673] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.
Collapse
Affiliation(s)
- Yuhan Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Yubin Fan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Xudong Zhang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| |
Collapse
|
36
|
Wu J, Ghosh S, Su R, Fieramosca A, Liew TCH, Xiong Q. Nonlinear Parametric Scattering of Exciton Polaritons in Perovskite Microcavities. NANO LETTERS 2021; 21:3120-3126. [PMID: 33788571 DOI: 10.1021/acs.nanolett.1c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comparing with pure photons, higher nonlinearity in polariton systems has been exploited in various proof-of-principle demonstrations of efficient optical devices based on the parametric scattering effect. However, most of them demand cryogenic temperatures limited by the small exciton binding energy of traditional semiconductors or exhibit weak nonlinearity resulting from Frenkel excitons. Lead halide perovskites, possessing both a large binding energy and a strong polariton interaction, emerge as ideal platforms to explore nonlinear polariton physics toward room temperature operation. Here, we report the first observation of nonlinear parametric scattering in a lead halide perovskite microcavity with multiple polariton branches at room temperature. Driven by the scattering source from condensation in one polariton branch, correlated polariton pairs are obtained at high k states in an adjacent branch. Our results strongly advocate the ability to reach the nonlinear regime essential for perovskite polaritonics working at room temperature.
Collapse
Affiliation(s)
- Jinqi Wu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Sanjib Ghosh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, https://majulab.cnrs.fr/
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
37
|
Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:046401. [PMID: 33730709 DOI: 10.1088/1361-6633/abefba] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.
Collapse
Affiliation(s)
- Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou University City, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
| | - Thomas R Hopper
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
38
|
Choi HW, Lee U, Song JK. Optical Features of
Aggregation‐Induced
Emission in
BODIPY
With Isopropyl
meso
Group. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Han Wool Choi
- Department of Chemistry Kyung Hee University Seoul 02447 Korea
| | - Uisung Lee
- Department of Chemistry Kyung Hee University Seoul 02447 Korea
| | - Jae Kyu Song
- Department of Chemistry Kyung Hee University Seoul 02447 Korea
| |
Collapse
|
39
|
Xu S, Ding X, Shi H, Zhang X, Sun X, Ji N, Zhang X, Zhang Z. EA-Directing Formamidinium-Based Perovskite Microwires with A-Site Doping. ACS OMEGA 2021; 6:7157-7164. [PMID: 33748629 PMCID: PMC7970562 DOI: 10.1021/acsomega.1c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
One recent development to improve optoelectronic properties of perovskites is to use a larger cation for multication engineering. The chain-like ethylammonium (EA) [(C2H5)NH3]+ cation is more likely to form a one-dimensional perovskite structure; however, there is no remarkable evidence in this connection. Therefore, in this work, for the first time, the EA cation as an alternative cation was introduced into FAPbBr3 cubic crystals to explore the stabilities and optoelectronic properties of mixed FA x EA(1-x)PbBr3 perovskites. The results indicate that replacing FA with EA is a more effective way to realize band gap tuning and morphology transformation between the cubic shape and microwires. The tuned band gap of perovskite is due to the variation of Pb-Br-Pb angles induced by the insertion of the larger EA cation. We highlight that this work provides new physical insights into the correlation between the engineering of organic cations and the formation of perovskite microwires and the tunable band gap. This observation will help us to find new ways to grow perovskite microwires and subsequently study the optoelectronic performance of low-dimensional perovskites devices.
Collapse
Affiliation(s)
- Shan Xu
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
- Department
of Optics and Optical Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue Ding
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Huafeng Shi
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinhai Zhang
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaowei Sun
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Ji
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xiaoli Zhang
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhaoyu Zhang
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
40
|
Zhang Q, Shang Q, Su R, Do TTH, Xiong Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. NANO LETTERS 2021; 21:1903-1914. [PMID: 33435686 DOI: 10.1021/acs.nanolett.0c03593] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Solution-processable semiconductor lasers have been a long-standing challenge for next-generation displays, light sources, and communication technologies. Metal halide perovskites, which combine the advantages of inorganic and organic semiconductors, have recently emerged not only as excellent candidates for solution-processable lasers but also as potential complementary gain materials for filling the "green gap" and supplement industrial nanolasers based on classic II-VI/III-V semiconductors. Numerous perovskite lasers have been developed successfully with superior performance in terms of cost-effectiveness, low threshold, high coherence, and multicolor tunability. This mini review surveys the development, current status, and perspectives of perovskite lasers, categorized into thin film lasers, nanocrystals lasers, microlasers, and device concepts including polariton and bound-in-continuum lasers with a focus on material fundamentals, cavity design, and low-threshold devices in addition to critical issues such as mass fabrication and applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Research Center for Wide Gap Semiconductor, Peking University, Beijing 100871, China
| | - Qiuyu Shang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - T Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Chen W, Zhang F, Wang C, Jia M, Zhao X, Liu Z, Ge Y, Zhang Y, Zhang H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004446. [PMID: 33543536 DOI: 10.1002/adma.202004446] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Low-dimensional metal-halide perovskites have exhibited significantly superior nonlinear optical properties compared to traditional semiconductor counterparts, thanks to their peculiar physical and electronic structures. Their exceptional nonlinear optical characteristics make them excellent candidates for revolutionizing widespread applications. However, the research of nonlinear photonics based on low-dimensional metal-halide perovskites is in its infancy. There is a lack of comprehensive and in-depth summary of this research realm. Here, the state-of-the-art research progress related to third-and higher-order nonlinear optical properties of low-dimensional metal-halide perovskites with diverse crystal structures from 3D down to 0D, together with their practical applications, is summarized comprehensively. Critical discussions are offered on the fundamental mechanisms beneath their exceptional nonlinear optical performance from the physics viewpoint, attempting to disclose the role of intrinsic attributes (e.g., composition, bandgap, size, shape, and structure) and external modulation strategies (e.g., developing core-shell structures, transition metal ion doping, and hybridization with dielectric microspheres) in tuning the response. Additionally, their potential applications in nonlinear photonics, nonlinear optoelectronics, and biophotonics are systematically and thoroughly summed up and categorized. Lastly, insights into the current technical challenges and future research opportunities of nonlinear photonics based on low-dimensional metal-halide perovskites are provided.
Collapse
Affiliation(s)
- Weiqiang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Feng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Mingshuang Jia
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xinghang Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhaoran Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yanqi Ge
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
42
|
Deng YH, Nest LG. Analysis of misidentifications in TEM characterisation of organic-inorganic hybrid perovskite material. J Microsc 2021; 282:195-204. [PMID: 33440018 DOI: 10.1111/jmi.13000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Organic-inorganic hybrid perovskites (OIHPs) have recently emerged as groundbreaking semiconductor materials owing to their remarkable properties. Transmission electron microscopy (TEM), as a very powerful characterisation tool, has been widely used in perovskite materials for structural analysis and phase identification. However, the perovskites are highly sensitive to electron beams and easily decompose into PbX2 (X = I, Br, Cl) and metallic Pb. The electron dose of general high-resolution TEM is much higher than the critical dose of MAPbI3 , which results in universal misidentifications that PbI2 and Pb are incorrectly labelled as perovskite. The widely existed mistakes have negatively affected the development of perovskite research fields. Here misidentifications of the best-known MAPbI3 perovskite are summarised and corrected, then the causes of mistakes are classified and ascertained. Above all, a solid method for phase identification and practical strategies to reduce the radiation damage for perovskite materials have also been proposed. This review aims to provide the causes of mistakes and avoid misinterpretations in perovskite research fields in the future.
Collapse
Affiliation(s)
- Yu-Hao Deng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Leon Georg Nest
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
44
|
Gu Z, Song Q, Xiao S. Nanowire Waveguides and Lasers: Advances and Opportunities in Photonic Circuits. Front Chem 2021; 8:613504. [PMID: 33490039 PMCID: PMC7820942 DOI: 10.3389/fchem.2020.613504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Due to their single-crystalline structures, comparatively large aspect ratios, tight optical confinement and smooth surfaces, nanowires have increasingly attracted research interests for both fundamental studies and technological applications in on-chip photonic devices. This class of nanostructures typically have cross-sections of 2~200 nm and lengths upwards of several micrometers, allowing for the bridging of the nanoscopic and macroscopic world. In particular, the lasing behaviors can be established from a nanowire resonator with positive feedback via end-facet reflection, making the nanowire a promising candidate in the next generation of optoelectronics. Consequently, versatile nanowire-based devices ranging from nanoscale coherent lasers, optical sensors, waveguides, optical switching, and photonic networks have been proposed and experimentally demonstrated in the past decade. In this article, significant progresses in the nanowire fabrication, lasers, circuits, and devices are reviewed. First, we focus on the achievements of nanowire synthesis and introduce the basics of nanowire optics. Following the cavity configurations and mode categories, then the different light sources consisting of nanowires are presented. Next, we review the recent progress and current status of functional nanowire devices. Finally, we offer our perspective of nanowires regarding their challenges and future opportunities in photonic circuits.
Collapse
Affiliation(s)
- Zhiyuan Gu
- Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China
- Ministry of Industry and Information Technology Key Lab of Micro–Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
| | - Qinghai Song
- Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China
| | - Shumin Xiao
- Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
45
|
Liu J, Hei D, Xu Q, Tan X, Ruan J, Ouyang X, Nie J, Wei K, Xu Q, Sun B. Low temperature scintillation performance of a Br-doped CH 3NH 3PbCl 3 single-crystalline perovskite. RSC Adv 2021; 11:2020-2024. [PMID: 35424162 PMCID: PMC8693645 DOI: 10.1039/d0ra06860h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Time response and light yield are two of the most important features of a scintillation detector, and are mostly determined by the luminescence properties of the scintillator. Here we have investigated the radioluminescence (RL) characteristics of a single-crystalline hybrid lead halide perovskite at both room temperature and low temperature. A dual-channel single photon correlation (DCSPC) system with a vacuum chamber is employed for the measurement. A rise time faster than 100 ps and several times enhancement of the crystal scintillation performances at low temperature have been observed. These behaviors demonstrated that bulk solution-grown single crystals of hybrid lead halide perovskites (MAPbCl3 and Br-doped MAPbBr0.08Cl2.92, where MA = CH3NH3) can serve as stable scintillating materials for pulsed gamma detectors. In addition, this work provides a pathway for perovskite application and also attracts attention to investigating low-temperature scintillators. Time response and light yield are two of the most important features of a scintillation detector, and are mostly determined by the luminescence properties of the scintillator.![]()
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Dongwei Hei
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Qiang Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xinjian Tan
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Jinlu Ruan
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Xiaoping Ouyang
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China .,Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jing Nie
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Kun Wei
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Qing Xu
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| | - Bin Sun
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| |
Collapse
|
46
|
Zhang C, Chen J, Wang S, Kong L, Lewis SW, Yang X, Rogach AL, Jia G. Metal Halide Perovskite Nanorods: Shape Matters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002736. [PMID: 32985008 DOI: 10.1002/adma.202002736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Indexed: 05/22/2023]
Abstract
Quasi-1D metal halide perovskite nanorods (NRs) are emerging as a type of materials with remarkable optical and electronic properties. Research into this field is rapidly expanding and growing in the past several years, with significant advances in both mechanistic studies of their growth and widespread possible applications. Here, the recent advances in 1D metal halide perovskite nanocrystals (NCs) are reviewed, with a particular emphasis on NRs. At first, the crystal structures of perovskites are elaborated, which is followed by a review of the major synthetic approaches toward perovskite NRs, such as wet-chemical synthesis, substrate-assisted growth, and anion exchange reactions, and discussion of the growth mechanisms associated with each synthetic method. Then, thermal and aqueous stability and the linear polarized luminescence of perovskite NRs are considered, followed by highlighting their applications in solar cells, light-emitting diodes, photodetectors/phototransistors, and lasers. Finally, challenges and future opportunities in this rapidly developing research area are summarized.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Jiayi Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Simon W Lewis
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
47
|
Zhang A, Lv Q. Organic‐Inorganic Hybrid Perovskite Nanomaterials: Synthesis and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anni Zhang
- School of Science Beijing Jiaotong University Beijing 100044 China
| | - Qianrui Lv
- School of Science Beijing Jiaotong University Beijing 100044 China
| |
Collapse
|
48
|
Yang Y, Gao F, Liu Q, Dong J, Li D, Luo X, Guo J, Shi J, Lin Y, Song W, Wang X, Li S. Long and Ultrastable All-Inorganic Single-Crystal CsPbBr 3Microwires: One-Step Solution In-Plane Self-Assembly at Low Temperature and Application for High-Performance Photodetectors. J Phys Chem Lett 2020; 11:7224-7231. [PMID: 32790316 DOI: 10.1021/acs.jpclett.0c01920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As ideal building blocks for optoelectronic devices, one-dimensional (1D) single-crystal perovskite microwires (MWs) have received widespread attention due to their unique physical and chemical properties. Herein, a one-step solution in-plane self-assembly method is proposed to directly grow millimeter-long CsPbBr3 MWs with superior crystal quality at atmospheric environment. This method effectively avoids the use of toxic antisolvents. Furthermore, a MW-based photodetector is successfully fabricated, showing high photoresponsivity (20 A/W) and fast response (less than 0.3 ms). The stability of the photodetector is also confirmed by aging MW in air for 60 days, which shows a negligible change of photocurrent from 1.29 to 1.25 nA (-3 V) under the same experimental conditions. This work provides a low-cost and fast synthesis method for the preparation of single-crystal perovskite MWs and demonstrates their potential application for high-performance and stable photoelectronic device.
Collapse
Affiliation(s)
- Yuqing Yang
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Fangliang Gao
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Qing Liu
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Jianqi Dong
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Dongyang Li
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Xingjun Luo
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Jiaqi Guo
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Jiang Shi
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yinlei Lin
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, People's Republic of China
| | - Weidong Song
- College of Applied Physics and Materials, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Xingfu Wang
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Shuti Li
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, People's Republic of China
| |
Collapse
|
49
|
Kahwagi RF, Thornton ST, Smith B, Koleilat GI. Dimensionality engineering of metal halide perovskites. FRONTIERS OF OPTOELECTRONICS 2020; 13:196-224. [PMID: 36641576 PMCID: PMC9743879 DOI: 10.1007/s12200-020-1039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 05/11/2023]
Abstract
Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering-reducing the thickness of 3D perovskite into atomically thin films-and molecular engineering-incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.
Collapse
Affiliation(s)
- Rashad F Kahwagi
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Sean T Thornton
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Ben Smith
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Ghada I Koleilat
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada.
| |
Collapse
|
50
|
Ashurbekova K, Ashurbekova K, Botta G, Yurkevich O, Knez M. Vapor phase processing: a novel approach for fabricating functional hybrid materials. NANOTECHNOLOGY 2020; 31:342001. [PMID: 32353844 DOI: 10.1088/1361-6528/ab8edb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Materials science is nowadays facing challenges in optimizing properties of materials which are needed for numerous technological applications and include, but are not limited to, mechanics, electronics, optics, etc. The key issue is that for emerging applications materials are needed which incorporate certain properties from polymers or biopolymers and metals or ceramics at the same time, thus fabrication of functional hybrid materials becomes inevitable. Routes for the synthesis of functional hybrid materials can be manifold. Among the explored routes vapor phase processing is a rather novel approach which opts for compatibility with many existing industrial processes. This topical review summarizes the most important approaches and achievements in the synthesis of functional hybrid materials through vapor phase routes with the goal to fabricate suitable hybrid materials for future mechanical, electronic, optical or biomedical applications. Most of the approaches rely on atomic layer deposition (ALD) and techniques related to this process, including molecular layer deposition (MLD) and vapor phase infiltration (VPI), or variations of chemical vapor deposition (CVD). The thus fabricated hybrid materials or nanocomposites often show exceptional physical or chemical properties, which result from synergies of the hybridized materials families. Even though the research in this field is still in its infancy, the initial results encourage further development and promise great application potential in a large variety of applications fields such as flexible electronics, energy conversion or storage, functional textile, and many more.
Collapse
|