1
|
Zhao D, Gao B, An G, Xu S, Tian Q, Xu Q. Copper Intercalation Induces Amorphization of 2D Cu/WO 3 for Room-Temperature Ferromagnetism. Angew Chem Int Ed Engl 2024; 63:e202412811. [PMID: 39073271 DOI: 10.1002/anie.202412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Ferromagnetism in the two-dimensional limit has become an intriguing topic for exploring new physical phenomena and potential applications. To induce ferromagnetism in 2D materials, intercalation has been proposed to be an effective strategy, which could introduce lattice distortion and unpaired spin into the material to modulate the magnetocrystalline anisotropy and magnetic exchange interactions. To strengthen the understanding of the magnetic origin of 2D material, Cu was introduced into a 2D WO3 through chemical intercalation in this work (2D Cu/WO3). In contrast to the diamagnetic nature of Cu and WO3, room-temperature ferromagnetism was characterized for 2D Cu/WO3. Experimental and theoretical results attribute the ferromagnetism to the bound magnetic polaron in 2D Cu/WO3, which is consist of unpaired spins from W5+/W4+ with localized carriers from oxygen vacancies. Overall, this work provides a novel approach to introduce ferromagnetism into diamagnetic WO3, which could be applied for a wider scope of 2D materials.
Collapse
Affiliation(s)
- Duanduan Zhao
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Guangyu An
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Song Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingyong Tian
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qun Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Wu C, Zhang Y, Shi H, Yu J, Yang Y, Zhang C, Yu Y, Liu W. High-Performance Complementary Electrochromic Batteries using Nb 18W 16O 93 by the Synergistic Effects of Aqueous Al 3+/K + Dual-Ion. Angew Chem Int Ed Engl 2024:e202415050. [PMID: 39253770 DOI: 10.1002/anie.202415050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Multivalent ions, especially Al3+ in aqueous electrolyte contributes to higher capacity and color contrast for more sustainable post-lithium electrochromism and energy storages. However, the lack of suitable cathodic and anodic electrochromic materials is a major challenge for Al-ion electrochromic batteries, which limits their optical contrast and lifespan. Herein, we report that Wadsley-Roth phase Nb18W16O93 with open structure achieves Al3+ intercalation/extraction reversibly. The complementary electrochromic energy storage devices based on Nb18W16O93 coupled with Prussian blue using hybrid Al3+/K+ aqueous electrolytes show a fast response, a high capacity and a large coloring efficiency. The superior performances are due to the cations of Al3+ and K+ selectively insert/extract in the electrode of Nb18W16O93 and Prussian blue, respectively. This work provides an effective strategy for high-performance and low-cost electrochromic batteries with higher sustainability.
Collapse
Affiliation(s)
- Cong Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Hongsheng Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Jiameng Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yihang Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Chang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Jang M, Song DS, Bae G, Cho JH, Lee DH, Shin S, Yim S, Myung S, Lee SS, Kim CG, Song W, Lim J, An KS. Photostimulated Pyrothermoelectric Coupling in Two-Dimensional Tin Monoselenide Enabling Zero-Biased Multimodal Transducers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30264-30273. [PMID: 38832451 DOI: 10.1021/acsami.4c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Despite the advancement of the Internet of Things (IoT) and portable devices, the development of zero-biased sensing systems for the dual detection of light and gases remains a challenge. As an emerging technology, direct energy conversion driven by intriguing physical properties of two-dimensional (2D) materials can be realized in nanodevices or a zero-biased integrated system. In this study, we unprecedentedly attempted to exploit the photostimulated pyrothermoelectric coupling of two-dimensional SnSe for use in zero-biased multimodal transducers for the dual detection of light and gases. We synthesized homogeneous, large-area 6 in SnSe multilayers via a rational synthetic route based on the thermal decomposition of a solution-processed single-source precursor. Zero-biased SnSe transducers for the dual monitoring of light and gases were realized by exploiting the synergistic coupling of the photostimulated pyroelectric and thermoelectric effects of SnSe. The extracted photoresponsivity at 532 nm and NO2 gas responsivity of the SnSe-based transducers corresponded to 1.07 × 10-6 A/W and 13263.6% at 0 V, respectively. To bring universal applicability of the zero-biased SnSe transducers, the wide operation bandwidth photoelectrical properties (visible to NIR) and dynamic current responses toward two NO2/NH3 gases were systematically evaluated.
Collapse
Affiliation(s)
- Moonjeong Jang
- National Nano Fab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Da Som Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Garam Bae
- Department of Medical Artificial Intelligence, Konyang University, Daejeon 35365, Republic of Korea
| | - Jae Hee Cho
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Do Hyung Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sunyoung Shin
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chang Gyoun Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea
| | - Jongsun Lim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
4
|
Kishimoto F, Takanabe K. Electron Storage in Monolayer Tungstate Nanosheets Produced via a Scalable Exfoliation Method. J Phys Chem Lett 2024; 15:3509-3515. [PMID: 38517369 PMCID: PMC11000239 DOI: 10.1021/acs.jpclett.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Inorganic nanosheet materials with atomic thinness have been widely studied as (photo)catalytic materials due to their unique electronic states and surface structures. One scalable and reproducible method of producing monolayer nanosheets is a top-down approach based on the exfoliation of layered parent compounds using an alkylammonium solution as a surfactant. However, H2W2O7 layered tungstates dissolve in basic aqueous solutions, making them unsuitable for the exfoliation process. This work proposes a scalable method to obtain monolayer WO3 nanosheets with a very high external field responsiveness. This work shows that H2W2O7 topochemically swells in a concentrated octylamine (C8N17NH2) aqueous solution with a concentration above the solubility of octylamine in water. Water was added for exfoliation of the liquid crystalline phase into isolated W2O72- nanosheets with octylammonium (C8N17NH3+) protection. Crystalline WO3 nanosheets on the n-Si substrate obtained with calcination exhibited electron richness in the conduction band due to static electron transfer at the interface.
Collapse
Affiliation(s)
- Fuminao Kishimoto
- Department of Chemical System Engineering,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Imran M, Kim EB, Kim TG, Ameen S, Akhtar MS, Kwak DH. Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine. MICROMACHINES 2024; 15:441. [PMID: 38675252 PMCID: PMC11051922 DOI: 10.3390/mi15040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In this study, well-defined tungsten oxide (WO3) nanowall (NW) thin films were synthesized via a controlled hot filament chemical vapor deposition (HFCVD) technique and applied for electrochemical detection of methylamine toxic substances. Herein, for the thin-film growth by HFCVD, the temperature of tungsten (W) wire was held constant at ~1450 °C and gasification was performed by heating of W wire using varied substrate temperatures ranging from 350 °C to 450 °C. At an optimized growth temperature of 400 °C, well-defined and extremely dense WO3 nanowall-like structures were developed on a Si substrate. Structural, crystallographic, and compositional characterizations confirmed that the deposited WO3 thin films possessed monoclinic crystal structures of high crystal quality. For electrochemical sensing applications, WO3 NW thin film was used as an electrode, and cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were measured with a wide concentration range of 20 μM~1 mM of methylamine. The fabricated electrochemical sensor achieved a sensitivity of ~183.65 μA mM-1 cm-2, a limit of detection (LOD) of ~20 μM and a quick response time of 10 s. Thus, the fabricated electrochemical sensor exhibited promising detection of methylamine with considerable stability and reproducibility.
Collapse
Affiliation(s)
- Mohammad Imran
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
- Environmental Engineering Laboratory, Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea;
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
| | - Mohammad Shaheer Akhtar
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju 54896, Republic of Korea
- New & Renewable Energy Material Development Center (NewREC), Jeonbuk National University, Jeonbuk 56332, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Heui Kwak
- Environmental Engineering Laboratory, Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Huang Z, Feng L, Xia X, Zhao J, Qi P, Wang Y, Zhou J, Shen L, Zhang S, Zhang X. Advanced inorganic nanomaterials for high-performance electrochromic applications. NANOSCALE 2024; 16:2078-2096. [PMID: 38226722 DOI: 10.1039/d3nr05461f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Electrochromic materials and devices with the capability of dynamic optical regulation have attracted considerable attention recently and have shown a variety of potential applications including energy-efficient smart windows, multicolor displays, atuto-diming mirrors, military camouflage, and adaptive thermal management due to the advantages of active control, wide wavelength modulation, and low energy consumption. However, its development still experiences a number of issues such as long response time and inadequate durability. Nanostructuring has demonstrated that it is an effective strategy to improve the electrochromic performance of the materials due to the increased reaction active sites and the reduced ion diffusion distance. Various advanced inorganic nanomaterials with high electrochromic performance have been developed recently, significantly contributing to the development of electrochromic applications. In this review, we systematically introduce and discuss the recent advances in advanced inorganic nanomaterials including zero-, one-, and two-dimensional materials for high-performance electrochromic applications. Finally, we outline the current major challenges and our perspectives for the future development of nanostructured electrochromic materials and applications.
Collapse
Affiliation(s)
- Zekun Huang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China.
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Liping Feng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xianjie Xia
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Penglu Qi
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yiting Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Junhua Zhou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Laifa Shen
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China.
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengliang Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China.
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaogang Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China.
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
7
|
Cai J, Yang B, Akbarzadeh A. Origami Metamaterials Enable Low-Stress-Driven Giant Elastocaloric Effect. ACS NANO 2024; 18:894-908. [PMID: 38149799 DOI: 10.1021/acsnano.3c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Elastocaloric materials, capable of achieving reversible thermal changes in response to a uniaxial stress, have attracted considerable attention for applications in advanced thermal management technologies, owing to their environmental friendliness and economic benefits. However, most elastocaloric materials operating on the basis of first/second-order phase transition often exhibit a limited caloric response, field hysteresis, and restricted working temperature ranges. This study resorts to origami engineering for realizing multifunctional metamaterials with exceptional elastocaloric effects at both nano (exemplified by computational simulations for graphene) and meso (demonstrated by experimentation on thermoplastic polyurethane elastomers) scales. The findings uncover that the graphene origami exhibits low-stress-driven reversible and giant elastocaloric effects without a hysteresis loss and with a high elastocaloric strength. These effects are achieved across a wide working temperature range (100-600 K) and are tailorable by fine-tuning the topological parameters and configurational status of the origami metamaterials. We demonstrate the scalability of the origami design strategy for magnifying the elastocaloric effect by the 3D printing of a mesoscale origami-inspired thermoplastic polyurethane metastructure that showcases enhanced elastocaloric performance at room temperature. This study presents the potential for the realization of architected elastocaloric materials through surface functionalization and origami engineering. The findings impart exciting prospects of elastocaloric origami metamaterials as the next generation of multiscale and sustainable thermal management technologies.
Collapse
Affiliation(s)
- Jun Cai
- Department of Bioresource Engineering, McGill University, Montreal, Québec H9X 3V9, Canada
| | - Bin Yang
- Department of Bioresource Engineering, McGill University, Montreal, Québec H9X 3V9, Canada
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering, McGill University, Montreal, Québec H9X 3V9, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Québec H9A 0C3, Canada
| |
Collapse
|
8
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
9
|
Li CA, Ko B, Park KH, Ahn JG, Park T, Lee DJ, Song SH. High-Performance Electrochromic Devices Based on Size-Controlled 2D WO 3 Nanosheets Prepared Using the Intercalation Method. MATERIALS (BASEL, SWITZERLAND) 2023; 17:41. [PMID: 38203897 PMCID: PMC10780075 DOI: 10.3390/ma17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
It is difficult to obtain ultrathin two-dimensional (2D) tungsten trioxide (WO3) nanosheets through direct exfoliation from bulk WO3 in solution due to the strong bonding between interlayers. Herein, WO3 nanosheets with controllable sizes were synthesized via K+ intercalation and the exfoliation of WO3 powder using sonication and temperature. Because of the intercalation and expansion in the interlayer distance, the intercalated WO3 could be successfully exfoliated to produce a large quantity of individual 2D WO3 nanosheets in N-methyl-2-pyrrolidone under sonication. The exfoliated ultrathin WO3 nanosheets exhibited better electrochromic performance in an electrochromic device than WO3 powder and exfoliated WO3 without intercalation. In particular, the prepared small WO3 nanosheets exhibited excellent electrochromic properties with a large optical modulation of 41.78% at 700 nm and fast switching behavior times of 9.2 s for bleaching and 10.5 s for coloring. Furthermore, after 1000 cycles, the small WO3 nanosheets still maintained 86% of their initial performance.
Collapse
Affiliation(s)
- Cheng-Ai Li
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| | - Boemjin Ko
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| | - Kwang-Hyun Park
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| | - Jae-Gyu Ahn
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| | - Taeyoung Park
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| | - Dong-Ju Lee
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Sung-Ho Song
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea; (C.-A.L.); (B.K.); (K.-H.P.); (J.-G.A.); (T.P.)
| |
Collapse
|
10
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
12
|
Zhou Q, Wang D, Wang Q, He K, Lim KH, Yang X, Wang WJ, Li BG, Liu P. Mechanistic Understanding of Efficient Polyethylene Hydrocracking over Two-Dimensional Platinum-Anchored Tungsten Trioxide. Angew Chem Int Ed Engl 2023; 62:e202305644. [PMID: 37325872 DOI: 10.1002/anie.202305644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3 ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C5-18 ) formation rate up to 1456 gproducts ⋅ gmetal species -1 ⋅ h-1 . The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.
Collapse
Affiliation(s)
- Qimin Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
| | - Deliang Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
| | - Qingyue Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| | - Kailin He
- Key Laboratory of Hunan Province for the Synergetic Control and Resource Reuse of the Multi-Pollutants of Flue Gas, National Sintering and Pelletizing Equipment System Engineering Research Center, Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, Hunan, P. R. China
| | - Khak Ho Lim
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| | - Xuan Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China
| |
Collapse
|
13
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
14
|
Lee G, Choi J, Ahn J, Cho S, Park I. Piezo-Transmissive Structure Using a Multi-layered Heterogeneous Film for Optical Transmittance Modulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20531-20540. [PMID: 37052211 DOI: 10.1021/acsami.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As the damage caused by the recent climate crisis increases, efforts are being made to develop low-power and high-efficiency technologies to reduce pollution for energy production worldwide. Among them, research on the mechano-responsive optical transmittance modulation technology is being actively conducted as it can be applied to various application fields for reducing energy consumption: low-power sensors and smart windows. The piezo-transmittance structure, which is one of the optical transmittance modulation structures, has fewer constraints on the installation environment; therefore, many applications have been proposed. However, it is still challenging to fabricate a piezo-transmittance structure with a large-area production, high throughput, and good tunability because of complex curing and dissolution processes. Herein, we present an efficient fabrication method for a multi-layered piezo-transmittance structure using a large-area abrasive mold and thermal imprinting process. The piezo-transmittance performance (e.g., sensitivity and relative change of transmittance) shows temperature/humidity-independent characteristics and can be designed by tuning design parameters such as the number of layers, abrasive grade, and film material. Also, the surrogate model of the performance obtained from the Monte Carlo simulation and prediction model can offer tunability for various applications. Finally, we demonstrated two energy-efficient applications: the smart window integrated with a hydraulic pump showed high thermal efficiency in indoor environment control, and the telemetry system was demonstrated to measure pressure remotely.
Collapse
Affiliation(s)
- Gihun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Seokju Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| |
Collapse
|
15
|
An FH, Yuan YZ, Liu JQ, He MD, Zhang B. Enhanced electrochromic properties of WO 3/ITO nanocomposite smart windows. RSC Adv 2023; 13:13177-13182. [PMID: 37124008 PMCID: PMC10141578 DOI: 10.1039/d3ra01428b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Tungsten oxide is regarded as the most promising electrochromic material owing to its continuously tunable optical properties, low cost, and high coloration efficiency. Further improving its optical modulation, switching speed, and coloration efficiency is important to electrochromic smart windows and related devices. Here, we demonstrate an enhanced electrochromic film composed of a WO3 nanosheet and ITO nanoparticles developed by an all-solution technology. The WO3 nanosheet is fabricated by an acid-assisted hydrothermal process with high product efficiency. The introduction of an ITO into the WO3 nanosheets significantly improved the electrochemical activity and the conductivity of the composite film. Compared with a reported electrochromic film without ITO doping, our synthesized composite WO3 film exhibited optical modulation up to 88% and a high coloration efficiency of 154.16 cm2 C-1. Particularly, our electrochromic film was based on the dispersant solution and spin-coating technology, which may also be realized with nano-spray coating for large scale applications. The results offer an effective way to develop large-area electrochromic film and devices.
Collapse
Affiliation(s)
- Feng Hui An
- Jiangxi Province Engineering Research Center of Material Surface Remanufacturing, Jiujiang University Jiujiang Jiangxi 332005 China
| | - Yu Zheng Yuan
- Institute of Mathematics and Physics, Central South University of Forestry and Technology Changsha 410004 China
| | - Jian Qiang Liu
- College of Science, Jiujiang University Jiujiang Jiangxi 332005 China
| | - Meng Dong He
- Institute of Mathematics and Physics, Central South University of Forestry and Technology Changsha 410004 China
| | - Bo Zhang
- Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology Nanchang 330013 China
| |
Collapse
|
16
|
Zhao Q, Pan Z, Liu B, Bao C, Liu X, Sun J, Xie S, Wang Q, Wang J, Gao Y. Electrochromic-Induced Rechargeable Aqueous Batteries: An Integrated Multifunctional System for Cross-Domain Applications. NANO-MICRO LETTERS 2023; 15:87. [PMID: 37029252 PMCID: PMC10082149 DOI: 10.1007/s40820-023-01056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 06/19/2023]
Abstract
Multifunctional electrochromic-induced rechargeable aqueous batteries (MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources. Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However, MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review, the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zhenghui Pan
- Department of Materials Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Binbin Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Changyuan Bao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| | - Shaorong Xie
- Department of Computer Engineering and Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401120, People's Republic of China.
- Institute of Materials Research and Engineering, A*Star, Singapore, 138634, Singapore.
| | - Yanfeng Gao
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, People's Republic of China.
| |
Collapse
|
17
|
Chen X, van Huis MA. Formation Pathways of Lath-Shaped WO 3 Nanosheets and Elemental W Nanoparticles from Heating of WO 3 Nanocrystals Studied via In Situ TEM. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1291. [PMID: 36770297 PMCID: PMC9920553 DOI: 10.3390/ma16031291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
WO3 is a versatile material occurring in many polymorphs, and is used in nanostructured form in many applications, including photocatalysis, gas sensing, and energy storage. We investigated the thermal evolution of cubic-phase nanocrystals with a size range of 5-25 nm by means of in situ heating in the transmission electron microscope (TEM), and found distinct pathways for the formation of either 2D WO3 nanosheets or elemental W nanoparticles, depending on the initial concentration of deposited WO3 nanoparticles. These pristine particles were stable up to 600 °C, after which coalescence and fusion of the nanocrystals were observed. Typically, the nanocrystals transformed into faceted nanocrystals of elemental body-centered-cubic W after annealing to 900 °C. However, in areas where the concentration of dropcast WO3 nanoparticles was high, at a temperature of 900 °C, considerably larger lath-shaped nanosheets (extending for hundreds of nanometers in length and up to 100 nm in width) were formed that are concluded to be in monoclinic WO3 or WO2.7 phases. These lath-shaped 2D particles, which often curled up from their sides into folded 2D nanosheets, are most likely formed from the smaller nanoparticles through a solid-vapor-solid growth mechanism. The findings of the in situ experiments were confirmed by ex situ experiments performed in a high-vacuum chamber.
Collapse
Affiliation(s)
- Xiaodan Chen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron Microscopy Center, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marijn A. van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Electron Microscopy Center, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
18
|
Dai B, Wu C, Xie Y. Retarding the Shuttling Ions in the Electrochromic TiO 2 with Extensive Crystallographic Imperfections. Angew Chem Int Ed Engl 2023; 62:e202213285. [PMID: 36367217 DOI: 10.1002/anie.202213285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/13/2022]
Abstract
To understand the role of structure imperfections on the performance of electrochromic transition metal oxide (ETMO) is challenging for the design of efficient smart windows. Herein, we investigate the performance evolution with tunable crystallographic imperfections for rutile TiO2 nanowire film (TNF). Structure imperfections, originating mainly from the copious oxygen deficiency, are apt to cumulatively retard the shuttling ions, resulting in the response rate for raw TNF being less than the half that of TNF annealed at 500 °C. We describe ion accommodation sites as a convolution of normal site and abnormal site, in which the normal site performs reversible coloration but the abnormal site contributes only to charge storage, which gives a rationale for the non-linear coloration and rate capability loss. These findings give a clear picture of the ion shuttling process, which is insightful for enhancing the electrochromic performance via structure reprogramming.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, No. 96, Jinzhai Rd., Hefei, 230026, China
| |
Collapse
|
19
|
Zheng JY, Sun Q, Cui J, Yu X, Li S, Zhang L, Jiang S, Ma W, Ma R. Review on recent progress in WO 3-based electrochromic films: preparation methods and performance enhancement strategies. NANOSCALE 2022; 15:63-79. [PMID: 36468697 DOI: 10.1039/d2nr04761f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal oxides have drawn tremendous interest due to their unique physical and chemical properties. As one of the most promising electrochromic (EC) materials, tungsten trioxide (WO3) has attracted great attention due to its exceptional EC characteristics. This review summarizes the background and general concept of EC devices, and key criteria for evaluation of WO3-based EC materials. Special focus is placed on preparation techniques and performance enhancement of WO3 EC films. Specifically, four methods - nanostructuring, regulating crystallinity, fabricating hybrid films, and preparing multilayer composite structures - have been developed to enhance the EC performance of WO3 films. Finally, we offer some important recommendations and perspectives on potential research directions for further study.
Collapse
Affiliation(s)
- Jin You Zheng
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Qimeng Sun
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiameizi Cui
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomei Yu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Songjie Li
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Lili Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Suyu Jiang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Ma
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
20
|
Alaoui C, Karmaoui M, Elaziouti A, Touati W, kaddi Allah I, Benhamed A, Bekka A. Solvothermal synthesis and characterization of monoclinic WO3 nanoplatelets: investigation of their photocatalytic performance. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Habashyani S, Mobtakeri S, Gür E. In-situ controlled oxidation of sputtered WS2 nano-walls for high-performance WO3 electrochromic devices. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Dong X, Lu Y, Liu X, Zhang L, Tong Y. Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Wang X, Yao CB, Wang LY, Wang ZM, Jiang CH, Liu XJ. Hydrothermal synthesis and controlled growth of group-VIB W metal compound nanostructures from tungsten oxide to tungsten disulphide. NANOSCALE 2022; 14:14670-14682. [PMID: 36165101 DOI: 10.1039/d2nr03786f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional lateral group-VIB transition metal dichalcogenides (TMDs) have attracted much attention in the fast evolving field of advanced photoelectric functional materials, but their controllable fabrication is challenging. Herein, an emerging synthetic route for sulfurization of tungsten oxide was developed. During the hydrothermal reaction, the optimization of the precursor selection and synthesis parameters led to the tunable properties of WO3-WSxOy-WS2 nanostructures. The vulcanization was thermodynamically favorably at low temperatures and in an environment with a sufficient S source, wherein WO3 was reduced by H atoms to WO3-x, and S atoms were preferentially adsorbed on O vacancies. The WSxOy nanostructures have a narrow band-gap attributed to the effect of S on the valence band top and electronic density of states by density functional theory. The photocurrent response and charge transfer properties of WSxOy were improved due to the charge transport between WS2 and WO3. Understanding the formation and transformation of WS2 nanostructures in solution contributes to the discovery of the important structure-efficiency relationship, which may be extended to other TMDs systems. Hence, extensive research efforts are still needed to develop safer and more efficient synthesis and modification methods to fully utilize the distinctive advantageous properties of TMDs in the photoelectric field.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Cheng-Bao Yao
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Li-Yuan Wang
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Ze-Miao Wang
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Cai-Hong Jiang
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Xiao-Jie Liu
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
24
|
Alaei A, Hosseini M, Nemati F, Karimi-Maleh H. The synthesis of Pt doped WO 3 nanosheets and application on colorimetric detection of cysteine by naked eye using response surface methodology for optimization. ENVIRONMENTAL RESEARCH 2022; 212:113246. [PMID: 35398080 DOI: 10.1016/j.envres.2022.113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
We present a simple, sensitive, and specific colorimetric using the peroxidase properties method based on Pt doped WO3 nanosheets to detect the cysteine. Pt@WO3NSs were synthesized by hydrothermal method and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction patterns (XRD) methods. The response surface methodology (RSM) method based on the central composite design (CCD) was used to optimize test parameters such as pH, nanosheet concentration, and temperature. When cysteine is present in the environment due to its competition with 3,3', 5,5'-Tetramethylbenzidine (TMB) in the use of hydrogen peroxide, the blue discoloration is reduced compared to the absence of cysteine and leads to its detection. We have favorably created a peculiar approach for sensing cysteine based on the colorimetric method in solution and paper with linear range 0.01-15 μM, 0.005-14 μM and R2 = 0.9887 and R2 = 0.9871 respectively. The detection limit for solution-based is 1.2 nM and for paper-based is 1 nM.
Collapse
Affiliation(s)
- Aida Alaei
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Nemati
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa.
| |
Collapse
|
25
|
Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors. APPLIED SYSTEM INNOVATION 2022. [DOI: 10.3390/asi5040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) in recent years is reviewed in this paper. Nanostructured tungsten oxide is widely used to facilitate ion implantation/extraction and increase the porosity of the electrode. The low-dimensional nanostructured tungsten oxide was compared in four respects: material scale, electrode life, coloring efficiency, and specific capacitance. Due to the mechanics and ductility of nano-tungsten oxide electrodes, they are very suitable for the preparation of flexible ECSCs. With the application of an organic protective layer and metal nanowire conductive electrode, the device has higher coloring efficiency and a lower activation voltage. Finally, this paper indicates that in the future, WO3-based ECSCs will develop in the direction of self-supporting power supply to meet the needs of use.
Collapse
|
26
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
27
|
Ortiz J, Acosta D, Magaña C. Long-term cycling and stability of crystalline WO3 electrochromic thin films prepared by spray pyrolysis. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Li Z, Liu Z, Li J, Yan W. The electrochromic properties of the film enhanced by introducing oxygen vacancies to crystalline tungsten oxide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Chen X, Zhang H, Li W, Xiao Y, Zhang X, Li Y. CaF 2: A novel electrolyte for all solid-state electrochromic devices. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100164. [PMID: 36159735 PMCID: PMC9488006 DOI: 10.1016/j.ese.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
Abstract
The energy consumption in building ventilation, air, and heating conditioning systems, accounts for about 25% of the overall energy consumption in modern society. Therefore, cutting carbon emissions and reducing energy consumption is a growing priority in building construction. Electrochromic devices (ECDs) are considered to be a highly promising energy-saving technology, due to their simple structure, active control, and low energy input characteristics. At present, H+, OH- and Li+ are the main electrolyte ions used for ECDs. However, H+ and OH- based electrolytes have a high erosive effect on the material surface and have a relatively short lifetime. Li+-based electrolytes are limited due to their high cost and safety concerns. In this study, inspired by prior research on Ca2+ batteries and supercapacitors, CaF2 films were prepared by electron beam evaporation as a Ca2+-based electrolyte layer to construct ECDs. The structure, morphology, and optical properties of CaF2 films were characterized. ECDs with the structure of ITO (indium tin oxide) glass/WO3/CaF2/NiO/ITO show short switching times (22.8 s for the coloring process, 2.8 s for the bleaching process). Additionally, optical modulation of the ECDs is about 38.8% at 750 nm. These findings indicate that Ca2+ based ECDs have the potential to become a competitive and attractive choice for large-scale commercial smart windows.
Collapse
Affiliation(s)
- Xi Chen
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Hulin Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Wenjie Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yingjun Xiao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xiang Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
30
|
Wu C, Shao Z, Zhai W, Zhang X, Zhang C, Zhu C, Yu Y, Liu W. Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability. ACS NANO 2022; 16:2621-2628. [PMID: 35081308 DOI: 10.1021/acsnano.1c09234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a keen interest in the use of electrochromic materials because they can regulate light and heat, thereby reducing the cooling and heating energy. However, the long response time, short cycle life, and high power consumption of an electrochromic film hinder its development. Here, we report an electrochromic material of complex niobium tungsten oxides. The Nb18W16O93 thin films in the voltage range of 0 to -1.5 V show good redox kinetics with the coloration time of 4.7 s and bleaching time of 4.0 s, respectively. The electrochromic device based on the Nb18W16O93 thin film has an optical modulation of 53.1% at a wavelength of 633 nm, with the coloration efficiency of ∼46.57 cm2 C-1. An excellent electrochemical stability of 78.1% retention after 8000 cycles is also achieved. These good performances are due to the fast and stable Li-ion intercalation/extraction in the open framework of Nb18W16O93 with multiple ion positions. Our work provides a strategy for electrochromic materials with fast response time and good cycle stability.
Collapse
Affiliation(s)
- Cong Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zewei Shao
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinshui Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
31
|
Pirker L, Višić B. Recent Progress in the Synthesis and Potential Applications of Two‐Dimensional Tungsten (Sub)oxides. Isr J Chem 2021. [DOI: 10.1002/ijch.202100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luka Pirker
- Solid State Physics Jozef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
| | - Bojana Višić
- Solid State Physics Jozef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
- Institute of Physics Belgrade University of Belgrade Pregrevica 118 11080 Belgrade Serbia
| |
Collapse
|
32
|
Qin Z, Li M, Flohn J, Hu Y. Thermal management materials for energy-efficient and sustainable future buildings. Chem Commun (Camb) 2021; 57:12236-12253. [PMID: 34723305 DOI: 10.1039/d1cc05486d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermal management plays a key role in improving the energy efficiency and sustainability of future building envelopes. Here, we focus on the materials perspective and discuss the fundamental needs, current status, and future opportunities for thermal management of buildings. First, we identify the primary considerations and evaluation criteria for high-performance thermal materials. Second, state-of-the-art thermal materials are reviewed, ranging from conventional thermal insulating fiberglass, mineral wool, cellulose, and foams, to aerogels and mesoporous structures, as well as multifunctional thermal management materials. Further, recent progress on passive regulation and thermal energy storage systems are discussed, including sensible heat storage, phase change materials, and radiative cooling. Moreover, we discuss the emerging materials systems with tunable thermal and other physical properties that could potentially enable dynamic and interactive thermal management solutions for future buildings. Finally, we discuss the recent progress in theory and computational design from first-principles atomistic theory, molecular dynamics, to multiscale simulations and machine learning. We expect the rational design that combines data-driven computation and multiscale experiments could bridge the materials properties from microscopic to macroscopic scales and provide new opportunities in improving energy efficiency and enabling adaptive implementation per customized demand for future buildings.
Collapse
Affiliation(s)
- Zihao Qin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Man Li
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jessica Flohn
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Song D, Chen X, Lin Z, Tang Z, Ma W, Zhang Q, Li Y, Zhang X. Usability Identification Framework and High-Throughput Screening of Two-Dimensional Materials in Lithium Ion Batteries. ACS NANO 2021; 15:16469-16477. [PMID: 34643368 DOI: 10.1021/acsnano.1c05920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional materials (2D materials) show great advantages in high-performance lithium ion battery materials due to the inherent ion channels and rich ion sites. Unfortunately, rare 2D materials own all desired attributes to meet complex scenarios. Further enriching the 2D materials database for lithium ion battery use is of high interest. In this work, we extend the list of candidates for lithium ion batteries based on a 2D material identification theory. More importantly, a usability identification framework leveraging the competitive mechanism between the adsorbability and reversibility of ions on a 2D material is proposed to assist the deeper screening of practicable 2D materials. As a result, 215 2D materials including 158 anodes, 21 cathodes, and 36 solid electrolytes are predicted to be practicable for lithium ion battery use. The comparison between the identified 2D materials with the known ones verifies the reliability of our strategy. This work significantly enriches the choices of 2D materials to satisfy the various battery demands and provides a general methodology to assess the usability of unexploited 2D materials for lithium ion batteries.
Collapse
Affiliation(s)
- Dongxing Song
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zizhen Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhenglai Tang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Novak TG, Kim J, DeSario PA, Jeon S. Synthesis and applications of WO 3 nanosheets: the importance of phase, stoichiometry, and aspect ratio. NANOSCALE ADVANCES 2021; 3:5166-5182. [PMID: 36132624 PMCID: PMC9419828 DOI: 10.1039/d1na00384d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/05/2021] [Indexed: 06/15/2023]
Abstract
Tungsten trioxide (WO3) is an abundant, versatile oxide that is widely explored for catalysis, sensing, electrochromic devices, and numerous other applications. The exploitation of WO3 in nanosheet form provides potential advantages in many of these fields because the 2D structures have high surface area and preferentially exposed facets. Relative to bulk WO3, nanosheets expose more active sites for surface-sensitive sensing/catalytic reactions, and improve reaction kinetics in cases where ionic diffusion is a limiting factor (e.g. electrochromic or charge storage). Synthesis of high aspect ratio WO3 nanosheets, however, is more challenging than other 2D materials because bulk WO3 is not an intrinsically layered material, making the widely-studied sonication-based exfoliation methods used for other 2D materials not well-suited to WO3. WO3 is also highly complex in terms of how the synthesis method affects the properties of the final material. Depending on the route used and subsequent post-synthesis treatments, a wide variety of different morphologies, phases, exposed facets, and defect structures are created, all of which must be carefully considered for the chosen application. In this review, the recent developments in WO3 nanosheet synthesis and their impact on performance in various applications are summarized and critically analyzed.
Collapse
Affiliation(s)
- Travis G Novak
- NRC Postdoctoral Associate, US Naval Research Laboratory Washington D.C. 20375 USA
| | - Jin Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Paul A DeSario
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Advanced Battery Center, KAIST Daejeon 34141 Republic of Korea
| |
Collapse
|
35
|
Jeong CY, Watanabe H, Tajima K. Adhesive electrochromic WO3 thin films fabricated using a WO3 nanoparticle-based ink. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Lu Y, Yang X, Jin H, Liu K, Zhang G, Huang L, Li J, Zhou J. Li xNa 2-xW 4O 13 nanosheet for scalable electrochromic device. FRONTIERS OF OPTOELECTRONICS 2021; 14:298-310. [PMID: 36637723 PMCID: PMC9743895 DOI: 10.1007/s12200-020-1033-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 06/17/2023]
Abstract
The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials. Two-dimensional (2D) materials are promising functional ink candidates due to their superior properties. However, the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions, which limits their applications. Herein, we report a lithium (Li)-ion exchange method to improve the dispersity of the Na2W4O13 nanosheets in pure water. The Li-ion-exchanged Na2W4O13 (LixNa2-xW4O13) nanosheets show highly stable dispersity in water with a zeta potential of -55 mV. Moreover, this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2-xW4O13 nanosheet film, exhibiting an excellent electrochromic performance. A complementary electrochromic device containing a LixNa2-xW4O13 nanosheet film as an electrochromic layer and Prussian white (PW) as an ion storage layer exhibits a large optical modulation of 75% at 700 nm, a fast switching response of less than 2 s, and outstanding cyclic stability. This Na2W4O13-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices, which would meet the practical application requirements.
Collapse
Affiliation(s)
- Yucheng Lu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Yang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hongrun Jin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaisi Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Li
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
37
|
Sahoo P, Gupta B, Chandra Sahoo R, Vankayala K, Ramakrishna Matte HSS. Solution Processing of Topochemically Converted Layered WO 3 for Multifunctional Applications. Chemistry 2021; 27:11326-11334. [PMID: 34019316 DOI: 10.1002/chem.202100751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/10/2022]
Abstract
Solution processing of nanomaterials is a promising technique for use in various applications owing to its simplicity and scalability. However, the studies on liquid-phase exfoliation (LPE) of tungsten oxide (WO3 ) are limited, unlike others, by a lack of commercial availability of bulk WO3 with layered structures. Herein, a one-step topochemical synthesis approach to obtain bulk layered WO3 from commercially available layered tungsten disulfide (WS2 ) by optimizing various parameters like reaction time and temperature is reported. Detailed microscopic and spectroscopic techniques confirmed the conversion process. Further, LPE was carried out on topochemically converted bulk layered WO3 in 22 different solvents; among the solvents studied, the propan-2-ol/water (1 : 1) co-solvent system appeared to be the best. This indicates that the possible values of surface tension and Hansen solubility parameters for bulk WO3 could be close to that of the co-solvent system. The obtained WO3 dispersions in a low-boiling-point solvent enable thin films of various thickness to be fabricated by using spray coating. The obtained thin films were used as active materials in supercapacitors without any conductive additives/binders and exhibited an areal capacitance of 31.7 mF cm-2 at 5 mV s-1 . Photo-electrochemical measurements revealed that these thin films can also be used as photoanodes for photo-electrochemical water oxidation.
Collapse
Affiliation(s)
- Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Bikesh Gupta
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India
| | - Ramesh Chandra Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kiran Vankayala
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa campus, Goa, 403726, India
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bangalore, 562162, India
| |
Collapse
|
38
|
Li R, Ma X, Li J, Cao J, Gao H, Li T, Zhang X, Wang L, Zhang Q, Wang G, Hou C, Li Y, Palacios T, Lin Y, Wang H, Ling X. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO 2/MXene heterostructures. Nat Commun 2021; 12:1587. [PMID: 33707439 PMCID: PMC7952574 DOI: 10.1038/s41467-021-21852-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Transition metal oxides (TMOs) are promising electrochromic (EC) materials for applications such as smart windows and displays, yet the challenge still exists to achieve good flexibility, high coloration efficiency and fast response simultaneously. MXenes (e.g. Ti3C2Tx) and their derived TMOs (e.g. 2D TiO2) are good candidates for high-performance and flexible EC devices because of their 2D nature and the possibility of assembling them into loosely networked structures. Here we demonstrate flexible, fast, and high-coloration-efficiency EC devices based on self-assembled 2D TiO2/Ti3C2Tx heterostructures, with the Ti3C2Tx layer as the transparent electrode, and the 2D TiO2 layer as the EC layer. Benefiting from the well-balanced porosity and connectivity of these assembled nanometer-thick heterostructures, they present fast and efficient ion and electron transport, as well as superior mechanical and electrochemical stability. We further demonstrate large-area flexible devices which could potentially be integrated onto curved and flexible surfaces for future ubiquitous electronics.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Xiaoyuan Ma
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Jianmin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jun Cao
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Hongze Gao
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Tianshu Li
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Xiaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lichao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuxuan Lin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.
- The Photonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
39
|
Han W, Shi Q, Hu R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:692. [PMID: 33802013 PMCID: PMC8000231 DOI: 10.3390/nano11030692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023]
Abstract
Tungsten oxide-based materials have drawn huge attention for their versatile uses to construct various energy storage devices. Particularly, their electrochromic devices and optically-changing devices are intensively studied in terms of energy-saving. Furthermore, based on close connections in the forms of device structure and working mechanisms between these two main applications, bifunctional devices of tungsten oxide-based materials with energy storage and optical change came into our view, and when solar cells are integrated, multifunctional devices are accessible. In this article, we have reviewed the latest developments of tungsten oxide-based nanostructured materials in various kinds of applications, and our focus falls on their energy-related uses, especially supercapacitors, lithium ion batteries, electrochromic devices, and their bifunctional and multifunctional devices. Additionally, other applications such as photochromic devices, sensors, and photocatalysts of tungsten oxide-based materials have also been mentioned. We hope this article can shed light on the related applications of tungsten oxide-based materials and inspire new possibilities for further uses.
Collapse
Affiliation(s)
- Wenfang Han
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Qian Shi
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
40
|
Wang Y, Nie H, Han J, An Y, Zhang YM, Zhang SXA. Green revolution in electronic displays expected to ease energy and health crises. LIGHT, SCIENCE & APPLICATIONS 2021; 10:33. [PMID: 33550329 PMCID: PMC7867656 DOI: 10.1038/s41377-020-00455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/02/2023]
Abstract
The technological revolution of long-awaited energy-saving and vision-friendly displays represented by bistable display technology is coming. Here we discuss methods, challenges, and opportunities for implementing bistable displays in terms of molecular design, device structure, further expansion, and required criteria, hopefully benefiting the light-related community.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Nie
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| | - Jinsong Han
- State Grid Heilongjiang Electric Power Co., Ltd, Heihe Power Supply Company, Heihe, 164300, China
| | - Yaxun An
- Jiaxing IrS Display Technology Co., Ltd, Jiashan, 314113, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
41
|
Matsukawa T, Ishigaki T. Effect of isothermal holding time on hydrogen-induced structural transitions of WO 3. Dalton Trans 2021; 50:7590-7596. [PMID: 33988207 DOI: 10.1039/d1dt01259b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tungsten trioxide (WO3) has the ability to transform oxygen-deficient structures (WO3-x; 0 ≦ x ≦ 1) at high temperatures under hydrogen. Because the band gap of WO3-x depends on the amount of W5+ species resulting from oxygen vacancies, this material is expected to have unique applications. Herein, to elucidate the WO3 reduction mechanism, we investigated the crystallographic changes of monoclinic WO3 powder samples using X-ray and neutron diffraction measurements under different reduction conditions, namely, under hydrogen at 500 or 800 °C for isothermal holding times of 30 min or 22 h. During heating, the yellow color of WO3 changed to various other colors, suggesting that WO3 underwent different reactions with hydrogen depending on the temperature and isothermal holding time. The X-ray powder diffraction results indicated that the hydrogen-treated WO3 crystals formed various oxygen-deficient structures, including stoichiometric WO3-x, non-stoichiometric WO3-x, and W metal. However, the formation of a single WO3-x phase was extremely difficult. For the blue WO3 sample obtained at short isothermal holding times, the total scattering analysis suggested that the oxygen vacancies in WO3 gradually formed at local positions. Furthermore, the neutron powder diffraction measurements revealed that the reduction of WO3 under hydrogen occurred on the surface. These results obtained by diffraction measurements enhance the knowledge in the chemical and physical properties of WO3-x.
Collapse
Affiliation(s)
- Takeshi Matsukawa
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| | - Toru Ishigaki
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
42
|
Controlled growth of AgI nanoparticles on hollow WO3 hierarchical structures to act as Z-scheme photocatalyst for visible-light photocatalysis. J Colloid Interface Sci 2020; 579:754-765. [DOI: 10.1016/j.jcis.2020.06.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/14/2023]
|
43
|
Song Y, Cho J. Interfacial control and design of conductive nanomaterials for transparent nanocomposite electrodes. NANOSCALE 2020; 12:20141-20157. [PMID: 33020788 DOI: 10.1039/d0nr05961g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A few critical issues in preparing transparent conductive electrodes (TCEs) based on solution-processable conductive nanomaterials are their low electrical conductivity and the unfavorable trade-off between electrical conductivity and optical transparency, which are closely related to the organic ligands bound to the nanomaterial surface. In particular, bulky/insulating organic ligands bound to the surface of conductive nanomaterials unavoidably act as high contact resistance sites at the interfaces between neighboring nanomaterials, which adversely affects the charge transfer kinetics of the resultant TCEs. This article reviews the latest research status of various interfacial control approaches for solution-processable TCEs. We describe how these approaches can be effectively applied to conductive nanomaterials and how interface-controlled conductive nanomaterials can be employed to improve the electrical and/or electrochemical performance of various transparent nanocomposite electrodes, including TCEs, energy storage electrodes, and electrochromic electrodes. Last, we provide perspectives on the development direction for next-generation transparent nanocomposite electrodes and breakthroughs for significantly mitigating the complex trade-off between their electrical/electrochemical performance and optical transparency.
Collapse
Affiliation(s)
- Yongkwon Song
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
44
|
Li H, Zhang W, Elezzabi AY. Transparent Zinc-Mesh Electrodes for Solar-Charging Electrochromic Windows. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003574. [PMID: 32954551 DOI: 10.1002/adma.202003574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Newly born zinc-anode-based electrochromic devices (ZECDs), incorporating electrochromic and energy storage functions in a single transparent platform, represent the most promising technology for next-generation transparent electronics. As the existing ZECDs are limited by opaque zinc anodes, the key focus should be on the development of transparent zinc anodes. Here, the first demonstration of a flexible transparent zinc-mesh electrode is reported for a ZECD window that yields a remarkable electrochromic performance in an 80 cm2 device, including rapid switching times (3.6 and 2.5 s for the coloration and bleaching processes, respectively), a high optical contrast (67.2%), and an excellent coloration efficiency (131.5 cm2 C-1 ). It is also demonstrated that such ZECDs are perfectly suited for solar-charging smart windows as they inherently address the solar intermittency issue. These windows can be colored via solar charging during the day, and they can be bleached during the night by supplying electrical energy to electronic devices. The ZECD smart window platform can be scaled to a large area while retaining its excellent electrochromic characteristics. These findings represent a new technology for solar-charging windows and open new opportunities for the development of next-generation transparent batteries.
Collapse
Affiliation(s)
- Haizeng Li
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
45
|
Cho D, Jang JS, Nam SH, Ko K, Hwang W, Jung JW, Lee J, Choi M, Hong JW, Kim ID, Jeon S. Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS NANO 2020; 14:12173-12183. [PMID: 32880440 DOI: 10.1021/acsnano.0c05843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cost-effective direct writing of polymer nanofibers (NFs) has garnered considerable research attention as a compelling one-pot strategy for obtaining key building blocks of electrochemical and optical devices. Among the promising applications, the changes in optical response from external stimuli such as mechanical deformation and changes in the thermal environment are of great significance for emerging applications in smart windows, privacy protection, aesthetics, artificial skin, and camouflage. Herein, we propose a rational design for the mass production of customized NFs through the development of focused electric-field polymer writing (FEPW) coupled with the roll-to-roll technique. As a proof of key applications, we demonstrate multistimuli-responsive (mechano- and thermochromism) membranes with an exceptional production scale (over 300 cm2). Specifically, the membranes consist of periodically aligned ultrathin (∼60 nm) alumina nanotubes inserted in the elastomers. We performed a two-phase finite element analysis of the unit cells to verify the underlying physics of light scattering at heterogeneous interfaces of the strain-induced air gaps. By adding thermochromic dye during the FEPW, the optical modulation of transmittance change (∼83% to 37% at visible wavelength) was successfully extended to high-contrast thermal-dependent coloration.
Collapse
Affiliation(s)
- Donghwi Cho
- Department of Materials Science and Engineering, Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ji-Soo Jang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Sang-Hyeon Nam
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwonhwan Ko
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wontae Hwang
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Wook Jung
- Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero 989-111, Yusung-gu, Daejeon 34057, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myungwoo Choi
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jung-Wuk Hong
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Shi Y, Sun M, Zhang Y, Cui J, Shu X, Wang Y, Qin Y, Liu J, Tan HH, Wu Y. Rational Design of Oxygen Deficiency-Controlled Tungsten Oxide Electrochromic Films with an Exceptional Memory Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32658-32665. [PMID: 32610893 DOI: 10.1021/acsami.0c06786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to their nonemissive characteristics, electrochromic materials promise distinct advantages in developing next-generation eye-friendly information displays. Yet, it remains a challenge to manipulate the structure of the materials to achieve a strong memory effect with high optical contrast, which is of importance for displaying images with essentially zero energy consumption. Here, we design a mixed crystalline WOx thin film implanted with massive oxygen deficiencies based on a conventional reactive magnetron sputtering process. The obtained WOx film exhibits high dual-band optical modulation in both visible (VIS, 99.0% in 633 nm) and near-infrared (NIR, 94.2% in 1300 nm) regions as well as an exceptional memory effect (the colored transmittance increases only by 0.04% at 633 nm after 50 days). The enhanced electrochromic performance can be attributed to dense Li+-ion binding sites as well as the trapping effect provided by the massive internal oxygen deficiencies. The strategy in this work bestows the WOx thin film a promising candidate for developing electrochromic information displays and other energy-efficient devices as well.
Collapse
Affiliation(s)
- Yingdi Shi
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Mingjun Sun
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Yong Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Xia Shu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Yongqiang Qin
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Jiaqin Liu
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- Institute of Industry & Equipment Technology, Hefei University of Technology, No. 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Yucheng Wu
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
47
|
Gopakumar G, Nair SV, Shanmugam M. Assessing the role of plasma-engineered acceptor-like intra- and inter-grain boundaries of heterogeneous WS 2-WO 3 nanosheets for photocurrent characteristics. NANOSCALE ADVANCES 2020; 2:2276-2283. [PMID: 36133396 PMCID: PMC9419149 DOI: 10.1039/d0na00158a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 06/16/2023]
Abstract
High-temperature annealing in tungsten disulfide resulted in heterogeneous WS2-WO3 in which intra- (within WS2 and WO3) and inter- (between WS2 and WO3) grain boundaries were observed, which were highly critical for charge transport and recombination. The heterogeneous WS2-WO3 phase was evidenced by observing the coexistence of d-spacing values of 0.26 nm (WS2) and 0.37 nm (WO3) in transmission electron microscopic (TEM) studies. Further systematic high-resolution TEM studies elucidated that intra-grain boundaries separated crystallites within WS2 and WO3, while inter-grain boundaries separated WS2 from WO3. As WS2 and WO3 are both n-type, these defects are acceptor-like in the grain boundaries and they actively participate in the capture (trapping) process, which impedes charge transport characteristics in the heterogeneous WS2-WO3 films. Plasma treatment in the heterogeneous WS2-WO3 film, for 60 minutes using argon, energetically modulated the defects in the intra/inter-grain boundaries, as evidenced from detailed comparative photocurrent characteristics obtained individually in (i) pristine WS2, (ii) heterogeneous WS2-WO3 and (iii) Ar plasma-treated heterogeneous WS2-WO3 films under blue and green lasers, along with AM1.5 (1 sun) illumination. Detrimental roles (trapping/de-trapping and scattering) of grain boundary states on photoelectrons were seen to be significantly suppressed under the influence of plasma.
Collapse
Affiliation(s)
- Gopika Gopakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kerala-682041 India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kerala-682041 India
| | - Mariyappan Shanmugam
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kerala-682041 India
| |
Collapse
|
48
|
Cho D, Shim Y, Jung J, Nam S, Min S, Lee S, Ham Y, Lee K, Park J, Shin J, Hong J, Jeon S. High-Contrast Optical Modulation from Strain-Induced Nanogaps at 3D Heterogeneous Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903708. [PMID: 32537413 PMCID: PMC7284194 DOI: 10.1002/advs.201903708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
The realization of high-contrast modulation in optically transparent media is of great significance for emerging mechano-responsive smart windows. However, no study has provided fundamental strategies for maximizing light scattering during mechanical deformations. Here, a new type of 3D nanocomposite film consisting of an ultrathin (≈60 nm) Al2O3 nanoshell inserted between the elastomers in a periodic 3D nanonetwork is proposed. Regardless of the stretching direction, numerous light-scattering nanogaps (corresponding to the porosity of up to ≈37.4 vol%) form at the interfaces of Al2O3 and the elastomers under stretching. This results in the gradual modulation of transmission from ≈90% to 16% at visible wavelengths and does not degrade with repeated stretching/releasing over more than 10 000 cycles. The underlying physics is precisely predicted by finite element analysis of the unit cells. As a proof of concept, a mobile-app-enabled smart window device for Internet of Things applications is realized using the proposed 3D nanocomposite with successful expansion to the 3 × 3 in. scale.
Collapse
Affiliation(s)
- Donghwi Cho
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Young‐Seok Shim
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Division of Materials Science & EngineeringSilla University140 Baegyang‐daero 700beon‐gilSasang‐guBusanKorea
| | - Jae‐Wook Jung
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Structural Safety & Prognosis Research DivisionKorea Atomic Energy Research Institute (KAERI)Daedeok‐daero 989‐111Yusung‐guDaejeon34057South Korea
| | - Sang‐Hyeon Nam
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seokhwan Min
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Sang‐Eon Lee
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Youngjin Ham
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Kwangjae Lee
- Department of Information Security EngineeringSang Myung UniversityCheonan‐siChungcheongnam‐do31066Republic of Korea
| | - Junyong Park
- School of Materials Science and EngineeringKumoh National Institute of TechnologyGumiGyeongbuk39177Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jung‐Wuk Hong
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and EngineeringKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
49
|
Arash A, Tawfik SA, Spencer MJS, Kumar Jain S, Arash S, Mazumder A, Mayes E, Rahman F, Singh M, Bansal V, Sriram S, Walia S, Bhaskaran M, Balendhran S. Electrically Activated UV-A Filters Based on Electrochromic MoO 3-x. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16997-17003. [PMID: 32203662 DOI: 10.1021/acsami.9b20916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromism-based optical filters is a niche field of research, due to there being only a handful of electrochromic materials. Typically, electrochromic transition metal oxides such as MoO3 and WO3 are utilized in applications such as smart windows and electrochromic devices (ECD). Herein, we report MoO3-x-based electrically activated ultraviolet (UV) filters. The MoO3-x grown on indium tin oxide (ITO) substrate is mechanically assembled onto an electrically activated proton exchange membrane. Reversible H+ injection/extraction in MoO3-x is employed to switch the optical transmittance, enabling an electrically activated optical filter. The devices exhibit broadband transmission modulation (325-800 nm), with a peak of ∼60% in the UV-A range (350-392 nm). Comparable switching times of 8 s and a coloration efficiency of up to 116 cm2 C-1 are achieved.
Collapse
Affiliation(s)
- Aram Arash
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | - Shubhendra Kumar Jain
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Saba Arash
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, United States of America
| | - Aishani Mazumder
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Edwin Mayes
- RMIT Microscopy and Microanalysis Facility, School of Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | - Fahmida Rahman
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Mandeep Singh
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
| | - Sivacarendran Balendhran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC 3001, Australia
- School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
50
|
Rojaee R, Shahbazian-Yassar R. Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS NANO 2020; 14:2628-2658. [PMID: 32083832 DOI: 10.1021/acsnano.9b08396] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the ever-growing demand in safe and high power/energy density of Li+ ion and Li metal rechargeable batteries (LIBs), materials-related challenges are responsible for the majority of performance degradation in such batteries. These challenges include electrochemically induced phase transformations, repeated volume expansion and stress concentrations at interfaces, poor electrical and mechanical properties, low ionic conductivity, dendritic growth of Li, oxygen release and transition metal dissolution of cathodes, polysulfide shuttling in Li-sulfur batteries, and poor reversibility of lithium peroxide/superoxide products in Li-O2 batteries. Owing to compelling physicochemical and structural properties, in recent years two-dimensional (2D) materials have emerged as promising candidates to address the challenges in LIBs. This Review highlights the cutting-edge advances of LIBs by using 2D materials as cathodes, anodes, separators, catalysts, current collectors, and electrolytes. It is shown that 2D materials can protect the electrode materials from pulverization, improve the synergy of Li+ ion deposition, facilitate Li+ ion flux through electrolyte and electrode/electrolyte interfaces, enhance thermal stability, block the lithium polysulfide species, and facilitate the formation/decomposition of Li-O2 discharge products. This work facilitates the design of safe Li batteries with high energy and power density by using 2D materials.
Collapse
Affiliation(s)
- Ramin Rojaee
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|