1
|
Lo Buglio G, Lo Cicero A, Campora S, Ghersi G. The Multifaced Role of Collagen in Cancer Development and Progression. Int J Mol Sci 2024; 25:13523. [PMCID: PMC11678882 DOI: 10.3390/ijms252413523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Collagen is a crucial protein in the extracellular matrix (ECM) essential for preserving tissue architecture and supporting crucial cellular functions like proliferation and differentiation. There are twenty-eight identified types of collagen, which are further divided into different subgroups. This protein plays a critical role in regulating tissue homeostasis. However, in solid tumors, the balance can be disrupted, due to an abundance of collagen in the tumor microenvironment, which significantly affects tumor growth, cell invasion, and metastasis. It is important to investigate the specific types of collagens in cancer ECM and their distinct roles in tumor progression to comprehend their unique contribution to tumor behavior. The diverse pathophysiological functions of different collagen types in cancers illustrate collagen’s dual roles, offering potential therapeutic options and serving as prognostic markers.
Collapse
Affiliation(s)
- Gabriele Lo Buglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Abiel srl, 90128 Palermo, Italy
| |
Collapse
|
2
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
3
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
4
|
Jain K, Pandey A, Wang H, Chung T, Nemati A, Kanchanawong P, Sheetz MP, Cai H, Changede R. TiO 2 Nano-Biopatterning Reveals Optimal Ligand Presentation for Cell-Matrix Adhesion Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309284. [PMID: 38340044 PMCID: PMC11126362 DOI: 10.1002/adma.202309284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Nanoscale organization of transmembrane receptors is critical for cellular functions, enabled by the nanoscale engineering of bioligand presentation. Previously, a spatial threshold of ≤60 nm for integrin binding ligands in cell-matrix adhesion is demonstrated using monoliganded gold nanoparticles. However, the ligand geometric arrangement is limited to hexagonal arrays of monoligands, while plasmonic quenching limits further investigation by fluorescence-based high-resolution imaging. Here, these limitations are overcome with dielectric TiO2 nanopatterns, eliminating fluorescence quenching, thus enabling super-resolution fluorescence microscopy on nanopatterns. By dual-color super-resolution imaging, high precision and consistency among nanopatterns, bioligands, and integrin nanoclusters are observed, validating the high quality and integrity of both nanopattern functionalization and passivation. By screening TiO2 nanodiscs with various diameters, an increase in fibroblast cell adhesion, spreading area, and Yes-associated protein (YAP) nuclear localization on 100 nm diameter compared with smaller diameters was observed. Focal adhesion kinase is identified as the regulatory signal. These findings explore the optimal ligand presentation when the minimal requirements are sufficiently fulfilled in the heterogenous extracellular matrix network of isolated binding regions with abundant ligands. Integration of high-fidelity nano-biopatterning with super-resolution imaging allows precise quantitative studies to address early signaling events in response to receptor clustering and their nanoscale organization.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Ashish Pandey
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Hao Wang
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Taerin Chung
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Arash Nemati
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
5
|
Zhai X, Pu D, Wang R, Zhang J, Lin Y, Wang Y, Zhai N, Peng X, Zhou Q, Li L. Gas6/AXL pathway: immunological landscape and therapeutic potential. Front Oncol 2023; 13:1121130. [PMID: 37265798 PMCID: PMC10231434 DOI: 10.3389/fonc.2023.1121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer is a disease with ecological and evolutionary unity, which seriously affects the survival and quality of human beings. Currently, many reports have suggested Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is associated with the carcinogenetic mechanisms of multiple malignancies, such as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer, melanoma, prostate cancer, etc., and shortened overall survival. It is accepted that the Gas6/TAM pathway can promote the malignant transformation of various types of cancer cells. Gas6 has the highest affinity for Axl, an important member of the TAM receptor family. Knockdown of the TAM receptors Axl significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also has an essential function in the tumor microenvironment. The Gas6/AXL pathway regulates angiogenesis, immune-related molecular markers and the secretion of certain cytokines in the tumor microenvironment, and also modulates the functions of a variety of immune cells. In addition, evidence suggests that the Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple studies have begun to explore in depth the importance of the Gas6/AXL pathway as a potential tumor therapeutic target as well as its broad promise in immunotherapy; therefore, a timely review of the characteristics of the Gas6/AXL pathway and its value in tumor treatment strategies is warranted. This comprehensive review assessed the roles of Gas6 and AXL receptors and their associated pathways in carcinogenesis and cancer progression, summarized the impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent research progress on the relationship between Gas6/AXL and cancer drug resistance.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Xuan Peng
- Department of Pathophysiology, Hubei Minzu University, Enshi, Hubei, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
7
|
Yao M, Tijore A, Cheng D, Li JV, Hariharan A, Martinac B, Tran Van Nhieu G, Cox CD, Sheetz M. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. SCIENCE ADVANCES 2022; 8:eabo1461. [PMID: 36351022 PMCID: PMC9645726 DOI: 10.1126/sciadv.abo1461] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Mechanosensing is an integral part of many physiological processes including stem cell differentiation, fibrosis, and cancer progression. Two major mechanosensing systems-focal adhesions and mechanosensitive ion channels-can convert mechanical features of the microenvironment into biochemical signals. We report here unexpectedly that the mechanosensitive calcium-permeable channel Piezo1, previously perceived to be diffusive on plasma membranes, binds to matrix adhesions in a force-dependent manner, promoting cell spreading, adhesion dynamics, and calcium entry in normal but not in most cancer cells tested except some glioblastoma lines. A linker domain in Piezo1 is needed for binding to adhesions, and overexpression of the domain blocks Piezo1 binding to adhesions, decreasing adhesion size and cell spread area. Thus, we suggest that Piezo1 is a previously unidentified component of focal adhesions in nontransformed cells that catalyzes adhesion maturation and growth through force-dependent calcium signaling, but this function is absent in most cancer cells.
Collapse
Affiliation(s)
- Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Ajay Tijore
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Guy Tran Van Nhieu
- Ecole Normale Supérieure Paris-Saclay Gif-sur-Yvette, France
- Team Ca Signaling and Microbial Infections, Institute for Integrative Biology of the Cell–CNRS UMR9198–Inserm U1280, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Molecular MechanoMedicine Program, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Corresponding author. (M.Y); (C.C.); (M.S.)
| |
Collapse
|
8
|
Tijore A, Yang B, Sheetz M. Cancer cells can be killed mechanically or with combinations of cytoskeletal inhibitors. Front Pharmacol 2022; 13:955595. [PMID: 36299893 PMCID: PMC9589226 DOI: 10.3389/fphar.2022.955595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
For over two centuries, clinicians have hypothesized that cancer developed preferentially at the sites of repeated damage, indicating that cancer is basically “continued healing.” Tumor cells can develop over time into other more malignant types in different environments. Interestingly, indefinite growth correlates with the depletion of a modular, early rigidity sensor, whereas restoring these sensors in tumor cells blocks tumor growth on soft surfaces and metastases. Importantly, normal and tumor cells from many different tissues exhibit transformed growth without the early rigidity sensor. When sensors are restored in tumor cells by replenishing depleted mechanosensory proteins that are often cytoskeletal, cells revert to normal rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive to mechanical stretching or ultrasound which will cause apoptosis of transformed growth cells (Mechanoptosis). Mechanoptosis is driven by calcium entry through mechanosensitive Piezo1 channels that activate a calcium-induced calpain response commonly found in tumor cells. Since tumor cells from many different tissues are in a transformed growth state that is, characterized by increased growth, an altered cytoskeleton and mechanoptosis, it is possible to inhibit growth of many different tumors by mechanical activity and potentially by cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Ajay Tijore
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| |
Collapse
|
9
|
Qin R, Melamed S, Yang B, Saxena M, Sheetz MP, Wolfenson H. Tumor Suppressor DAPK1 Catalyzes Adhesion Assembly on Rigid but Anoikis on Soft Matrices. Front Cell Dev Biol 2022; 10:959521. [PMID: 35927990 PMCID: PMC9343699 DOI: 10.3389/fcell.2022.959521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer cells normally grow on soft surfaces due to impaired mechanosensing of the extracellular matrix rigidity. Upon restoration of proper mechanosensing, cancer cells undergo apoptosis on soft surfaces (anoikis) like most normal cells. However, the link between mechanosensing and activation of anoikis is not clear. Here we show that death associated protein kinase 1 (DAPK1), a tumor suppressor that activates cell death, is directly linked to anoikis activation through rigidity sensing. We find that when rigidity sensing is decreased through inhibition of DAPK1 activity, cells are transformed for growth on soft matrices. Further, DAPK1 catalyzes matrix adhesion assembly and is part of adhesions on rigid surfaces. This pathway involves DAPK1 phosphorylation of tropomyosin1.1, the talin1 head domain, and tyrosine phosphorylation of DAPK1 by Src. On soft surfaces, DAPK1 rapidly dissociates from the adhesion complexes and activates apoptosis as catalyzed by PTPN12 activity and talin1 head. Thus, DAPK1 is important for adhesion assembly on rigid surfaces and the activation of anoikis on soft surfaces through its binding to rigidity-sensing modules.
Collapse
Affiliation(s)
- Ruifang Qin
- Department of Biological Sciences, Columbia University, New York City, NY, United States
| | - Shay Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States
| | - Michael P. Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Haguy Wolfenson, ; Michael P. Sheetz,
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- *Correspondence: Haguy Wolfenson, ; Michael P. Sheetz,
| |
Collapse
|
10
|
Abstract
Single-molecule mechanochemical sensing (SMMS) is a novel biosensing technique using mechanical force as a signal transduction mechanism. In the mechanochemical sensing, the chemical binding of an analyte molecule to a sensing template is converted to mechanical signals, such as tensile force, of the template. Since mechanical force can be conveniently monitored by single-molecule tools, such as optical tweezers, magnetic tweezers, or Atomic Force Microscopy, mechanochemical sensing is often carried out at the single molecule level. In traditional format of ensemble sensing, sensitivity can be achieved via chemical or electrical amplifications, which are materials intensive and time-consuming. To address these problems, in 2011, we used the principle of mechanochemical coupling in a single molecular template to detect single nucleotide polymorphism (SNP) in DNA fragments. The single-molecule sensitivity in such SMMS strategy allows to removing complex amplification steps, drastically conserving materials and increasing temporal resolution in the sensing. By placing many probing units throughout a single-molecule sensing template, SMMS can have orders of magnitude better efficiency in the materials usage (i.e., high Atom Economy) with respect to the ensemble biosensing. The SMMS sensing probes also enable topochemical arrangement of different sensing units. By placing these units in a spatiotemporally addressable fashion, single-molecule topochemical sensors have been demonstrated in our lab to detect an expandable set of microRNA targets. Because of the stochastic behavior of single-molecule binding, however, it is challenging for the SMMS to accurately report analyte concentrations in a fixed time window. While multivariate analysis has been shown to rectify background noise due to stochastic nature of single-molecule probes, a template containing an array of sensing units has shown ensemble average behaviors to address the same problem. In this so-called ensemble single-molecule sensing, collective mechanical transitions of many sensing units occur in the SMMS sensing probes, which allows accurate quantification of analytes. For the SMMS to function as a viable sensing approach readily adopted by biosensing communities, the future of the SMMS technique relies on the reduction in the complexity and cost of instrumentation to report mechanical signals. In this account, we first explain the mechanism and main features of the SMMS. We then specify basic elements employed in SMMS. Using DNA as an exemplary SMMS template, we further summarize different types of SMMS which present multiplexing capability and increased throughput. Finally, recent efforts to develop simple and affordable high throughput methods for force generation and measurement are discussed in this Account for potential usage in the mechanochemical sensing.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Rabia Tahir
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
11
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
12
|
Mgharbel A, Migdal C, Bouchonville N, Dupenloup P, Fuard D, Lopez-Soler E, Tomba C, Courçon M, Gulino-Debrac D, Delanoë-Ayari H, Nicolas A. Cells on Hydrogels with Micron-Scaled Stiffness Patterns Demonstrate Local Stiffness Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:648. [PMID: 35214978 PMCID: PMC8880377 DOI: 10.3390/nano12040648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Cell rigidity sensing-a basic cellular process allowing cells to adapt to mechanical cues-involves cell capabilities exerting force on the extracellular environment. In vivo, cells are exposed to multi-scaled heterogeneities in the mechanical properties of the surroundings. Here, we investigate whether cells are able to sense micron-scaled stiffness textures by measuring the forces they transmit to the extracellular matrix. To this end, we propose an efficient photochemistry of polyacrylamide hydrogels to design micron-scale stiffness patterns with kPa/µm gradients. Additionally, we propose an original protocol for the surface coating of adhesion proteins, which allows tuning the surface density from fully coupled to fully independent of the stiffness pattern. This evidences that cells pull on their surroundings by adjusting the level of stress to the micron-scaled stiffness. This conclusion was achieved through improvements in the traction force microscopy technique, e.g., adapting to substrates with a non-uniform stiffness and achieving a submicron resolution thanks to the implementation of a pyramidal optical flow algorithm. These developments provide tools for enhancing the current understanding of the contribution of stiffness alterations in many pathologies, including cancer.
Collapse
Affiliation(s)
- Abbas Mgharbel
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Camille Migdal
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Nicolas Bouchonville
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - Paul Dupenloup
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - David Fuard
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - Eline Lopez-Soler
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Caterina Tomba
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Marie Courçon
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Danielle Gulino-Debrac
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Héléne Delanoë-Ayari
- Université de Lyon, University Claude Bernard Lyon1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France;
| | - Alice Nicolas
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| |
Collapse
|
13
|
Yang YA, Nguyen E, Sankara Narayana GHN, Heuzé M, Fu C, Yu H, Mège RM, Ladoux B, Sheetz MP. Local contractions regulate E-cadherin rigidity sensing. SCIENCE ADVANCES 2022; 8:eabk0387. [PMID: 35089785 PMCID: PMC8797795 DOI: 10.1126/sciadv.abk0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin-coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA-mediated tension of neighboring cells and sort out myosin IIA-depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
Collapse
Affiliation(s)
- Yi-An Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Melina Heuzé
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Bioengineering and Bioimaging, A*STAR, Singapore 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (M.P.S.); (B.L.)
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Corresponding author. (M.P.S.); (B.L.)
| |
Collapse
|
14
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
15
|
Tijore A, Yao M, Wang YH, Hariharan A, Nematbakhsh Y, Lee Doss B, Lim CT, Sheetz M. Selective killing of transformed cells by mechanical stretch. Biomaterials 2021; 275:120866. [PMID: 34044258 DOI: 10.1016/j.biomaterials.2021.120866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells differ from normal cells in several important features like anchorage independence, Warburg effect and mechanosensing. Further, in recent studies, they respond aberrantly to external mechanical distortion. Consistent with altered mechano-responsiveness, we find that cyclic stretching of tumor cells from many different tissues reduces growth rate and causes apoptosis on soft surfaces. Surprisingly, normal cells behave similarly when transformed by depletion of the rigidity sensor protein (Tropomyosin 2.1). Restoration of rigidity sensing in tumor cells promotes rigidity dependent mechanical behavior, i.e. cyclic stretching enhances growth and reduces apoptosis on soft surfaces. The mechanism of mechanical apoptosis (mechanoptosis) of transformed cells involves calcium influx through the mechanosensitive channel, Piezo1 that activates calpain 2 dependent apoptosis through the BAX molecule and subsequent mitochondrial activation of caspase 3 on both fibronetin and collagen matrices. Thus, it is possible to selectively kill tumor cells by mechanical perturbations, while stimulating the growth of normal cells.
Collapse
Affiliation(s)
- Ajay Tijore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yu-Hsiu Wang
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yasaman Nematbakhsh
- Department of Biomedical Engineering, National University of Singapore, 117575, Singapore
| | - Bryant Lee Doss
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 117575, Singapore; Institute for Health Innovation and Technology, National University of Singapore, 117599, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Abstract
Integrin-mediated adhesion of cells to the extracellular matrix (ECM) is crucial for the physiological development and functioning of tissues but is pathologically disrupted in cancer. Indeed, abnormal regulation of integrin receptors and ECM ligands allows cancer cells to break down tissue borders, breach into blood and lymphatic vessels, and survive traveling in suspension through body fluids or residing in metabolically or pharmacologically hostile environments. Different molecular and cellular mechanisms responsible for the modulation of integrin adhesive function or mechanochemical signaling are altered and participate in cancer. Cancer development and progression are also bolstered by dysfunctionalities of integrin-mediated ECM adhesion occurring both in tumor cells and in elements of the surrounding tumor microenvironment, such as vascular cells, cancer-associated fibroblasts, and immune cells. Mounting evidence suggests that integrin inhibitors may be effectively exploited to overcome resistance to standard-of-care anti-cancer therapies.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
17
|
Steiner CA, Rodansky ES, Johnson LA, Berinstein JA, Cushing KC, Huang S, Spence JR, Higgins PDR. AXL Is a Potential Target for the Treatment of Intestinal Fibrosis. Inflamm Bowel Dis 2021; 27:303-316. [PMID: 32676663 PMCID: PMC7885333 DOI: 10.1093/ibd/izaa169] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis is the final common pathway to intestinal failure in Crohn's disease, but no medical therapies exist to treat intestinal fibrosis. Activated myofibroblasts are key effector cells of fibrosis in multiple organ systems, including the intestine. AXL is a receptor tyrosine kinase that has been implicated in fibrogenic pathways involving myofibroblast activation. We aimed to investigate the AXL pathway as a potential target for the treatment of intestinal fibrosis. METHODS To establish proof of concept, we first analyzed AXL gene expression in 2 in vivo models of intestinal fibrosis and 3 in vitro models of intestinal fibrosis. We then tested whether pharmacological inhibition of AXL signaling could reduce fibrogenesis in 3 in vitro models of intestinal fibrosis. In vitro testing included 2 distinct cell culture models of intestinal fibrosis (matrix stiffness and TGF-β1 treatment) and a human intestinal organoid model using TGF-β1 cytokine stimulation. RESULTS Our findings suggest that the AXL pathway is induced in models of intestinal fibrosis. We demonstrate that inhibition of AXL signaling with the small molecule inhibitor BGB324 abrogates both matrix-stiffness and transforming growth factor beta (TGF-β1)-induced fibrogenesis in human colonic myofibroblasts. AXL inhibition with BGB324 sensitizes myofibroblasts to apoptosis. Finally, AXL inhibition with BGB324 blocks TGF-β1-induced fibrogenic gene and protein expression in human intestinal organoids. CONCLUSIONS The AXL pathway is active in multiple models of intestinal fibrosis. In vitro experiments suggest that inhibiting AXL signaling could represent a novel approach to antifibrotic therapy for intestinal fibrosis such as in Crohn's disease.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva S Rodansky
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A Johnson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly C Cushing
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
19
|
Javier-Torrent M, Zimmer-Bensch G, Nguyen L. Mechanical Forces Orchestrate Brain Development. Trends Neurosci 2020; 44:110-121. [PMID: 33203515 DOI: 10.1016/j.tins.2020.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
During brain development, progenitors generate successive waves of neurons that populate distinct cerebral regions, where they settle and differentiate within layers or nuclei. While migrating and differentiating, neurons are subjected to mechanical forces arising from the extracellular matrix, and their interaction with neighboring cells. Changes in brain biomechanical properties, during its formation or aging, are converted in neural cells by mechanotransduction into intracellular signals that control key neurobiological processes. Here, we summarize recent findings that support the contribution of mechanobiology to neurodevelopment, with focus on the cerebral cortex. Also discussed are the existing toolbox and emerging technologies made available to assess and manipulate the physical properties of neurons and their environment.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | | | - Laurent Nguyen
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
20
|
Boujemaa-Paterski R, Martins B, Eibauer M, Beales CT, Geiger B, Medalia O. Talin-activated vinculin interacts with branched actin networks to initiate bundles. eLife 2020; 9:e53990. [PMID: 33185186 PMCID: PMC7682986 DOI: 10.7554/elife.53990] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Vinculin plays a fundamental role in integrin-mediated cell adhesion. Activated by talin, it interacts with diverse adhesome components, enabling mechanical coupling between the actin cytoskeleton and the extracellular matrix. Here we studied the interactions of activated full-length vinculin with actin and the way it regulates the organization and dynamics of the Arp2/3 complex-mediated branched actin network. Through a combination of surface patterning and light microscopy experiments we show that vinculin can bundle dendritic actin networks through rapid binding and filament crosslinking. We show that vinculin promotes stable but flexible actin bundles having a mixed-polarity organization, as confirmed by cryo-electron tomography. Adhesion-like synthetic design of vinculin activation by surface-bound talin revealed that clustered vinculin can initiate and immobilize bundles from mobile Arp2/3-branched networks. Our results provide a molecular basis for coordinate actin bundle formation at nascent adhesions.
Collapse
Affiliation(s)
- Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of ZurichZurichSwitzerland
- Université Grenoble AlpesGrenobleFrance
| | - Bruno Martins
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Charlie T Beales
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ohad Medalia
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C. Rab18 regulates focal adhesion dynamics by interacting with kinectin-1 at the endoplasmic reticulum. J Cell Biol 2020; 219:151855. [PMID: 32525992 PMCID: PMC7337506 DOI: 10.1083/jcb.201809020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The members of the Rab family of small GTPases are molecular switches that regulate distinct steps in different membrane traffic pathways. In addition to this canonical function, Rabs can play a role in other processes, such as cell adhesion and motility. Here, we reveal the role of the small GTPase Rab18 as a positive regulator of directional migration in chemotaxis, and the underlying mechanism. We show that knockdown of Rab18 reduces the size of focal adhesions (FAs) and influences their dynamics. Furthermore, we found that Rab18, by directly interacting with the endoplasmic reticulum (ER)-resident protein kinectin-1, controls the anterograde kinesin-1–dependent transport of the ER required for the maturation of nascent FAs and protrusion orientation toward a chemoattractant. Altogether, our data support a model in which Rab18 regulates kinectin-1 transport toward the cell surface to form ER–FA contacts, thus promoting FA growth and cell migration during chemotaxis.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Xiaochun Xu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xian Hu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Felix Margadant
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J. Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Dev Cell 2020; 54:302-316.e7. [PMID: 32574556 DOI: 10.1016/j.devcel.2020.05.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) regulate various cellular processes via distinct mechanotransduction pathways. In breast cancer, increased ECM stiffness promotes epithelial-to-mesenchymal transition (EMT), cell invasion, and metastasis. Here, we identify a mechanosensitive EPHA2/LYN protein complex regulating EMT and metastasis in response to increasing ECM stiffness during tumor progression. High ECM stiffness leads to ligand-independent phosphorylation of ephrin receptor EPHA2, which recruits and activates the LYN kinase. LYN phosphorylates the EMT transcription factor TWIST1 to release TWIST1 from its cytoplasmic anchor G3BP2 to enter the nucleus, thus triggering EMT and invasion. Genetic and pharmacological inhibition of this pathway prevents breast tumor invasion and metastasis in vivo. In human breast cancer samples, activation of this pathway correlates with collagen fiber alignment, a marker of increasing ECM stiffness. Our findings reveal an EPHA2/LYN/TWIST1 mechanotransduction pathway that responds to mechanical signals from the tumor microenvironment to drive EMT, invasion, and metastasis.
Collapse
Affiliation(s)
- Laurent Fattet
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hae-Yun Jung
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Albert C Chen
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, Department of Pediatrics, University of California, San Diego, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc Natl Acad Sci U S A 2020; 117:12817-12825. [PMID: 32444491 DOI: 10.1073/pnas.1917555117] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Morphogenesis, tumor formation, and wound healing are regulated by tissue rigidity. Focal adhesion behavior is locally regulated by stiffness; however, how cells globally adapt, detect, and respond to rigidity remains unknown. Here, we studied the interplay between the rheological properties of the cytoskeleton and matrix rigidity. We seeded fibroblasts onto flexible microfabricated pillar arrays with varying stiffness and simultaneously measured the cytoskeleton organization, traction forces, and cell-rigidity responses at both the adhesion and cell scale. Cells adopted a rigidity-dependent phenotype whereby the actin cytoskeleton polarized on stiff substrates but not on soft. We further showed a crucial role of active and passive cross-linkers in rigidity-sensing responses. By reducing myosin II activity or knocking down α-actinin, we found that both promoted cell polarization on soft substrates, whereas α-actinin overexpression prevented polarization on stiff substrates. Atomic force microscopy indentation experiments showed that this polarization response correlated with cell stiffness, whereby cell stiffness decreased when active or passive cross-linking was reduced and softer cells polarized on softer matrices. Theoretical modeling of the actin network as an active gel suggests that adaptation to matrix rigidity is controlled by internal mechanical properties of the cytoskeleton and puts forward a universal scaling between nematic order of the actin cytoskeleton and the substrate-to-cell elastic modulus ratio. Altogether, our study demonstrates the implication of cell-scale mechanosensing through the internal stress within the actomyosin cytoskeleton and its coupling with local rigidity sensing at focal adhesions in the regulation of cell shape changes and polarity.
Collapse
|
24
|
Yang B, Wolfenson H, Chung VY, Nakazawa N, Liu S, Hu J, Huang RYJ, Sheetz MP. Stopping transformed cancer cell growth by rigidity sensing. NATURE MATERIALS 2020; 19:239-250. [PMID: 31659296 PMCID: PMC7477912 DOI: 10.1038/s41563-019-0507-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 09/11/2019] [Indexed: 05/16/2023]
Abstract
A common feature of cancer cells is the alteration of kinases and biochemical signalling pathways enabling transformed growth on soft matrices, whereas cytoskeletal protein alterations are thought to be a secondary issue. However, we report here that cancer cells from different tissues can be toggled between transformed and rigidity-dependent growth states by the absence or presence of mechanosensory modules, respectively. In various cancer lines from different tissues, cells had over tenfold fewer rigidity-sensing contractions compared with normal cells from the same tissues. Restoring normal levels of cytoskeletal proteins, including tropomyosins, restored rigidity sensing and rigidity-dependent growth. Further depletion of other rigidity sensor proteins, including myosin IIA, restored transformed growth and blocked sensing. In addition, restoration of rigidity sensing to cancer cells inhibited tumour formation and changed expression patterns. Thus, the depletion of rigidity-sensing modules through alterations in cytoskeletal protein levels enables cancer cell growth on soft surfaces, which is an enabling factor for cancer progression.
Collapse
Affiliation(s)
- Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel of Technology, Haifa, Israel
| | - Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Naotaka Nakazawa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shuaimin Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Junqiang Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Bordeleau F, Wang W, Simmons A, Antonyak MA, Cerione RA, Reinhart-King CA. Tissue transglutaminase 2 regulates tumor cell tensional homeostasis by increasing contractility. J Cell Sci 2020; 133:jcs.231134. [PMID: 31822629 DOI: 10.1242/jcs.231134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal tensional cellular homeostasis is now considered a hallmark of cancer. Despite this, the origin of this abnormality remains unclear. In this work, we investigated the role of tissue transglutaminase 2 (TG2, also known as TGM2), a protein associated with poor prognosis and increased metastatic potential, and its relationship to the EGF receptor in the regulation of the mechanical state of tumor cells. Remarkably, we observed a TG2-mediated modulation of focal adhesion composition as well as stiffness-induced FAK activation, which was linked with a distinctive increase in cell contractility, in experiments using both pharmacological and shRNA-based approaches. Additionally, the increased contractility could be reproduced in non-malignant cells upon TG2 expression. Moreover, the increased cell contractility mediated by TG2 was largely due to the loss of EGFR-mediated inhibition of cell contractility. These findings establish intracellular TG2 as a regulator of cellular tensional homeostasis and suggest the existence of signaling switches that control the contribution of growth factor receptors in determining the mechanical state of a cell.
Collapse
Affiliation(s)
- Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medecine, Université Laval, Québec G1R 3S3, Canada .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Alysha Simmons
- Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Marc A Antonyak
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Abstract
For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, miR-21, is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins-without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.
Collapse
Affiliation(s)
- Michael Sheetz
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411
- Molecular MechanoMedicine Program and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
27
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
28
|
Closer to Nature Through Dynamic Culture Systems. Cells 2019; 8:cells8090942. [PMID: 31438519 PMCID: PMC6769584 DOI: 10.3390/cells8090942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanics in the human body are required for normal cell function at a molecular level. It is now clear that mechanical stimulations play significant roles in cell growth, differentiation, and migration in normal and diseased cells. Recent studies have led to the discovery that normal and cancer cells have different mechanosensing properties. Here, we discuss the application and the physiological and pathological meaning of mechanical stimulations. To reveal the optimal conditions for mimicking an in vivo microenvironment, we must, therefore, discern the mechanotransduction occurring in cells.
Collapse
|
29
|
Lohner J, Rupprecht JF, Hu J, Mandriota N, Saxena M, de Araujo DP, Hone J, Sahin O, Prost J, Sheetz MP. Large and reversible myosin-dependent forces in rigidity sensing. NATURE PHYSICS 2019; 15:689-695. [PMID: 33790983 PMCID: PMC8008990 DOI: 10.1038/s41567-019-0477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/19/2019] [Indexed: 05/26/2023]
Abstract
Cells sense the rigidity of their environment through localized pinching, which occurs when myosin molecular motors generate contractions within actin filaments anchoring the cell to its surroundings. We present high-resolution experiments performed on these elementary contractile units in cells. Our experimental results challenge the current understanding of molecular motor force generation. Surprisingly, bipolar myosin filaments generate much larger forces per motor than measured in single molecule experiments. Further, contraction to a fixed distance, followed by relaxation at the same rate, is observed over a wide range of matrix rigidities. Lastly, step-wise displacements of the matrix contacts are apparent during both contraction and relaxation. Building upon a generic two-state model of molecular motor collections, we interpret these unexpected observations as spontaneously emerging features of a collective motor behavior. Our approach explains why, in the cellular context, collections of resilient and slow motors contract in a stepwise fashion while collections of weak and fast motors do not. We thus rationalize the specificity of motor contractions implied in rigidity sensing compared to previous in vitro observations.
Collapse
Affiliation(s)
- James Lohner
- first authors
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jean-Francois Rupprecht
- first authors
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| | - Junquiang Hu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Nicola Mandriota
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | - Diego Pitta de Araujo
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Michael P Sheetz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| |
Collapse
|
30
|
Wolf B, Busso C, Gönczy P. Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells. Nat Commun 2019; 10:2859. [PMID: 31253758 PMCID: PMC6599018 DOI: 10.1038/s41467-019-10446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Proper spindle positioning is crucial for spatial cell division control. Spindle positioning in human cells relies on a ternary complex comprising Gαi1-3, LGN and NuMA, which anchors dynein at the cell cortex, thus enabling pulling forces to be exerted on astral microtubules. We develop a live imaging siRNA-based screen using stereotyped fibronectin micropatterns to uncover components modulating spindle positioning in human cells, testing 1280 genes, including all kinases and phosphatases. We thus discover 16 components whose inactivation dramatically perturbs spindle positioning, including tyrosine receptor kinase 3 (TYRO3) and cyclin G associated kinase (GAK). TYRO3 depletion results in excess NuMA and dynein at the cortex during metaphase, similar to the effect of blocking the TYRO3 downstream target phosphatidylinositol 3-kinase (PI3K). Furthermore, depletion of GAK leads to impaired astral microtubules, similar to the effect of downregulating the GAK-interactor Clathrin. Overall, our work uncovers components and mechanisms governing spindle positioning in human cells.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
31
|
Kumari A, Pineau J, Sáez PJ, Maurin M, Lankar D, San Roman M, Hennig K, Boura VF, Voituriez R, Karlsson MCI, Balland M, Lennon Dumenil AM, Pierobon P. Actomyosin-driven force patterning controls endocytosis at the immune synapse. Nat Commun 2019; 10:2870. [PMID: 31253773 PMCID: PMC6599028 DOI: 10.1038/s41467-019-10751-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022] Open
Abstract
An important channel of cell-to-cell communication is direct contact. The immune synapse is a paradigmatic example of such type of interaction: it forms upon engagement of antigen receptors in lymphocytes by antigen-presenting cells and allows the local exchange of molecules and information. Although mechanics has been shown to play an important role in this process, how forces organize and impact on synapse function is unknown. We find that mechanical forces are spatio-temporally patterned at the immune synapse: global pulsatile myosin II-driven tangential forces are observed at the synapse periphery while localised forces generated by invadosome-like F-actin protrusions are detected at its centre. Noticeably, we observe that these force-producing actin protrusions constitute the main site of antigen extraction and endocytosis and require myosin II contractility to form. The interplay between global and local forces dictated by the organization of the actomyosin cytoskeleton therefore controls endocytosis at the immune synapse. The immune synapse promotes cellular information exchange but the role of biophysical forces in synapse function is unclear. Here, the authors show that B cells exert two types of forces, a centripetal myosin II-driven force and a central actin protrusive force at the site of antigen extraction.
Collapse
Affiliation(s)
- Anita Kumari
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.,Université Paris Descartes, Paris, 75006, France
| | - Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.,Université Paris Descartes, Paris, 75006, France
| | - Pablo J Sáez
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Danielle Lankar
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Mabel San Roman
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), 38402, Saint, Martin d'Hères Cedex 9, France
| | - Vanessa F Boura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Raphael Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC and Laboratoire Jean Perrin, UMR 8237 CNRS /UPMC, 4 Place Jussieu, 75255, Paris, Cedex 05, France
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), 38402, Saint, Martin d'Hères Cedex 9, France
| | - Ana-Maria Lennon Dumenil
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.
| | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.
| |
Collapse
|
32
|
Hayward AN, Aird EJ, Gordon WR. A toolkit for studying cell surface shedding of diverse transmembrane receptors. eLife 2019; 8:e46983. [PMID: 31172946 PMCID: PMC6586460 DOI: 10.7554/elife.46983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Proteolysis of transmembrane receptors is a critical cellular communication mechanism dysregulated in disease, yet decoding proteolytic regulation mechanisms of hundreds of shed receptors is hindered by difficulties controlling stimuli and unknown fates of cleavage products. Notch proteolytic regulation is a notable exception, where intercellular forces drive exposure of a cryptic protease site within a juxtamembrane proteolytic switch domain to activate transcriptional programs. We created a Synthetic Notch Assay for Proteolytic Switches (SNAPS) that exploits the modularity and unequivocal input/response of Notch proteolysis to screen surface receptors for other putative proteolytic switches. We identify several new proteolytic switches among receptors with structural homology to Notch. We demonstrate SNAPS can detect shedding in chimeras of diverse cell surface receptors, leading to new, testable hypotheses. Finally, we establish the assay can be used to measure modulation of proteolysis by potential therapeutics and offer new mechanistic insights into how DECMA-1 disrupts cell adhesion.
Collapse
Affiliation(s)
- Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
33
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
35
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
37
|
Monticelli M, Jokhun DS, Petti D, Shivashankar GV, Bertacco R. Localized mechanical stimulation of single cells with engineered spatio-temporal profile. LAB ON A CHIP 2018; 18:2955-2965. [PMID: 30129955 DOI: 10.1039/c8lc00393a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo, cells are frequently exposed to multiple mechanical stimuli arising from the extracellular microenvironment, with a deep impact on many biological functions. On the other hand, current methods for mechanobiology do not allow one to easily replicate in vitro the complex spatio-temporal profile of such mechanical signals. Here we introduce a new platform for studying the mechanical coupling between single cells and a dynamic extracellular environment, based on active substrates for cell culture made of Fe-coated polymeric micropillars. Under the action of quasi-static external magnetic fields, each group of pillars produces synchronous mechanical stimuli at different points of the cell membrane, thanks to the highly controllable pillars' deflection. This method allows one to apply complex stress fields, resulting in the parallel application of localized forces with tunable intensity and temporal profile. The platform has been validated by studying the cellular response to periodic stimuli in NIH3T3 fibroblasts. We find that low-frequency mechanical stimulation affects the actin cytoskeleton, nuclear morphology, and H2B core-histone dynamics and induces MKL transcription-cofactor translocation from nucleus to cytoplasm. The unique capability of the proposed platform to apply stimuli with a tunable temporal profile and high parallelism on a cell culture holds great potential for the investigation of mechanotransduction mechanisms in cells and tissues.
Collapse
Affiliation(s)
- M Monticelli
- Department of Physics, Politecnico di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
38
|
Röper JC, Mitrossilis D, Stirnemann G, Waharte F, Brito I, Fernandez-Sanchez ME, Baaden M, Salamero J, Farge E. The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. eLife 2018; 7:33381. [PMID: 30024850 PMCID: PMC6053302 DOI: 10.7554/elife.33381] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
In vivo, the primary molecular mechanotransductive events mechanically initiating cell differentiation remain unknown. Here we find the molecular stretching of the highly conserved Y654-β-catenin-D665-E-cadherin binding site as mechanically induced by tissue strain. It triggers the increase of accessibility of the Y654 site, target of the Src42A kinase phosphorylation leading to irreversible unbinding. Molecular dynamics simulations of the β-catenin/E-cadherin complex under a force mimicking a 6 pN physiological mechanical strain predict a local 45% stretching between the two α-helices linked by the site and a 15% increase in accessibility of the phosphorylation site. Both are quantitatively observed using FRET lifetime imaging and non-phospho Y654 specific antibody labelling, in response to the mechanical strains developed by endogenous and magnetically mimicked early mesoderm invagination of gastrulating Drosophila embryos. This is followed by the predicted release of 16% of β-catenin from junctions, observed in FRAP, which initiates the mechanical activation of the β-catenin pathway process.
Collapse
Affiliation(s)
- Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Démosthène Mitrossilis
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Paris, France
| | - François Waharte
- Space-Time Imaging of Endomembranes Dynamics, Cell and Tissue Imaging Facility, Institut Curie, CNRS UMR 144, PSL University, Inria, France
| | - Isabel Brito
- CBIO-Centre for Computational Biology, MINES ParisTech, Institut Curie, INSERM, PSL University, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| | - Marc Baaden
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Paris, France
| | - Jean Salamero
- Space-Time Imaging of Endomembranes Dynamics, Cell and Tissue Imaging Facility, Institut Curie, CNRS UMR 144, PSL University, Inria, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development, Institut Curie, INSERM, CNRS UMR 168, PSL University, Paris, France
| |
Collapse
|
39
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
40
|
Galarza Torre A, Shaw JE, Wood A, Gilbert HTJ, Dobre O, Genever P, Brennan K, Richardson SM, Swift J. An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Sci Rep 2018; 8:8981. [PMID: 29895825 PMCID: PMC5997644 DOI: 10.1038/s41598-018-27346-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/27/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates' mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells 'feel' substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Asier Galarza Torre
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
- Scottish Centre for Regenerative Medicine, Edinburgh, EH16 4UU, UK
| | - Joshua E Shaw
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Amber Wood
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Hamish T J Gilbert
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Oana Dobre
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul Genever
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Keith Brennan
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
41
|
Chen Z, Oh D, Dubey AK, Yao M, Yang B, Groves JT, Sheetz M. EGFR family and Src family kinase interactions: mechanics matters? Curr Opin Cell Biol 2018; 51:97-102. [PMID: 29289897 DOI: 10.1016/j.ceb.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023]
|
42
|
Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adh Migr 2018; 12:348-362. [PMID: 29513135 PMCID: PMC6363045 DOI: 10.1080/19336918.2018.1448353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.
Collapse
Affiliation(s)
- Nuno M. Coelho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Elosegui-Artola A, Trepat X, Roca-Cusachs P. Control of Mechanotransduction by Molecular Clutch Dynamics. Trends Cell Biol 2018; 28:356-367. [PMID: 29496292 DOI: 10.1016/j.tcb.2018.01.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 02/09/2023]
Abstract
The linkage of cells to their microenvironment is mediated by a series of bonds that dynamically engage and disengage, in what has been conceptualized as the molecular clutch model. Whereas this model has long been employed to describe actin cytoskeleton and cell migration dynamics, it has recently been proposed to also explain mechanotransduction (i.e., the process by which cells convert mechanical signals from their environment into biochemical signals). Here we review the current understanding on how cell dynamics and mechanotransduction are driven by molecular clutch dynamics and its master regulator, the force loading rate. Throughout this Review, we place a specific emphasis on the quantitative prediction of cell response enabled by combined experimental and theoretical approaches.
Collapse
Affiliation(s)
- Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
44
|
Gauthier NC, Roca-Cusachs P. Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 2018; 50:20-26. [DOI: 10.1016/j.ceb.2017.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
45
|
Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F, Yang Y. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer 2018; 17:20. [PMID: 29386018 PMCID: PMC5793417 DOI: 10.1186/s12943-018-0769-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Guiling Wu
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China ,0000 0004 1761 4404grid.233520.5Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Zhiqiang Ma
- 0000 0004 1791 6584grid.460007.5Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 China
| | - Yicheng Cheng
- 0000 0004 1765 1045grid.410745.3Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002 China
| | - Wei Hu
- 0000 0004 1761 4404grid.233520.5Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Chao Deng
- grid.452438.cDepartment of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi 710061 China
| | - Shuai Jiang
- 0000 0004 1761 4404grid.233520.5Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Tian Li
- 0000 0004 1765 1045grid.410745.3Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002 China
| | - Fulin Chen
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China
| | - Yang Yang
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China ,0000 0004 1761 4404grid.233520.5Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| |
Collapse
|
46
|
Qi YX, Han Y, Jiang ZL. Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:69-82. [PMID: 30315540 DOI: 10.1007/978-3-319-96445-4_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc., and induce the cascade reaction processes through complicated cellular signaling networks. Recent researches suggest that nuclear envelope proteins act as the functional homology of molecules on the membrane, are important mechanosensitive molecules which modulate chromatin location and gene transcription, and subsequently regulate cellular functions. However, the studies on the roles of nucleus in the mechanotransduction process are still at the beginning. Here, based on the recent researches, we focused on the nuclear envelope proteins and discussed the roles of pathological hemodynamic forces in vascular remodeling. It may provide new insight into understanding the molecular mechanism of vascular physiological homeostasis and pathophysiological remodeling and may help to develop hemodynamic-based strategies for the prevention and management of vascular diseases.
Collapse
Affiliation(s)
- Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Abstract
Abstract
Vascular remodeling is a common pathological process in cardiovascular diseases and includes changes in cell proliferation, apoptosis and differentiation as well as vascular homeostasis. Mechanical stresses, such as shear stress and cyclic stretch, play an important role in vascular remodeling. Vascular cells can sense the mechanical factors through cell membrane proteins, cytoskeletons and nuclear envelope proteins to initiate mechanotransduction, which involves intercellular signaling, gene expression, and protein expression to result in functional regulations. Non-coding RNAs, including microRNAs and long non-coding RNAs, are involved in the regulation of vascular remodeling processes. Mechanotransduction triggers a cascade reaction process through a complicated signaling network in cells. High-throughput technologies in combination with functional studies targeting some key hubs and bridging nodes of the network can enable the prioritization of potential targets for subsequent investigations of clinical translation. Vascular mechanobiology, as a new frontier field of biomechanics, searches for principles of stress-growth in vasculature to elucidate how mechanical factors induce biological effects that lead to vascular remodeling, with the goal of understanding the mechanical basis of the pathological mechanism of cardiovascular diseases at the cellular and molecular levels. Vascular mechanobiology will play a unique role in solving the key scientific problems of human physiology and disease, as well as generating important theoretical and clinical results.
Collapse
Affiliation(s)
- Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
48
|
Saxena M, Changede R, Hone J, Wolfenson H, Sheetz MP. Force-Induced Calpain Cleavage of Talin Is Critical for Growth, Adhesion Development, and Rigidity Sensing. NANO LETTERS 2017; 17:7242-7251. [PMID: 29052994 PMCID: PMC7490970 DOI: 10.1021/acs.nanolett.7b02476] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell growth depends upon formation of cell-matrix adhesions, but mechanisms detailing the transmission of signals from adhesions to control proliferation are still lacking. Here, we find that the scaffold protein talin undergoes force-induced cleavage in early adhesions to produce the talin rod fragment that is needed for cell cycle progression. Expression of noncleavable talin blocks cell growth, adhesion maturation, proper mechanosensing, and the related property of EGF activation of motility. Further, the expression of talin rod in the presence of noncleavable full-length talin rescues cell growth and other functions. The cleavage of talin is found in early adhesions where there is also rapid turnover of talin that depends upon calpain and TRPM4 activity as well as the generation of force on talin. Thus, we suggest that an important function of talin is its control over cell cycle progression through its cleavage in early adhesions.
Collapse
Affiliation(s)
- Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 31096, Israel
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| |
Collapse
|
49
|
Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 2017; 64:6-16. [DOI: 10.1016/j.matbio.2017.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
50
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|