1
|
Akay D, Kocak MB. Controlling the Intrinsic Charge Carrier Properties of Two-Dimensional Monochalcogenides (GeSe). ACS OMEGA 2024; 9:42778-42785. [PMID: 39464445 PMCID: PMC11500144 DOI: 10.1021/acsomega.4c04343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 10/29/2024]
Abstract
Strong anisotropy exhibited by materials, particularly in their low-dimensional forms, is a highly intriguing characteristic. In this study, we investigate the effects of geometrical potential and thermodynamics on the electronic properties of monolayer monochalcogenide charge carriers. First, the geometrical potential is introduced in a monolayer structure. We discuss the Fermi surface topology of materials and the effects of the geometrical potential on the low energy bands of 2D group-IV monochalcogenides around the Γ-point. Then, the temperature dependence of the carrier mobility of the monolayer is discussed along with predictions for its potential applications as nanomaterials.
Collapse
Affiliation(s)
- Defne Akay
- Department
of Physics, Faculty of Science, Ankara University, Ankara 06100, Turkey
| | | |
Collapse
|
2
|
Srivastava PK, Hassan Y, Lee S, Joe M, Abbas MS, Ahn H, Tiwari A, Ghosh S, Yoo WJ, Singh B, Low T, Lee C. Unusual Dzyaloshinskii-Moriya Interaction in Graphene/Fe 3GeTe 2 Van der Waals Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402604. [PMID: 38898739 DOI: 10.1002/smll.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Dzyaloshinskii-Moriya interaction (DMI) is shown to induce a topologically protected chiral spin texture in magnetic/nonmagnetic heterostructures. In the context of van der Waals spintronic devices, graphene emerges as an excellent candidate material. However, due to its negligible spin-orbit interaction, inducing DMI to stabilize topological spins when coupled to 3d-ferromagnets remains challenging. Here, it is demonstrated that, despite these challenges, a sizeable Rashba-type spin splitting followed by significant DMI is induced in graphene/Fe3GeTe2. This is made possible due to an interfacial electric field driven by charge asymmetry together with the broken inversion symmetry of the heterostructure. These findings reveal that the enhanced DMI energy parameter, resulting from a large effective electron mass in Fe3GeTe2, remarkably contributes to stabilizing non-collinear spins below the Curie temperature, overcoming the magnetic anisotropy energy. These results are supported by the topological Hall effect, which coexists with the non-trivial breakdown of Fermi liquid behavior, confirming the interplay between spins and non-trivial topology. This work paves the way toward the design and control of interface-driven skyrmion-based devices.
Collapse
Affiliation(s)
| | - Yasir Hassan
- Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34143, South Korea
| | - Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Minwoong Joe
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34143, South Korea
| | - Muhammad Sabbtain Abbas
- Centre for Advanced Studies in Physics, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hyobin Ahn
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ankita Tiwari
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subhasis Ghosh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Won Jong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Budhi Singh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Changgu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
3
|
Gao Z, Ma F, Zhu Z, Zhang Q, Liu Y, Jiao Y, Du A. Ultrahigh Néel Temperature Antiferromagnetism and Ultrafast Laser-Controlled Demagnetization in a Dirac Nodal Line MoB 3 Monolayer. NANO LETTERS 2024; 24:10964-10971. [PMID: 39171642 PMCID: PMC11378283 DOI: 10.1021/acs.nanolett.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (TN), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB3 monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB3 monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 μeV/Mo and an ultrahigh TN of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB3 under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.
Collapse
Affiliation(s)
- Zhen Gao
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Fengxian Ma
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ziming Zhu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081 Changsha, China
| | - Qin Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081 Changsha, China
| | - Ying Liu
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Yalong Jiao
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4000 Queensland, Australia
| |
Collapse
|
4
|
Nadeem M, Wang X. Spin Gapless Quantum Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402503. [PMID: 38962884 DOI: 10.1002/adma.202402503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Quantum materials, with nontrivial quantum phenomena and mechanisms, promise efficient quantum technologies with enhanced functionalities. Quantum technology is held back because a gap between fundamental science and its implementation is not fully understood yet. In order to capitalize the quantum advantage, a new perspective is required to figure out and close this gap. In this review, spin gapless quantum materials, featured by fully spin-polarized bands and the electron/hole transport, are discussed from the perspective of fundamental understanding and device applications. Spin gapless quantum materials can be simulated by minimal two-band models and could help to understand band structure engineering in various topological quantum materials discovered so far. It is explicitly highlighted that various types of spin gapless band dispersion are fundamental ingredients to understand quantum anomalous Hall effect. Based on conventional transport in the bulk and topological transport on the boundaries, various spintronic device aspects of spin gapless quantum materials as well as their advantages in different models for topological field effect transistors are reviewed.
Collapse
Affiliation(s)
- Muhammad Nadeem
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, New South Wales, 2525, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, New South Wales, 2525, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, New South Wales, 2525, Australia
| |
Collapse
|
5
|
He L, Nong H, Tan J, Wu Q, Zheng R, Zhao S, Yu Q, Wang J, Liu B. Growth of 2D Cr 2 O 3 -CrN Mosaic Heterostructures with Tunable Room-Temperature Ferromagnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304946. [PMID: 37482950 DOI: 10.1002/adma.202304946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 07/25/2023]
Abstract
2D magnets have generated much attention due to their potential for spintronic devices. Heterostructures of 2D magnets are interesting platforms for exploring physical phenomena and applications. However, the controlled growth of 2D room-temperature ferromagnetic heterostructures is challenging. Here, one-pot chemical vapor deposition growth of stable 2D Cr2 O3 -CrN mosaic heterostructures (MHs) is reported with a controlled ratio of components that possess robust room-temperature ferromagnetism. The 2D MHs consist of Cr2 O3 flakes with embedded CrN subdomains and the CrN:Cr2 O3 ratio can be tuned from 0% to 100% during growth. By changing the CrN:Cr2 O3 ratio, the ferromagnetism of the MHs (e.g., saturation magnetization, coercive field), which originates from the interfacial coupling between Cr2 O3 and CrN, can be controlled. Importantly, the obtained Cr2 O3 -CrN MHs are stable in air at elevated temperatures and have robust ferromagnetism with Curie temperature >400 K. This work presents a facile method for fabricating 2D MHs with tunable magnetism which will benefit high-temperature spintronics.
Collapse
Affiliation(s)
- Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongxu Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Chin HT, Wang DC, Gulo DP, Yao YC, Yeh HC, Muthu J, Chen DR, Kao TC, Kalbáč M, Lin PH, Cheng CM, Hofmann M, Liang CT, Liu HL, Chuang FC, Hsieh YP. Tungsten Nitride (W 5N 6): An Ultraresilient 2D Semimetal. NANO LETTERS 2024; 24:67-73. [PMID: 38149785 DOI: 10.1021/acs.nanolett.3c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.
Collapse
Affiliation(s)
- Hao-Ting Chin
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Deng-Chi Wang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | - Yu-Chi Yao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chen Yeh
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan
| | - Jeyavelan Muthu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Nano Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ding-Rui Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Tzu-Chun Kao
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Ping-Hui Lin
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Cheng-Maw Cheng
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Lin Liu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
- Center for Theoretical and Computational Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Chen H, Yan L, Wang XL, Xie JJ, Lv J, Wu HS. Computational Discovery of High-Temperature Ferromagnetic Semiconductor Monolayer H-MnN 2. ACS OMEGA 2024; 9:1389-1397. [PMID: 38222525 PMCID: PMC10785093 DOI: 10.1021/acsomega.3c07773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
In the past few years, two-dimensional (2D) high-temperature ferromagnetic semiconductor (FMS) materials with novelty and excellent properties have attracted much attention due to their potential in spintronics applications. In this work, using first-principles calculations, we predict that the H-MnN2 monolayer with the H-MoS2-type structure is a stable intrinsic FMS with an indirect band gap of 0.79 eV and a high Curie temperature (Tc) of 380 K. The monolayer also has a considerable in-plane magnetic anisotropy energy (IMAE) of 1005.70 μeV/atom, including a magnetic shape anisotropy energy induced by the dipole-dipole interaction (shape-MAE) of 168.37 μeV/atom and a magnetic crystalline anisotropy energy resulting from spin-orbit coupling (SOC-MAE) of 837.33 μeV/atom. Further, based on the second-order perturbation theory, its in-plane SOC-MAE of 837.33 μeV/atom is revealed to mainly derive from the couplings of Mn-dxz,dyz and Mn-dx2-y2,dxy orbitals through Lz in the same spin channel. In addition, the biaxial strain and carrier doping can effectively tune the monolayer's magnetic and electronic properties. Such as, under the hole and few electrons doping, the transition from semiconductor to half-metal can be realized, and its Tc can go up to 520 and 620 K under 5% tensile strain and 0.3 hole doping, respectively. Therefore, our research will provide a new, promising 2D FMS for spintronics devices.
Collapse
Affiliation(s)
| | | | - Xu-li Wang
- Key Laboratory of Magnetic
Molecules
and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal
University, Taiyuan 030000, Shanxi, China
| | - Jing-jing Xie
- Key Laboratory of Magnetic
Molecules
and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal
University, Taiyuan 030000, Shanxi, China
| | - Jin Lv
- Key Laboratory of Magnetic
Molecules
and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal
University, Taiyuan 030000, Shanxi, China
| | - Hai-shun Wu
- Key Laboratory of Magnetic
Molecules
and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal
University, Taiyuan 030000, Shanxi, China
| |
Collapse
|
8
|
Cai X, Chen G, Li R, Yu W, Yang X, Jia Y. Janus MoAZ 3H (A = Ge, Si; Z = N, P, As) monolayers: a new class of semiconductors exhibiting excellent photovoltaic and catalytic performances. Phys Chem Chem Phys 2023; 25:29594-29602. [PMID: 37877368 DOI: 10.1039/d3cp02622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Due to the asymmetrical structure in the vertical direction, Janus two-dimensional (2D) monolayer (ML) materials possess some unique physical properties, holding great promise for nanoscale devices. In this paper, based on the newly discovered MoA2Z4 (A = Si, Ge; Z = N, P, As) ML, we propose a class of 2D Janus MoAZ3H ML materials with good stability and excellent mechanical properties using first-principles calculations. We demonstrate that the novel Janus MoAZ3H ML materials are all semiconductors with bandgaps ranging from 0.69 to 2.44 eV, giving rise to good absorption in the visible light region. Especially, both MoSiN3H and MoGeN3H MLs can be used as catalysts for producing hydrogen through water splitting. This catalytic property is much more efficient than that of the MoA2Z4 ML, attributed to the intrinsic electric field induced by the vertical asymmetry effectively separating electrons and holes. More importantly, the carrier mobility of the MoAZ3H ML is up to 103-104 cm2 V-1 s-1 due to the large elastic modulus or small effective mass. Additionally, the electronic properties of the MoAZ3H ML can be easily tuned by strain. Our results suggest a new strategy for designing novel 2D Janus materials, which not only expands the members in the 2D MA2Z4-based Janus family, but also provide candidates with excellent performances in photovoltaic and catalytic fields.
Collapse
Affiliation(s)
- Xiaolin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Guoxing Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Rui Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Weiyang Yu
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Xuefeng Yang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Material Science and Engineering, Henan University, Kaifeng 475004, China.
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Ding S, Yan X, Bergara A, Zhang X, Liu Y, Yang G. Intrinsic Ferromagnetism in 2D Fe 2H with a High Curie Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44745-44752. [PMID: 36130179 DOI: 10.1021/acsami.2c10504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rational design of ferromagnetic materials is crucial for the development of spintronic devices. Using first-principles structural search calculations, we have identified 73 two-dimensional transition metal hydrides. Some of them show interesting magnetic properties, even when combined with the characteristics of the electrides. In particular, the P3̅m1 Fe2H monolayer is stabilized in a 1T-MoS2-type structure with a local magnetic moment of 3 μB per Fe atom, whose robust ferromagnetism is attributed to the exchange interaction between neighboring Fe atoms within and between sublayers, leading to a remarkably high Curie temperature of 340 K. On the other hand, it has a large magnetic anisotropic energy and spin-polarization ratio. Interestingly, the above room-temperature ferromagnetism of the Fe2H monolayer is well preserved within a biaxial strain of 5%. The structure and electron property of surface-functionalized Fe2H are also explored. All of these interesting properties make the Fe2H monolayer an attractive candidate for spintronic nanodevices.
Collapse
Affiliation(s)
- Shicong Ding
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Aitor Bergara
- Departamento de Física, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials, Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials, Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Rezapour MR. Structural, Electronic, and Magnetic Characteristics of Graphitic Carbon Nitride Nanoribbons and Their Applications in Spintronics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16429-16436. [PMID: 36203495 PMCID: PMC9527752 DOI: 10.1021/acs.jpcc.2c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The development of quantum information and quantum computing technology requires special materials to design and manufacture nanosized spintronic devices. Possessing remarkable structural, electronic, and magnetic characteristics, graphitic carbon nitride (g-C3N4) can be a promising candidate as a building block of futuristic nanoelectronics and spintronic systems. Here, using first-principles calculations, we perform a comprehensive study on the structural stability as well as electronic and magnetic properties of triazine-based g-C3N4 nanoribbons (gt-CNRs). Our calculations show that gt-CNRs with different edge conformation exhibit distinct electronic and magnetic characteristics, which can be tuned by the edge H-passivation rate. By investigating gt-CNRs with various possible edge configurations and H-termination rates, we show that while the ferromagnetic (FM) ordering of gt-CNRs stays preserved for all of the studied configurations, half metallicity can only be achieved in nanoribbons with specific edge structure under full H-passivation rate. For spintronic application purposes, we also study spin-transport properties of half-metal gt-CNRs. By determining the suitable gt-CNR configuration, we show the possibility of developing a perfect gt-CNR-based spin filter with a spin filter efficiency (SFE) of 100%. Considering the above-mentioned notable electronic and magnetic characteristics as well as its high thermal stability, we show that gt-CNR would be a remarkable material to fabricate multifunctional spintronic devices.
Collapse
|
11
|
Huang C, Zhou J, Sun H, Wu F, Hou Y, Kan E. Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials. NANO LETTERS 2022; 22:5191-5197. [PMID: 35639726 DOI: 10.1021/acs.nanolett.2c00930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.
Collapse
Affiliation(s)
- Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huasheng Sun
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fang Wu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Yusheng Hou
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
12
|
Xuan X, Zhang Z, Chen C, Guo W. Robust Quantum Anomalous Hall States in Monolayer and Few-Layer TiTe. NANO LETTERS 2022; 22:5379-5384. [PMID: 35776156 DOI: 10.1021/acs.nanolett.2c01421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantum anomalous Hall (QAH) insulators possess exotic properties driven by novel topological physics, but related studies and potential applications have been hindered by the ultralow temperatures required to sustain the operating mechanisms dictated by key material parameters. Here, using first-principles calculations, we predict a robust QAH state in monolayer TiTe that exhibits a high ferromagnetic Curie temperature of 650 K and a sizable band gap of 261 meV. These outstanding benchmark properties stem from the Te atom's large size that favors ferromagnetic kinetic exchange with the neighboring Ti atoms and strong spin-orbit coupling that creates a QAH state by adding a mass term to the Dirac half-semimetal state. Remarkably, the ferromagnetic order remains robust against interlayer stacking via the d-pz/py-pz-d super-super exchange, generating unprecedented QAH states in few-layer configurations with enhanced Curie temperatures and higher Chern numbers. These results signify layered TiTe to be a prime template for exploring novel QAH physics at ambient and higher temperatures.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
13
|
Zhang Q, Zhang Y, Li Y, Fang D, Che J, Zhang E, Zhang P, Zhang S. An intrinsic room-temperature half-metallic ferromagnet in a metal-free PN 2 monolayer. Phys Chem Chem Phys 2022; 24:7077-7083. [PMID: 35262147 DOI: 10.1039/d2cp00010e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In spintronics, the embodiment of abundance availability, long spin relaxation time, complete spin-polarization and high Curie temperature (TC) in intrinsic metal-free half-metallic ferromagnets (MFHMFs) are highly desirable and challenging. In this work, employing density functional theory, we first propose a dynamically, thermally, and mechanically stable two-dimensional (2D) intrinsic MFHMF, i.e. a MoS2-like PN2 monolayer, which possesses not only completely spin-polarized half-metallicity, but also an above-room-temperature TC (385 K). The half-metallic gap is calculated to be 1.70 eV, which can effectively prevent the spin-flip transition caused by thermal agitation. The mechanism of magnetism in the PN2 monolayer is mainly derived from the p electron direct exchange interaction that separates from usual d-state magnetic materials. Moreover, the robustness of the ferromagnetism and half-metallicity is observed against an external strain and carrier (electron or hole) doping. Surprisingly, electron doping can effectively increase the Curie temperature of the PN2 monolayer. The proposed research work provides an insight that PN2 can be a promising candidate for realistic room-temperature metal-free spintronic applications.
Collapse
Affiliation(s)
- Quan Zhang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yang Zhang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ying Li
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dangqi Fang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Junwei Che
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Erhu Zhang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Peng Zhang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shengli Zhang
- MOE Key Lab for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
14
|
Mufti H, Jalil A, Ilyas SZ, Ahmed S, Hassan A, Zhao T. Prediction of Atomically Thin Two-Dimensional Single Monolayer SnGe with High Carrier Mobility : A DFT Study. NEW J CHEM 2022. [DOI: 10.1039/d1nj05511a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using first principles plane-wave calculations within the framework of density functional theory (DFT), we propose a new two-dimensional (2D) honeycomb structure of SnGe. The dynamical stability of the structure SnGe...
Collapse
|
15
|
Caglayan R, Mogulkoc Y, Mogulkoc A, Modarresi M, Rudenko AN. Easy-axis rotation in ferromagnetic monolayer CrN induced by fluorine and chlorine functionalization. Phys Chem Chem Phys 2022; 24:25426-25433. [DOI: 10.1039/d2cp03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The schematic energy diagram with crystal-field splitting of the d states before and after functionalization of CrN is reported.
Collapse
Affiliation(s)
- R. Caglayan
- Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Y. Mogulkoc
- Department of Physics Engineering, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - A. Mogulkoc
- Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - M. Modarresi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A. N. Rudenko
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
16
|
Lee S, Alsalman H, Jiang W, Low T, Kwon YK. Transition Metal-Free Half-Metallicity in Two-Dimensional Gallium Nitride with a Quasi-Flat Band. J Phys Chem Lett 2021; 12:12150-12156. [PMID: 34914401 DOI: 10.1021/acs.jpclett.1c03966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional half-metallicity without a transition metal is an attractive attribute for spintronics applications. On the basis of first-principles calculation, we revealed that a two-dimensional gallium nitride (2D-GaN), which was recently synthesized between graphene and SiC or wurtzite GaN substrate, exhibits half-metallicity due to its half-filled quasi-flat band. We found that graphene plays a crucial role in stabilizing a local octahedral structure, whose unusually high density of states due to a flat band leads to a spontaneous phase transition to its half-metallic phase from normal metal. It was also found that its half-metallicity is strongly correlated to the in-plane lattice constants and thus subjected to substrate modification. To investigate the magnetic property, we simplified its magnetic structure with a two-dimensional Heisenberg model and performed Monte Carlo simulation. Our simulation estimated its Curie temperature (TC) to be ∼165 K under a weak external magnetic field, suggesting that transition metal-free 2D-GaN exhibiting p orbital-based half-metallicity can be utilized in future spintronics.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hussain Alsalman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei Jiang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tony Low
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Young-Kyun Kwon
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
- Department of Information Display and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
17
|
Yan L, Wang BT, Huang X, Li Q, Xue K, Zhang J, Ren W, Zhou L. Surface passivation induced a significant enhancement of superconductivity in layered two-dimensional MSi 2N 4 (M = Ta and Nb) materials. NANOSCALE 2021; 13:18947-18954. [PMID: 34755746 DOI: 10.1039/d1nr05560g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) transition metal di-nitrides (TMN2) have been arousing great interest for their unique mechanic, electronic, optoelectronic, and magnetic properties. The recent successful growth of monolayer MSi2N4 (M = Mo and W) further motivates us to explore new physics and unusual properties behind this family. By using first-principles calculations and Bardeen-Cooper-Schrieffer theory, we predicted the existence of the superconductivity in single-layer (SL) 1T- and 1H-TaN2 with superconducting transition temperatures (Tc) of ∼0.86 and 1.3 K. Specifically, the Tc could be greatly enhanced to ∼24.6 K by passivating the TaN2 monolayer with Si-N bilayers. Furthermore, the superconductivity could be increased to ∼30.4 K via substituting lighter Nb for Ta. This enhancement of superconductivity mainly stems from the softer vibration modes consisting of in-plane Ta/Nb vibrations mixed with Si-xy vibrations. The superconductivity can be further tuned by applying external strains and carrier doping. This enhancement strategy of surface passivation and light atom substitution would suggest a new platform for 2D superconductors and provide an instructive pathway for next-generation nanoelectronics.
Collapse
Affiliation(s)
- Luo Yan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Bao-Tian Wang
- Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 10049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xingyong Huang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Qiaoqiao Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Kui Xue
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
18
|
Wang Y, Jiang X, Wang Y, Zhao J. Ferromagnetic Dirac half-metallicity in transition metal embedded honeycomb borophene. Phys Chem Chem Phys 2021; 23:17150-17157. [PMID: 34184024 DOI: 10.1039/d1cp01708j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule to design such materials and endow them with good stability and desirable magnetic properties. Taking honeycomb borophene as a prototype, we demonstrate that embedding open-shell transition metal (like Cr) atoms in the hexagonal ring of boron atoms can provide two valence electrons to fully occupy the in-plane σ and out-of-plane π bands of B atoms. The remaining four valence electrons reside in d orbitals that split under C6v symmetry, yielding a magnetic moment of ∼2 μB per Cr atom. The resulting CrB2 monolayer exhibits a Dirac half-metal band structure, a high Curie temperature of 175 K, and a large out-of-plane magnetic anisotropy energy of 4 meV per Cr simultaneously. Our work establishes a feasible route for the experimental realization of ferromagnetic Dirac half-metallicity in 2D materials and provides new opportunity to realize high-speed devices with low consumption.
Collapse
Affiliation(s)
- Yanxia Wang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China.
| | | | | | | |
Collapse
|
19
|
Xia B, Gao D, Xue D. Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations. NANOSCALE 2021; 13:12772-12787. [PMID: 34477766 DOI: 10.1039/d1nr02967c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, with the fast development of integrated circuit electronic devices and technologies, it has become urgent to improve the density of data storage and lower the energy losses of devices. Under these circumstances, two-dimensional (2D) materials, which have a smaller size and lower energy loss compared with bulk materials, are becoming ideal candidates for future spintronic devices. Among them, 2D transition metal chalcogenides (TMCs), which have excellent electronic and optical properties, have attracted great attention from researchers. However, most of them are intrinsically non-magnetic, which severely hinders their further applications in spintronics. Therefore, introducing intrinsic room-temperature ferromagnetism into 2D TMC materials has become an important issue in spintronics. In this work, we review the introduction of intrinsic ferromagnetism into typical 2D TMCs using various strategies, such as defect engineering, doping with transition metal elements, and phase transfer. Additionally, we found that their ferromagnetism could be adjusted via changing the experimental conditions, such as the nucleation temperature, ion irradiation dose, doping amount, and phase ratio. Finally, we provide some insight into prospective solutions for introducing ferromagnetism into 2D TMCs, hoping to shed some light on future spintronics development.
Collapse
Affiliation(s)
- Baorui Xia
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, 730000, Lanzhou, China.
| | | | | |
Collapse
|
20
|
Liu Y, Lv H, Wu X. Metal cyclopropenylidene sandwich cluster and nanowire: structural, electronic, and magnetic properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:235301. [PMID: 33618336 DOI: 10.1088/1361-648x/abe8a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Organometallic sandwich clusters and nanowires can offer prototypes for molecular ferromagnet and nanoscale spintronic devices due to the strong coupling of local magnetic moments in the nanowires direction and experimental feasibility. Here, on the basis of first-principles calculations, we reportTMn(c-C3H2)n+1(TM= Ti, Mn;n= 1-4) sandwich clusters and 1D [TM(c-C3H2)]∞sandwich nanowires building from transitional metal and the smallest aromatic carbene of cyclopropenylidene (c-C3H2). Based on the results of lattice dynamic and thermodynamic studies, we show that the magnetic moment of Mnn(c-C3H2)n+1clusters increases linearly with the number ofn, and 1D [Mn(c-C3H2)]∞nanowire is a stable ferromagnetic semiconductor, which can be converted into half metal with carrier doping. In contrary, both Tin(c-C3H2)n+1and 1D [Ti(c-C3H2)]∞nanowire are nonmagnetic materials. This study reveals the potential application of the [TM(c-C3H2)]∞nanowire in spintronics.
Collapse
Affiliation(s)
- Ying Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
21
|
Lin X, Mao Z, Dong S, Jian X, Han R, Wu P. Ferromagnetism and intrinsic half-metallicity of two-dimensional MnN monolayer with square-octagonal structure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225804. [PMID: 33784645 DOI: 10.1088/1361-648x/abf382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The MnN monolayer with square-octagonal structure (so-MnN) is explored using density functional calculations. The results show that theso-MnN monolayer is energetically, dynamically, thermally and mechanically stable, and exhibits the ferromagnetism and intrinsic half-metallicity. The total magnetic moment is 16 μBin unit cell (Mn4N4). The energy band of spin-up crosses the Fermi energy level (EF), while the spin-down channel has semiconductor characteristic with a direct band gap of 3.0 eV at Γ-point. By applying the biaxial strain, the band gap in spin-down channel can be tuned, and theso-MnN monolayer still possesses the characteristic of ferromagnetism and intrinsic half-metallicity. Finally, the Curie temperatureTCincreases gradually under biaxial strains from 0 to +3%, while theTChas a decreasing trend under the biaxial strains from 0 to -3%.
Collapse
Affiliation(s)
- Xiang Lin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhuo Mao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shengjie Dong
- Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou 510450, People's Republic of China
| | - Xiaodong Jian
- National Supercomputer Center in Tianjin, 3F, No.5 Building, TEDA Tianhe Science and Technology Park, Binhai New Area, Tianjin, 300457, People's Republic of China
| | - Rong Han
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ping Wu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
22
|
Wang Y, Jian C, Hong W, Liu W. Nonlayered 2D ultrathin molybdenum nitride synthesized through the ammonolysis of 2D molybdenum dioxide. Chem Commun (Camb) 2021; 57:223-226. [PMID: 33300890 DOI: 10.1039/d0cc07065c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new scalable strategy for the synthesis of nonlayered ultrathin two-dimensional (2D) molybdenum nitride (MoN) on a SiO2/Si substrate by converting 2D molybdenum dioxide (MoO2) through an ammonolysis process. The edge of MoN shows higher performance than that of the basal plane in both acidic and alkaline solutions.
Collapse
Affiliation(s)
- Yuqiao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | | | | | | |
Collapse
|
23
|
Rezapour MR, Lee G, Kim KS. A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. NANOSCALE ADVANCES 2020; 2:5905-5911. [PMID: 36133856 PMCID: PMC9419213 DOI: 10.1039/d0na00652a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 06/14/2023]
Abstract
Designing and fabricating nanosize spintronic devices is a crucial task to develop information technology of the future. However, most of the introduced spin filters suffer from several limitations including difficulty in manipulating the spin current, incapability in utilizing a wide range of dopants to provide magnetism, or obstacles in their experimental realization. Here, by employing first principles calculations, we introduce a structurally simple and functionally efficient spin filter device composed of a zigzag graphene nanoribbon (ZGNR) with an embedded nitrogenated divacancy. We show that the proposed system, possessing a robust ferromagnetic (FM) ordering, exhibits perfect half metallic behavior in the absence of frequently used transition metals (TMs). Our calculations also show that the suggested system is compatible with a wide range of adatoms including basic metals, metalloids, and TMs. It means that besides d electron magnetism originating from TMs, p electrons of incorporated elements of the main group can also cause half metallicity in the electronic structure of the introduced system. Our system exploiting the robustness of doping-induced FM ordering would be beneficial for promising multifunctional spin filter devices.
Collapse
Affiliation(s)
- M Reza Rezapour
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| |
Collapse
|
24
|
Yu X, Chen F, Yu Z, Li Y. Enhanced robustness of half-metallicity in VBr 3 nanowires by strains and transition metal doping. Phys Chem Chem Phys 2020; 22:24455-24461. [PMID: 33084666 DOI: 10.1039/d0cp04764c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of half-metallic behavior for transition metal tribromide nanowires is of great significance to the basic research and application in spintronics. We have theoretically investigated the spin transport properties of half-metallic VBr3 nanowires sandwiched between Au(100) electrodes. For the VBr3 nanowire with a length of 24.75 Å, the spin-filter efficiency (SFE) achieves 100% when the applied bias is less than 0.4 V. The robustness of half-metallic behavior in VBr3 nanowires is investigated by strains and transition metal doping. The bias range of VBr3 nanowires exhibiting perfect SFE is extended by tensile strains, while it becomes narrower under compressive strains. For VBr3 nanowires doped with Co and Cr, the bias range with ideal SFE is significantly broadened at a low doping concentration. In particular, the VBr3 nanowire doped with 1 Cr atom exhibits perfect SFE in an extremely wide bias range of 0-1.0 V. Our results show that the robustness of half-metallicity of VBr3 nanowires can be improved by tensile strains or certain doping, which provides promising ways for further design of high-performance spintronic devices.
Collapse
Affiliation(s)
- Xing Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Fanqiang Chen
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Zhizhou Yu
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
25
|
Yue Z, Li Z, Sang L, Wang X. Spin-Gapless Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905155. [PMID: 32529745 DOI: 10.1002/smll.201905155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The spin-gapless semiconductors (SGSs) are a new class of zero-gap materials which have fully spin polarized electrons and holes. They bridge the zero-gap materials and the half-metals. The band structures of the SGSs can have two types of energy dispersion: Dirac linear dispersion and parabolic dispersion. The Dirac-type SGSs exhibit fully spin polarized Dirac cones, and offer a platform for massless and fully spin polarized spintronics as well as dissipationless edge states via the quantum anomalous Hall effect. With fascinating spin and charge states, they hold great potential for spintronics. There have been tremendous efforts worldwide to find suitable candidates for SGSs. In particular, there is an increasing interest in searching for Dirac type SGSs. In the past decade, a large number of Dirac or parabolic type SGSs have been predicted by density functional theory, and some parabolic SGSs have been experimentally demonstrated. The SGSs hold great potential for spintronics, electronics, and optoelectronics with high speed and low-energy consumption. Here, both the Dirac and the parabolic types of SGSs in different material systems are reviewed and the concepts of the SGS, novel spin and charge states, and the potential applications of SGSs in next-generation spintronic devices are outlined.
Collapse
Affiliation(s)
- Zengji Yue
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2522, Australia
- ARC Centre of Excellence for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, North Wollongong, NSW, 2522, Australia
| | - Zhi Li
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2522, Australia
- ARC Centre of Excellence for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, North Wollongong, NSW, 2522, Australia
| | - Lina Sang
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2522, Australia
- ARC Centre of Excellence for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, North Wollongong, NSW, 2522, Australia
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2522, Australia
- ARC Centre of Excellence for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, North Wollongong, NSW, 2522, Australia
| |
Collapse
|
26
|
Zhang B, Song G, Sun J, Leng J, Zhang C, Wang J. Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics. NANOSCALE 2020; 12:12490-12496. [PMID: 32496486 DOI: 10.1039/d0nr03526b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we predict that the tetragonal MnSi and MnC0.5Si0.5 monolayers are mechanically stable metallic ferromagnetic materials. The thermal stability of the MnC0.5Si0.5 monolayer is verified by our ab initio molecular dynamics (AIMD) result at 300 K. Both MnSi and MnC0.5Si0.5 monolayers exhibit room temperature half-metallic properties, which is very promising for spintronic applications. Both monolayers exhibit large perpendicular magnetic anisotropy, which is desirable for maintaining magnetic order and for high density storage spintronics. A bilayer of the MnSi nanosheet has obviously enhanced thermal stability and exhibits antiferromagnetic metal properties. The Néel temperature could be effectively manipulated and improved by surface functionalization. In addition, monolayer and bilayer MnSi nanosheets exhibit nodal lines in the reciprocal space, and the nodal lines are robust against spin orbit coupling.
Collapse
Affiliation(s)
- Bingwen Zhang
- Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, P. R. China.
| | - Guang Song
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Jie Sun
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China
| | - Jiancai Leng
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China
| | - Cheng Zhang
- Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, P. R. China.
| | - Jun Wang
- Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, P. R. China.
| |
Collapse
|
27
|
Ding Y, Wang Y. Intrinsic ferromagnetism and valley polarization in hydrogenated group V transition-metal dinitride (MN 2H 2, M = V/Nb/Ta) nanosheets: insights from first-principles. NANOSCALE 2020; 12:1002-1012. [PMID: 31844871 DOI: 10.1039/c9nr07793f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the extraordinary electronic and magnetic properties, transition-metal dinitrides (TMDNs) and their derivatives are gaining importance in low-dimensional layered materials. In this work, through first-principles calculations, we have comprehensively investigated the structural and electronic properties of hydrogenated group V TMDN nanosheets. We find that surface hydrogenation can well stabilize the H-, T- and M-phase structures of group V TMDNs, for which the formed MN2H2 nanosheets have robust energetic, dynamical and thermal stabilities. Different from pristine MN2 systems, the H-phase system has become the most favorable structure of MN2H2 nanosheets. Intrinsic ferromagnetism is present in these H-MN2H2 nanosheets, which even exhibit bipolar magnetic semiconducting behaviors. More interestingly, large spontaneous valley polarization occurs in the H-MN2H2 nanosheets, and is attributed to the coexistence of remarkable spin-orbit coupling and magnetic exchange interactions according to the k·p model analysis. Among them, the H-NbN2H2 nanosheets are found to be a promising ferrovalley material, whose valley polarization value reaches as large as 0.11 eV and the Curie temperature is up to 225 K. Besides that, versatile electronic properties are obtained in the T- and M-phase structures of the MN2H2 nanosheets, which will be magnetic/nonmagnetic metals/semiconductors depending on the metal species and phase structures. Our study demonstrates that the hydrogenation can bring robust structural stabilities and unconventional electronic properties into the group V TMDN nanosheets, which enable many potential applications in spintronics and valleytronics.
Collapse
Affiliation(s)
- Yi Ding
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
| | | |
Collapse
|
28
|
Zuntu Abdullahi Y, Demir Vatansever Z, Aktürk E, Akıncı Ü, Üzengi Aktürk O. A tetragonal phase Mn2B2 sheet: a stable room temperature ferromagnet with sizable magnetic anisotropy. Phys Chem Chem Phys 2020; 22:10893-10899. [DOI: 10.1039/d0cp00503g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploring the magnetic properties of two-dimensional (2D) metal boride (MBene) sheets for spin-based electronics is gaining importance for developing electronic devices.
Collapse
Affiliation(s)
| | | | - Ethem Aktürk
- Department of Physics
- Adnan Menderes University
- Aydın
- Turkey
- Nanotechnology Application and Research Center
| | - Ümit Akıncı
- Physics Department
- Faculty of Science
- Dokuz Eylül University
- 35390 İzmir
- Turkey
| | - Olcay Üzengi Aktürk
- Nanotechnology Application and Research Center
- Adnan Menderes University
- Aydın 09010
- Turkey
- Department of Electrical and Electronic Engineering
| |
Collapse
|
29
|
Guo C, Liu Y, Li W, Xin X, Shi X, Zhao Y. Tunable magnetic properties of fluorinated two-dimensional Tetra-MoN2. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Jiang X, Liu Q, Xing J, Zhao J. Two-Dimensional AXenes: A New Family of Room-Temperature d 0 Ferromagnets and Their Structural Phase Transitions. J Phys Chem Lett 2019; 10:7753-7759. [PMID: 31769685 DOI: 10.1021/acs.jpclett.9b03030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent discovery of two-dimensional (2D) magnetic order in monolayer CrI3 and bilayer Fe3GeTe2 has stimulated intense experimental and theoretical activities to expand the family of 2D magnets. Most 2D magnets reported to date are transition metal compounds with unpaired d electrons. Novel 2D intrinsic magnets with long-range p state coupling are also highly desirable. Here, we propose that nonstoichiometry is a feasible and universal strategy to realize long-range p electron magnetic order in 2D metal-shrouded AXenes (Na2N, K2N, and Rb2N), supported by our first-principles calculations. Taking K2N as a representative, three series of cation-deficient K2N (T, H, and I phases) have been predicted as stable ferromagnetic half-metal/metal with a Curie temperature of 480-1180 K. Their robust ferromagnetism is ascribed to the coexistence of carrier-mediated exchange and N-K-N superexchange interaction. Moreover, mechanical deformation can trigger reversible phase transformation by choosing their 3D layered counterpart as the intermediate phase.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams , Dalian University of Technology , Ministry of Education, Dalian 116024 , China
| | - Qinxi Liu
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams , Dalian University of Technology , Ministry of Education, Dalian 116024 , China
| | - Jianpei Xing
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams , Dalian University of Technology , Ministry of Education, Dalian 116024 , China
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams , Dalian University of Technology , Ministry of Education, Dalian 116024 , China
| |
Collapse
|
31
|
Li R, Yang B, Li F, Wang Y, Du X, Yan Y. Strain-induced N-N bonding and magnetic changes in monolayer intrinsic ferromagnetic TmN 2 (Tm = Tc and Nb). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:335801. [PMID: 31063984 DOI: 10.1088/1361-648x/ab1fbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The modulation of magnetic property in two-dimensional (2D) intrinsic ferromagnets is important for their future application in spintronic devices at the nanoscale. In this work, using first-principles calculation, we investigate the effects of strain on the structures, electronic structures and magnetic properties of monolayer 1H-NbN2 and 1H-TcN2. The results show that both the unstrained monolayer 1H-NbN2 and 1H-TcN2 are 2D intrinsically ferromagnetic (FM) metal, in which the magnetic moment of the 1H-NbN2 and 1H-TcN2 comes mainly from the d orbitals of Nb atom and the p orbitals of N atom, respectively. Remarkably, two neighboring N atoms in the unstrained 1H-NbN2 form N-N bond, while those in the 1H-TcN2 do not. When lattice constant a increases to 3.17 Å, monolayer 1H-TcN2 undergoes N-N nonbonding-bonding transition at which the distance between the N atoms d N-N suddenly drops by almost 25%. In particular, due to the bonding between two neighboring N atoms, the magnetic moment of N atoms in 1H-TcN2 are quenched and the ground state transfers to non-magnetic. In contrast, when a decreases to 3.18 Å, monolayer 1H-NbN2 undergoes N - N bonding-nonbonding transition at which the d N-N suddenly increases from 1.79 Å to 1.97 Å. The N-N bonding-nonbonding transition induces the magnetic moments to transfer from the d orbitals of Nb atom to the p orbitals of N atom, while ground state of monolayer 1H-NbN2 remains FM metal.
Collapse
Affiliation(s)
- Ruixin Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Li X, Li X, Yang J. Room-Temperature Ferromagnetism in Transition Metal Embedded Borophene Nanosheets. J Phys Chem Lett 2019; 10:4417-4421. [PMID: 31318221 DOI: 10.1021/acs.jpclett.9b01667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring two-dimensional (2D) materials with room-temperature ferromagnetism and large perpendicular magnetic anisotropy is highly desirable but challenging. Here, through first-principles calculations, we propose a viable strategy to achieve such materials based on transition metal (TM) embedded borophene nanosheets. Due to electron deficiency, the commonly existent hexagon boron vacancies in various borophene phases serve as intrinsic anchor points for electron-rich transition metals, which not only adsorb strongly upon the vacancies but also favor to be embedded into the vacancies, forming 2D planar hybrid nanosheets. The adsorption-to-embedding transition is feasible thermodynamically and kinetically, owing to its exothermic nature and relatively small kinetic barriers. After embedding, phase transition is further proposed to obtain diverse structures of TM embedded borophenes with versatile magnetic properties. Based on the example of χ3 phase borophene, several ferromagnetic TM embedded borophene nanosheets with high Curie temperature and large perpendicular magnetic anisotropy have been predicted.
Collapse
Affiliation(s)
- Xiangyang Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xingxing Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jinlong Yang
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
33
|
Phase Stability and Compressibility of 3R-MoN 2 at High Pressure. Sci Rep 2019; 9:10524. [PMID: 31324821 PMCID: PMC6642113 DOI: 10.1038/s41598-019-46822-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/26/2019] [Indexed: 11/08/2022] Open
Abstract
We report phase stability and compressibility of rhombohedral 3R-MoN2, a newly discovered layer-structured dinitride, using in-situ synchrotron high-pressure x-ray diffraction measurements. The obtained bulk modulus for 3R-MoN2 is 77 (6) GPa, comparable with that of typical transition-metal disulfides (such as MoS2). The axial compressibility along a axis is more than five times stiffer than that along c axis. Such strong elastic anisotropy is mainly attributed to its layered structure with loosely bonded N-Mo-N sandwich interlayers held by weak Van der Waals force. Upon compression up to ~15 GPa, a new hexagonal phase of 2H-MoN2 occurs, which is irreversible at ambient conditions. The structural transition mechanism between 3R and 2H phases is tentatively proposed to be associated with the rotation and translation of sandwich interlayers, giving rise to different layer stacking sequences in both phases. At high temperature, the decomposition of 3R-MoN2 leads to the formation of hexagonal δ-MoN and the onset degassing temperature increases as the pressure increases. In addition, the low-temperature electrical resistivity measurement indicates that 3R-MoN2 behaves as a semiconductor with an estimated band gap of Eg ≈ 0.5 eV. 3R-MoN2 also shows weak antiferromagnetic properties, which probably originates from the occurrence of magnetic zigzag edges in the structure.
Collapse
|
34
|
Li X, Yang J. Toward Room-Temperature Magnetic Semiconductors in Two-Dimensional Ferrimagnetic Organometallic Lattices. J Phys Chem Lett 2019; 10:2439-2444. [PMID: 31034233 DOI: 10.1021/acs.jpclett.9b00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obtaining room-temperature magnetically ordered two-dimensional (2D) semiconductors is urgently needed for high-speed nanospintronic devices but remains a big challenge. Here, we propose a potential route to solve this issue by constructing ferrimagnetic semiconductors in 2D metal organic frameworks, taking advantage of the high Curie temperature of ferrimagnetic semiconductors and easy tunability of metal organic frameworks. The proposal is confirmed by first-principles design of 2D metal organic frameworks with conjugated electron acceptors diketopyrrolopyrrole (DPP) as organic linkers and transition metal Cr (V) as nodes. The robust ferrimagnetic ordering comes from the strong direct exchange interaction between d-electron magnetic moments on transition metals and charge transfer-induced p-electron magnetic moments on DPPs, which can be modulated facilely by reducing the d-p orbital interaction distance via moderate compressive strain or increasing the d-p orbital charge transfer through introducing electron-withdrawing groups into the DPP moiety.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Jinlong Yang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|
35
|
Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X, Wang J. MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. NANOSCALE 2019; 11:4204-4209. [PMID: 30806404 DOI: 10.1039/c8nr09734h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent experimentally demonstrated intrinsic two-dimensional (2D) magnetism has sparked intense interest for advanced spintronic applications. However, the rather low Curie temperature and small magnetic anisotropic energy (MAE) greatly limit their application scope. Here, by using density functional theory calculations, we predict a series of stable 2D MnX (X = P, As, Sb) monolayers, among which MnP and MnAs monolayers exhibit intrinsic ferromagnetic (FM) ordering and considerably large MAEs of 166 and 281 μeV per Mn atom, respectively. More interestingly, the 2D MnP and MnAs monolayers exhibit highly desired half-metallicity with wide spin gaps of about 3 eV. Monte Carlo simulations suggest markedly high Curie temperatures of MnP and MnAs monolayers, ∼495 K and 711 K, respectively. Besides, these monolayers are the lowest energy structures in the 2D search space with excellent dynamic and thermal stabilities. A viable experimental synthesis route is also proposed to produce MnX monolayers via the selective chemical etching method. The outstanding attributes of MnP and MnAs monolayers would substantially broaden the applicability of 2D magnetism for a wide range of applications.
Collapse
Affiliation(s)
- Bing Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tkachenko NV, Steglenko D, Fedik N, Boldyreva NM, Minyaev RM, Minkin VI, Boldyrev AI. Superoctahedral two-dimensional metallic boron with peculiar magnetic properties. Phys Chem Chem Phys 2019; 21:19764-19771. [DOI: 10.1039/c9cp03786a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel two-dimensional ferromagnetic stable boron material has been predicted and exhaustively studied with DFT methods. Its magnetism can be described by the presence of two unpaired delocalized bonding elements inside each distorted octahedron.
Collapse
Affiliation(s)
| | - Dmitriy Steglenko
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Nikita Fedik
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
- Institute of Physical and Organic Chemistry
| | - Natalia M. Boldyreva
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Ruslan M. Minyaev
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Alexander I. Boldyrev
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
- Institute of Physical and Organic Chemistry
| |
Collapse
|
37
|
Zhao K, Li X, Wang S, Wang Q. 2D planar penta-MN2 (M = Pd, Pt) sheets identified through structure search. Phys Chem Chem Phys 2019; 21:246-251. [DOI: 10.1039/c8cp04851g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Planar penta-MN2 sheets are energetically more stable than pyrite MN2, and penta-PtN2 has higher carrier mobility than phosphorene.
Collapse
Affiliation(s)
- Kexian Zhao
- Center for Applied Physics and Technology
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaoyin Li
- Center for Applied Physics and Technology
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Shuo Wang
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Qian Wang
- Center for Applied Physics and Technology
- College of Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
38
|
Jiang Z, Wang P, Xing J, Jiang X, Zhao J. Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39032-39039. [PMID: 30350933 DOI: 10.1021/acsami.8b14037] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) intrinsic ferromagnets with high Curie temperature ( TC) are desirable for spintronic applications. Using systematic first-principles calculations, we investigate the electronic and magnetic properties of 22 monolayer 2D materials with layered bulk phases. From these candidates, we screen out five ferromagnetic monolayer materials belonging to three types of structures: type i (ScCl, YCl, LaCl), type ii (LaBr2), and type iii (CrSBr). Type i is a kind of metallic ferromagnetic material, whereas LaBr2 and CrSBr of type ii and iii are small-bandgap ferromagnetic semiconductors with TC near room temperature. Moreover, the ferromagnetic CrSBr monolayer possesses a large magnetic moment of ∼3 μB per Cr atom, originating from its distorted octahedron coordination. The robust ferromagnetism of the CrSBr monolayer is ascribed to the halogen-mediated (Cr-Br-Cr) and chalcogen-mediated (Cr-S-Cr) superexchange interactions; then, an isoelectronic substitution strategy is proposed to tailor the magnetic coupling strength. Hence, monolayer structures of CrSI, CrSCl, and CrSeBr with notably enhanced Curie temperature up to 500 K as well as favorable formation energy are designed. The moderate interlayer binding energy and high TC make these monolayer ferromagnetic materials feasible for experimental synthesis and attractive as 2D spintronic devices.
Collapse
Affiliation(s)
- Zhou Jiang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian , 116024 , China
| | - Peng Wang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian , 116024 , China
| | - Jianpei Xing
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian , 116024 , China
| | - Xue Jiang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian , 116024 , China
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian , 116024 , China
| |
Collapse
|
39
|
Li SS, Wang YP, Hu SJ, Chen D, Zhang CW, Yan SS. Robust half-metallicity in transition metal tribromide nanowires. NANOSCALE 2018; 10:15545-15552. [PMID: 30087972 DOI: 10.1039/c8nr03322f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
One-dimensional (1D) nanowires (NWs) with robust half-metallicity are a rising star in spintronics. Herein, we theoretically investigate the magnetic and electronic properties of 3d transition-metal tribromide NWs, i.e. TMBr3 (TM = Sc, Ti, V, Cr, Co, and Cu). These systems represent repeated TMBr3 motifs with octahedral configuration, and are expected to be synthesized in a nanotube using an established method. Among these NWs, both VBr3 and CuBr3 NWs exhibit a ferromagnetic (FM) ground state, accompanied by sizable magnetocrystalline anisotropic energy, which is dominated by the superexchange coupling between the TM atoms. Strikingly, a half-metallic nature with a magnetic moment of 4.0μB per unit cell is predicted for the VBr3 NW. By combining with a tight-binding model, we demonstrate that the origin behind the half-metallicity is the half-filled e2 orbitals of the V atoms. The Curie temperature is evaluated to be up to 80 K using Monte Carlo simulations, which is comparable to the temperature of liquid nitrogen. We also find that the half-metallic behavior shows a favorable tolerance to the longitudinal elongation of the wire (∼10%). Additionally, a transition from FM semiconductor to half-metal can be realized in the CuBr3 NW through carrier doping. The coexistence of intrinsic high-temperature FM ordering and half-metallicity endows 1D TMBr3 NWs with great promise for spintronic and photoelectron device applications.
Collapse
Affiliation(s)
- Sheng-Shi Li
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | | | |
Collapse
|
40
|
Tuček J, Błoński P, Ugolotti J, Swain AK, Enoki T, Zbořil R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem Soc Rev 2018; 47:3899-3990. [PMID: 29578212 DOI: 10.1039/c7cs00288b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene, a single two-dimensional sheet of carbon atoms with an arrangement mimicking the honeycomb hexagonal architecture, has captured immense interest of the scientific community since its isolation in 2004. Besides its extraordinarily high electrical conductivity and surface area, graphene shows a long spin lifetime and limited hyperfine interactions, which favors its potential exploitation in spintronic and biomedical applications, provided it can be made magnetic. However, pristine graphene is diamagnetic in nature due to solely sp2 hybridization. Thus, various attempts have been proposed to imprint magnetic features into graphene. The present review focuses on a systematic classification and physicochemical description of approaches leading to equip graphene with magnetic properties. These include introduction of point and line defects into graphene lattices, spatial confinement and edge engineering, doping of graphene lattice with foreign atoms, and sp3 functionalization. Each magnetism-imprinting strategy is discussed in detail including identification of roles of various internal and external parameters in the induced magnetic regimes, with assessment of their robustness. Moreover, emergence of magnetism in graphene analogues and related 2D materials such as transition metal dichalcogenides, metal halides, metal dinitrides, MXenes, hexagonal boron nitride, and other organic compounds is also reviewed. Since the magnetic features of graphene can be readily masked by the presence of magnetic residues from synthesis itself or sample handling, the issue of magnetic impurities and correct data interpretations is also addressed. Finally, current problems and challenges in magnetism of graphene and related 2D materials and future potential applications are also highlighted.
Collapse
Affiliation(s)
- Jiří Tuček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
41
|
Zhao Y, Lin L, Zhou Q, Li Y, Yuan S, Chen Q, Dong S, Wang J. Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides. NANO LETTERS 2018; 18:2943-2949. [PMID: 29668292 DOI: 10.1021/acs.nanolett.8b00314] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monolayer chromium triiodide (CrI3), as the thinnest ferromagnetic material demonstrated in experiment [ Huang et al. Nature 2017 , 546 , 270 ], opens up new opportunities for the application of two-dimensional (2D) materials in spintronic nanodevices. Atom-thick 2D materials with switchable electric polarization are now urgently needed for their rarity and important roles in nanoelectronics. Herein, we unveil that surface I vacancies not only enhance the intrinsic ferromagnetism of monolayer CrI3 but also induce switchable electric polarization. I vacancies bring about an out-of-plane polarization without breaking the nonmetallic nature of CrI3. Meanwhile, the induced polarization can be reversed in a moderate energy barrier, arising from the unique porosity of CrI3 that contributes to the switch of I vacancies between top and bottom surfaces. Engineering 2D switchable polarization through surface vacancies is also applicable to many other metal trihalides, which opens up a new and general way toward pursuing low-dimensional multifunctional nanodevices.
Collapse
Affiliation(s)
- Yinghe Zhao
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Lingfang Lin
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Qionghua Zhou
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Yunhai Li
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Shijun Yuan
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Qian Chen
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Shuai Dong
- School of Physics , Southeast University , Nanjing 211189 , China
| | - Jinlan Wang
- School of Physics , Southeast University , Nanjing 211189 , China
| |
Collapse
|
42
|
Kong X, Li L, Leenaerts O, Wang W, Liu XJ, Peeters FM. Quantum anomalous Hall effect in a stable 1T-YN 2 monolayer with a large nontrivial bandgap and a high Chern number. NANOSCALE 2018; 10:8153-8161. [PMID: 29676423 DOI: 10.1039/c8nr00571k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The quantum anomalous Hall (QAH) effect is a topologically nontrivial phase, characterized by a non-zero Chern number defined in the bulk and chiral edge states in the boundary. Using first-principles calculations, we demonstrate the presence of the QAH effect in a 1T-YN2 monolayer, which was recently predicted to be a Dirac half metal without spin-orbit coupling (SOC). We show that the inclusion of SOC opens up a large nontrivial bandgap of nearly 0.1 eV in the electronic band structure. This results in the nontrivial bulk topology, which is confirmed by the calculation of Berry curvature, anomalous Hall conductance and the presence of chiral edge states. Remarkably, a QAH phase of high Chern number C = 3 is found, and there are three corresponding gapless chiral edge states emerging inside the bulk gap. Different substrates are also chosen to study the possible experimental realization of the 1T-YN2 monolayer, while retaining its nontrivial topological properties. Our results open a new avenue in searching for QAH insulators with high temperature and high Chern numbers, which can have nontrivial practical applications.
Collapse
Affiliation(s)
- Xiangru Kong
- International Center for Quantum Materials, School of Physics, Peking University, and Collaborative Innovation Center of Quantum Matter, 100871 Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Sahoo MPK, Zhang Y, Wang J. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping. Phys Chem Chem Phys 2018; 18:20550-61. [PMID: 27406933 DOI: 10.1039/c6cp03056d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.
Collapse
Affiliation(s)
- M P K Sahoo
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China. and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China and Department of Physics, RGUKT IIIT, Nuzvid Campus, Andhra Pradesh, India
| | - Yajun Zhang
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China.
| | - Jie Wang
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China. and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China
| |
Collapse
|
44
|
Bhattacharyya G, Choudhuri I, Pathak B. High Curie temperature and half-metallicity in an atomically thin main group-based boron phosphide system: long range ferromagnetism. Phys Chem Chem Phys 2018; 20:22877-22889. [DOI: 10.1039/c8cp03440k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we have designed a main group-based novel ferromagnetic half-metallic material with a high Curie temperature for spintronics.
Collapse
Affiliation(s)
- Gargee Bhattacharyya
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology (IIT) Indore
- Indore
- India
| | - Indrani Choudhuri
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology (IIT) Indore
- Indore
- India
| | - Biswarup Pathak
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology (IIT) Indore
- Indore
- India
- Discipline of Chemistry
| |
Collapse
|
45
|
Ebrahimian A, Dadsetani M. Dependence of topological and optical properties on surface-terminated groups in two-dimensional molybdenum dinitride and tungsten dinitride nanosheets. Phys Chem Chem Phys 2017; 19:30301-30309. [PMID: 29115326 DOI: 10.1039/c7cp05844f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using ab initio methods, the topological and optical properties of surface-functionalized XN2 sheets (X = Mo, W) were investigated. Based on first principles calculations and the K·p effective model, the existence of topological nodal-line states in potassium-functionalized XN2 sheets (K2MoN2 and K2WN2) is reported. This study shows that a nodal line ring exists near the Fermi level in the absence of spin-orbit coupling (SOC). When SOC is included, the band-crossing points are gapped, giving rise to a new nodal ring along Γ-K. This band-crossing is protected due to the existence of mirror reflection and time-reversal symmetry. These calculations demonstrate the inclusion of electron-hole (e-h) interactions, which were further confirmed through the optical absorption of functionalized MoN2, revealing the presence of strongly bound excitons below the absorption onset where they depend strongly on the terminated surface groups. Moreover, the surface terminated groups change the energy distribution range of the exciton, which can be used to tune the absorption of infrared (IR) and visible light. Interestingly, F2MoN2 has several strongly bound excitons, with the first exciton having a binding energy of 1.35 eV, larger than the corresponding one in the transition metal dichalcogenide MoS2.
Collapse
Affiliation(s)
- Ali Ebrahimian
- Department of Physics, Lorestan University, Khoramabad, Iran.
| | | |
Collapse
|
46
|
Li L, Boullay P, Lu P, Wang X, Jian J, Huang J, Gao X, Misra S, Zhang W, Perez O, Steciuk G, Chen A, Zhang X, Wang H. Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities. NANO LETTERS 2017; 17:6575-6582. [PMID: 28968496 DOI: 10.1021/acs.nanolett.7b02284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden-Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi3O3+δ] and [MO2]1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. The realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.
Collapse
Affiliation(s)
- Leigang Li
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Philippe Boullay
- Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT), Normandie Université, ENSICAEN, UNICAEN, CNRS UMR 6508, 6 Boulevard Maréchal Juin, F-14050 Caen Cedex 4, France
| | - Ping Lu
- Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | - Xuejing Wang
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jie Jian
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jijie Huang
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Xingyao Gao
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Shikhar Misra
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Wenrui Zhang
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Olivier Perez
- Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT), Normandie Université, ENSICAEN, UNICAEN, CNRS UMR 6508, 6 Boulevard Maréchal Juin, F-14050 Caen Cedex 4, France
| | - Gwladys Steciuk
- Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT), Normandie Université, ENSICAEN, UNICAEN, CNRS UMR 6508, 6 Boulevard Maréchal Juin, F-14050 Caen Cedex 4, France
| | - Aiping Chen
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
47
|
Tong Y, Guo Y, Mu K, Shan H, Dai J, Liu Y, Sun Z, Zhao A, Zeng XC, Wu C, Xie Y. Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703123. [PMID: 28861927 DOI: 10.1002/adma.201703123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have been regarded as one of the best nonartificial low-dimensional building blocks for developing spintronic nanodevices. However, the lack of spin polarization in the vicinity of the Fermi surface and local magnetic moment in pristine TMDs has greatly hampered the exploitation of magnetotransport properties. Herein, a half-metallic structure of TMDs is successfully developed by a simple chemical defect-engineering strategy. Dual native defects decorate titanium diselenides with the coexistence of metal-Ti-atom incorporation and Se-anion defects, resulting in a high-spin-polarized current and local magnetic moment of 2D Ti-based TMDs toward half-metallic room-temperature ferromagnetism character. Arising from spin-polarization transport, the as-obtained T-TiSe1.8 nanosheets exhibit a large negative magnetoresistance phenomenon with a value of -40% (5T, 10 K), representing one of the highest negative magnetoresistance effects among TMDs. It is anticipated that this dual regulation strategy will be a powerful tool for optimizing the intrinsic physical properties of TMD systems.
Collapse
Affiliation(s)
- Yun Tong
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuqiao Guo
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kejun Mu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Shan
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Dai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Aidi Zhao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Changzheng Wu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
48
|
Zhou L, Zhuo Z, Kou L, Du A, Tretiak S. Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis. NANO LETTERS 2017; 17:4466-4472. [PMID: 28585828 DOI: 10.1021/acs.nanolett.7b01704] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, two-dimensional (2D) transition-metal nitrides have triggered an enormous interest for their tunable mechanical, optoelectronic, and magnetic properties, significantly enriching the family of 2D materials. Here, by using a broad range of first-principles calculations, we report a systematic study of 2D rectangular materials of titanium mononitride (TiN), exhibiting high energetic and thermal stability due to in-plane d-p orbital hybridization and synergetic out-of-plane electronic delocalization. The rectangular TiN monolayer also possesses enhanced auxeticity and ferroelasticity with an alternating order of Possion's Ratios, stemming from the competitive interactions of intra- and inter- Ti-N chains. Such TiN nanosystem is a n-type metallic conductor with specific tunable pseudogaps. Halogenation of TiN monolayer downshifts the Fermi level, achieving the optical energy gap up to 1.85 eV for TiNCl(Br) sheet. Overall, observed electronic features suggest that the two materials are potential photocatalysts for water splitting application. These results extend emerging phenomena in a rich family 2D transition-metal-based materials and hint for a new platform for the next-generation functional nanomaterials.
Collapse
Affiliation(s)
- Liujiang Zhou
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zhiwen Zhuo
- Department of Materials Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Liangzhi Kou
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
49
|
Jiao Y, Ma F, Zhang C, Bell J, Sanvito S, Du A. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride. PHYSICAL REVIEW LETTERS 2017; 119:016403. [PMID: 28731769 DOI: 10.1103/physrevlett.119.016403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 06/07/2023]
Abstract
Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.
Collapse
Affiliation(s)
- Yalong Jiao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Fengxian Ma
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Chunmei Zhang
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - John Bell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| |
Collapse
|
50
|
Li L, Wu M. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators. ACS NANO 2017; 11:6382-6388. [PMID: 28602074 DOI: 10.1021/acsnano.7b02756] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vertical ferroelectricity in two-dimensional (2D) materials is desirable for high-density data storage without quantum tunneling or high power consumption/dissipation, which still remains elusive due to the surface-depolarizing field. Herein, we report the first-principles evidence of 2D vertical ferroelectricity induced by interlayer translation, which exists extensively in the graphitic bilayer of BN, AlN, ZnO, MoS2, GaSe, etc.; the bilayer of some 2D ferromagnets like MXene, VS2, and MoN2 can be even multiferroics with switchable magnetizations upon ferroelectric switching, rendering efficient reading and writing for high-density data storage. In particular, the electromechanical coupling between interlayer translation and potential can be used to drive the flow of electrons as nanogenerators for harvesting energy from human activities, ocean waves, mechanical vibration, etc. A ferroelectric superlattice with spatial varying potential can be formed in a bilayer Moire pattern upon a small twist or strain, making it possible to generate periodic n/p doped-domains and shape the periodicity of the potential energy landscape. Finally, some of their multilayer counterparts with wurtzite structures like a ZnO multilayer are revealed to exhibit another type of vertical ferroelectricity with greatly enhanced polarizations.
Collapse
Affiliation(s)
- Lei Li
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Menghao Wu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|