1
|
Guvenc CM, Toso S, Ivanov YP, Saleh G, Balci S, Divitini G, Manna L. Breaking the Boundaries of the Goldschmidt Tolerance Factor with Ethylammonium Lead Iodide Perovskite Nanocrystals. ACS NANO 2025; 19:1557-1565. [PMID: 39723920 DOI: 10.1021/acsnano.4c14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We report the synthesis of ethylammonium lead iodide (EAPbI3) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large A-cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI3 nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI3 polymorph within 1 day. Also, EAPbI3 nanocrystals are very sensitive to electron irradiation and quickly degrade to PbI2 upon exposure to the electron beam, following a mechanism similar to that of other hybrid lead iodide perovskites (although degradation can be reduced by partially replacing the EA+ ions with Cs+ ions). Interestingly, in some cases during this degradation the formation of an epitaxial interface between (EAxCs1-x)PbI3 and PbI2 is observed. The photoluminescence emission of the EAPbI3 perovskite nanocrystals, albeit being characterized by a low quantum yield (∼1%), can be tuned in the 664-690 nm range by regulating their size during the synthesis. The emission efficiency can be improved upon partial alloying at the A site with Cs+ or formamidinium cations. Furthermore, the morphology of the EAPbI3 nanocrystals can be chosen to be either nanocube or nanoplatelet, depending on the synthesis conditions.
Collapse
Affiliation(s)
- C Meric Guvenc
- Department of Materials Science and Engineering, İzmir Institute of Technology, 35433 Urla, İzmir, Turkey
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Stefano Toso
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gabriele Saleh
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Sinan Balci
- Department of Photonics, İzmir Institute of Technology, 35433 Urla, İzmir, Turkey
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
2
|
Kim B, Park J, Kang D, Jung NE, Kim K, Ryu H, Jang JI, Park S, Yi Y. Tuning electronic structure and carrier transport properties through crystal orientation control in two-dimensional Dion-Jacobson phase perovskites. NANO CONVERGENCE 2025; 12:1. [PMID: 39806045 DOI: 10.1186/s40580-024-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties. Therefore, controlling the preferred crystal orientation (parallel or perpendicular) is crucial for optimizing device performance. This work presents a rational strategy to control parallel and perpendicular crystal growth in C6N2H16PbI4 (4AMPPbI4)-based DJ phase perovskite thin films. We demonstrate that crystal orientation depends on crystal growth rates, which can be controlled by varying the solvent composition, antisolvent, and annealing temperature. Direct and inverse photoelectron spectroscopy reveals that the electronic structure of 4AMPPbI4, including its work function, ionization energy, and electron affinity, is orientation-dependent. Different orientations significantly affect carrier transport as confirmed by single-carrier devices. This study highlights the critical role of crystal orientation in DJ phase perovskites for designing high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Byunggeol Kim
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeehong Park
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donghee Kang
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Na Eun Jung
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kitae Kim
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
- Advanced Analysis & Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongsun Ryu
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Joon Ik Jang
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Soohyung Park
- Advanced Analysis & Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonjin Yi
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Sen A, Dutta A, Bose AL, Sen P. Oleylammonium fluoride passivated blue-emitting 2D CsPbBr 3 nanoplates with near-unity photoluminescence quantum yield: safeguarding against threats from external perturbations. Chem Sci 2025; 16:735-752. [PMID: 39629488 PMCID: PMC11610764 DOI: 10.1039/d4sc05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Quantum-confined, two-dimensional (2D) CsPbBr3 (CPB) nanoplates (NPLs) have emerged as exceptional candidates for next-generation blue LEDs and display technology applications. However, their large surface-to-volume ratio and detrimental bromide vacancies adversely affect their photoluminescence quantum yield (PLQY). Additionally, external perturbations such as heat, light exposure, moisture, oxygen, and solvent polarity accelerate their transformation into three-dimensional (3D), green-emitting CPB nanocrystals (NCs), thereby resulting in the loss of their quantum confinement. Until now, no reported strategies have successfully addressed all these issues simultaneously. In this study, for the first time, we prepared oleylammonium fluoride (OAmF) salt and applied it post-synthetically to CPB NPLs with thicknesses of n = 3 and n = 4. Steady state and time-resolved photoluminescence (TRPL) measurements like fluorescence upconversion and TCSPC confirmed the elimination of detrimental deep trap states by fluoride ions, resulting in an unprecedented improvement in PLQY to 85% for n = 3 and 98% for n = 4. Furthermore, the formation of robust Pb-F bonds, coupled with strong electrostatic and hydrogen-bonding interactions, resulted in a highly stable NPL surface-ligand interaction. This concrete surface architecture restricts the undesired phase transition of 2D NPLs into 3D NCs under various external perturbations, including heat up to 363 K, strong UV irradiation, water, atmospheric conditions, and solvent polarity. Also, the temperature dependent TRPL measurements provide an insight into the charge carrier dynamics under thermal stress conditions and reveal the location of shallow trap states, which lie below 7 meV from the conduction band edge. In brief, our innovative OAmF salt has effectively addressed all the critical issues of 2D CPB NPLs, paving the way for next-generation LED applications. This breakthrough not only enhances the stability and PLQY of CPB NPLs but also offers a scalable solution for the advancement of perovskite-based technologies.
Collapse
Affiliation(s)
- Arghya Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abhijit Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| |
Collapse
|
4
|
Zhu Y, Luo S, Zhang Y, Liu Y, He Y, Li T, Chi Z, Guo L. Modulating hot carrier relaxation and trapping dynamics in lead halide perovskite nanoplatelets by surface passivation. NANOSCALE 2024; 17:584-591. [PMID: 39576023 DOI: 10.1039/d4nr02560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Two-dimensional (2D) lead halide perovskite (LHP) nanoplatelets (NPLs) have recently emerged as promising materials for solar cells and light-emitting devices. The reduction of LHP dimensions introduces an abundance of surface defects, which can strongly influence the photophysical properties of these materials. However, an insightful understanding of the effect of surface defects on hot carrier (HC) relaxation, one of the important properties of LHP NPLs, is still inadequate. Herein, the HC relaxation and trapping dynamics in pristine and surface passivated two-layer (2L) CsPbBr3 NPLs have been investigated by using time-resolved spectroscopy. The results reveal that surface defects can trap HCs directly before they relax to the band edge, which accounts for the absence of the hot-phonon bottleneck (HPB) effect in LHP NPLs. After healing surface defects with a passivation agent, the relaxation time of HCs is extended from ∼73 to ∼130 fs in 2L CsPbBr3 NPLs, indicating that the channel of HCs trapped by the surface defects can be effectively blocked. Accordingly, the HPB effect is activated in surface-passivated CsPbBr3 NPLs. The finding of surface defect-related HC relaxation dynamics is important for guiding the development of high-performance LHP NPL devices related to HCs through surface defect engineering.
Collapse
Affiliation(s)
- Yanshen Zhu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Shida Luo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yuting Zhang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanping Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Tianfeng Li
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Mu S, He Y, Wang Y, Chen W, Lv C, Liang X, Xiang W, Chen Z. AuBr 3 Induces CsPb(Br/I) 3 QDs to Self-Assemble into Nanowires. SMALL METHODS 2024; 8:e2400143. [PMID: 39011732 DOI: 10.1002/smtd.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Indexed: 07/17/2024]
Abstract
Perovskite quantum dots can form various forms such as nanowires, nanorods, and nanosheets through self-assembly. Nanoscale self-assembly can be used to fabricate materials with excellent device properties. This study introduces AuBr3 into CsPb(Br/I)3 quantum dots, causing them to assemble into nanowires. The nanowires form because part of Au3+ is surface-doped to replace Pb2+, and the [PbX6]4- octahedral structure is distorted. The symmetry of the structural surface is broken, and a dipole-moment-induced field is generated, thus promoting self-assembly. Moreover, the presence of Au nanoparticles (NPs) causes a localized surface plasmon resonance and generates strong van der Waals forces that promote self-assembly. Finally, to test other applications of perovskite nanowires, the solution method is used to prepare films by compounding the sample solution and polystyrene (PS) for backlighted displays.
Collapse
Affiliation(s)
- Shouying Mu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ye He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - YueLi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wei Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhaopin Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| |
Collapse
|
6
|
Zhang D, Cao X, Liu C, Chen M, Ye W, Zhou J, Fan X, You G, Zheng C, Ning J, Xu S. Abnormal Temperature Dependence of Huang-Rhys Factor and Exciton Recombination Kinetics in CsPbBr 3 Perovskite Quantum Dots. J Phys Chem Lett 2024; 15:11015-11021. [PMID: 39466238 DOI: 10.1021/acs.jpclett.4c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Anomalous thermal behaviors of excitonic luminescence in CsPbBr3 perovskite quantum dots (PQDs) were observed. It is found that the main luminescence peak originated from the excitonic radiative recombination assisted by the longitudinal-optical (LO) phonon, and its integrated intensity first declines as the temperature varies from 10 to 150 K and then turns to increase at ∼160 K, reaching a maximum value at 300 K. A model considering the thermal detrapping and transfer of electrons from a trap level is developed to interpret these abnormal thermal behaviors of the luminescence from the PQDs. On the other hand, the quantum-mechanical multimode Brownian oscillator model was employed to unravel that the Huang-Rhys factor exclusively characterizing the exciton-phonon coupling in the studied CsPbBr3 PQDs decreases from 1.65 at 10 K to 1.31 at 200 K.
Collapse
Affiliation(s)
- Debao Zhang
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xuguang Cao
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Canyu Liu
- Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingtong Chen
- Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
| | - Wanggui Ye
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ji Zhou
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xinye Fan
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Guanjun You
- Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Changcheng Zheng
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Shijie Xu
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Frank K, Henke NA, Lampe C, Lorenzen T, März B, Sun X, Haas S, Gutowski O, Dippel AC, Mayer V, Müller-Caspary K, Urban AS, Nickel B. Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals. Nat Commun 2024; 15:8952. [PMID: 39420017 PMCID: PMC11486954 DOI: 10.1038/s41467-024-53221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Colloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation. Here, we deduce the formation mechanisms of anisotropic lead halide perovskite nanocrystals, 1D nanorods and 2D nanoplatelets, by combining in situ X-ray scattering and photoluminescence spectroscopy. In both cases, emissive prolate nanoclusters form when the two precursor solutions are mixed. The ensuing antisolvent addition induces the divergent anisotropy: The intermediate nanoclusters are driven into a dense hexagonal mesophase, fusing to form nanorods. Contrastingly, nanoplatelets grow freely dispersed from dissolving nanoclusters, stacking subsequently in lamellar superstructures. Shape and size control of the nanocrystals are determined primarily by the antisolvent's dipole moment and Hansen hydrogen bonding parameter. Exploiting the interplay of antisolvent and organic ligands could enable more complex nanocrystal geometries in the future.
Collapse
Affiliation(s)
- Kilian Frank
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Nina A Henke
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Tizian Lorenzen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Benjamin März
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Xiao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Sylvio Haas
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | | | - Veronika Mayer
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Knut Müller-Caspary
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany.
| | - Bert Nickel
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany.
| |
Collapse
|
8
|
Baravaglio M, Sabot B, Maddalena F, Birowosuto MD, Dang C, Dujardin C, Mahler B. Energy deposition in liquid scintillators composed of CsPbBr 3 colloidal nanocrystal dispersions. NANOSCALE 2024; 16:17176-17186. [PMID: 39196536 DOI: 10.1039/d4nr02401j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Liquid scintillation processes are commonly used for various applications involving radioactivity levels analysis, as well as experiments in the field of high energy physics, most commonly in the form of organic scintillating cocktails. In this paper, we explore the potential of halide perovskite nanocrystal colloidal dispersions as an alternative to those organic mixtures. After an optimization of the nanocrystals' mean size and surface chemistry, the scintillation yield of these composite mixtures is evaluated through Compton - Triple to Double Coincidence Ratio experiments and compared with commercial liquid scintillator. The obtained results shine a light on the energy deposition mechanisms in nanocrystals-based liquid scintillators.
Collapse
Affiliation(s)
- M Baravaglio
- Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, CNRS F-69622 Villeurbanne, France.
- IRL 3288 CINTRA, CNRS-NTU-Thales, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - B Sabot
- Université Paris Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France
| | - F Maddalena
- IRL 3288 CINTRA, CNRS-NTU-Thales, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - M D Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - C Dang
- IRL 3288 CINTRA, CNRS-NTU-Thales, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore, 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - C Dujardin
- Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, CNRS F-69622 Villeurbanne, France.
- Institut Universitaire de France (IUF), France
| | - B Mahler
- Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, CNRS F-69622 Villeurbanne, France.
| |
Collapse
|
9
|
Chen J, Li J, Nedelcu G, Hansch P, Di Mario L, Protesescu L, Loi MA. Blade-coated perovskite nanoplatelet polymer composites for sky-blue light-emitting diodes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:13847-13853. [PMID: 39144138 PMCID: PMC11318649 DOI: 10.1039/d4tc02404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Colloidal perovskite nanoplatelets (NPLs) have shown promise in tackling blue light-emitting diode challenges based on their tunable band gap and high photoluminescence efficiencies. However, high quality and large area dense NPL films have been proven to be very hard to prepare because of their chemical and physical fragility during the liquid phase deposition. Herein, we report a perovskite-polymer composite film deposition strategy with fine morphology engineering obtained using the blade coating method. The effects of the polymer type, solution concentration, compounding ratio and film thickness on the film quality are systematically investigated. We found that a relatively high-concentration suspension with an optimized NPL to polymer ratio of 1 : 2 is crucial for the suppression of phase separation and arriving at a uniform film. Finally, sky-blue NPL-based perovskite light-emitting diodes were fabricated by blade coating showing an EQE of 0.12% on a device area of 16 mm2.
Collapse
Affiliation(s)
- Jiale Chen
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Jiaxiong Li
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Georgian Nedelcu
- Materials Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Paul Hansch
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Lorenzo Di Mario
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Loredana Protesescu
- Materials Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Maria A Loi
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| |
Collapse
|
10
|
Zhang X, Cui Y, Ye S, Lin Z, Li Y. Highly efficient deep-blue emitting CsPbBr 3 nanoplatelets synthesized via surface ligand-mediated strategy. J Colloid Interface Sci 2024; 668:68-76. [PMID: 38669997 DOI: 10.1016/j.jcis.2024.03.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Two-dimensional (2D) CsPbBr3 nanoplatelets (NPLs) have attracted great attention as one of promising semiconductor nanomaterials due to their large exciton binding energy and narrow emission spectra. However, the labile ionic and weakly bound surfaces of deep-blue emitting CsPbBr3 NPLs with wide bandgap result in their colloidal instability, thus degrading their optical properties. It is challenging to obtain deep-blue emitting CsPbBr3 NPLs with excellent optical properties. In this study, high-quality blue-emitting CsPbBr3 NPLs with tunable thickness were prepared adopting the DBSA-mediated confinement effect based on the hot-injection method. Thanks to the coordination interaction of - SO3- of DBSA ligand and the Pb2+ on the surface of the CsPbBr3 NPLs, as well as the effective passivation of Br vacancy defects on the surface of NPLs by OAm-Br, the obtained pure-blue CsPbBr3 NPLs and deep-blue CsPbBr3 NPLs show high photoluminescence quantum yield (PLQY) of 92 % and 81.2 %, respectively. To the best of our knowledge, this is the highest PLQY recorded for deep-blue emitting CsPbBr3 NPLs with two monolayers [PbBr6]4- octahedra. Furthermore, the agglomeration of CsPbBr3 NPLs due to ligand loss induced by moisture, oxygen, and irradiation was also suppressed by the dual passivation effect of DBSA and OAm-Br. Our work provided a new approach to developing high-performance and stable deep-blue emitting CsPbBr3 perovskite nanoplatelets.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyu Cui
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuohan Lin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Das A, Ghosal S, Marjit K, Pati SK, Patra A. Chirality of CsPbBr 3 Nanocrystals with Varying Dimensions in the Presence of Chiral Molecules. J Phys Chem Lett 2024:7822-7831. [PMID: 39052510 DOI: 10.1021/acs.jpclett.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Chiral lead halide perovskite (LHP) nanocrystals (NCs) have been attracting considerable interest for circularly polarized luminescence (CPL)-based optoelectronic applications. This study combined experimental and computational analyses to investigate how the dimensionality of 3D (cubic) to 0D (quantum dots) influences the tunable chiral emission of CsPbBr3 LHP NCs. The circular dichroism (CD) spectra have a significant blue shift from 508 to 406 nm. The dissymmetry factors for CD (gCD) change from ±2.5 × 10-3 to ±7.5 × 10-3 as dimensionality varies from 3D to 0D in the presence of the chiral molecule (cyclohexylethylamine, CHEA). A significant luminescence dissymmetry factor (glum) of ±5.6 × 10-4 is observed in the 0D CsPbBr3 NCs. Theoretical calculations using structural distortion parameters, the extent of charge transfer, and electrostatic potential profiles have revealed that the most significant enhancement of the chirality transfer occurs from the CHEA molecules to 0D NCs, and the order of chirality transfer from CHEA to CsPbBr3 NCs is 0D (quantum dots) > 2D (nanoplatelet) > 3D (cubic).
Collapse
Affiliation(s)
- Antika Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriya Ghosal
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Kritiman Marjit
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
12
|
Agarwal N, Agarwal D, Debnath T. Amino Acid-Driven Dimensional Reduction of CsPbBr 3 Nanocrystals. ACS OMEGA 2024; 9:31026-31034. [PMID: 39035888 PMCID: PMC11256307 DOI: 10.1021/acsomega.4c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Inspired by biomineralization, the recent incorporation of organic molecules into inorganic lattices shows interesting optical properties and tunability. We functionalize all inorganic CsPbBr3 perovskite nanocrystals (PNCs) with amino acid (AA) cysteine using the water-hexane interfacial approach. Along with the AA cysteine, we added AuBr3 salt into the aqueous phase, leading to the formation of a Au-cysteine thiolate complex to activate the aqueous to nonaqueous phase transportation of the AA via a molecular shuttle, oleylamine. The interaction between CsPbBr3 PNCs and the Au-cysteine thiolate complex is probed using optical spectroscopy, which reveals dimensional reduction of the parent PNCs to form CsPbBr3 nanoplatelets (NPls) and subsequent phase transformation to CsPb2Br5 NPls. X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy conclusively support the above chemical transformation reaction via interfacial chemistry. We propose a mechanistic insight into the dimensional growth in one direction in the presence of AAs via preferential ligand binding to specific facets, leading to transformation from 3D cubes to 2D NPls, while, presumably, the phase transformation occurs via the CsBr stripping mechanism upon prolonged interaction with water. Since AAs are building blocks for several redox-active complex biological moieties, including proteins, investigation of the interaction of AAs with PNCs may be advantageous since the latter can act as a fluorescent probe for bioimaging application.
Collapse
Affiliation(s)
- Nikunj Agarwal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Deepshikha Agarwal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Tushar Debnath
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Nano
Physical Spectroscopy Group, Department of Chemistry, School of Natural
Sciences, Shiv Nadar Institution of Eminence, Delhi NCR 201314, Uttar Pradesh, India
| |
Collapse
|
13
|
Zhao C, Zhou Y, Shi C, Ou J, Pan A. Dual Passivation Strategy for Highly Stable Blue-Luminescent CsPbBr 3 Nanoplatelets. Inorg Chem 2024; 63:12316-12322. [PMID: 38885131 DOI: 10.1021/acs.inorgchem.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Blue-emitting colloidal CsPbX3 (X = Br, Cl, or I) perovskite nanocrystals have emerged as one of the most fascinating materials for optoelectronic applications. However, their applicability is hindered by poor stability and a low photoluminescence efficiency. Herein, highly stable CsPbBr3 nanoplatelets exhibiting intense blue luminescence are fabricated by employing a strategy in which the morphology is regulated and the surface is subjected to dual passivation through the incorporation of zirconium acetylacetonate [Zr(acac)4]. The passivated CsPbBr3 nanocrystals exhibit adjustable light emission from green to dark blue and a controllable morphology from nanocubes (NCs) to nanoplatelets (NPLs) and nanorods accomplished by varying the content of Zr(acac)4. The optimized NPLs are characterized by a bright blue emission with a central wavelength of 459 nm and a high photoluminescence quantum yield of 90%. The addition of Zr(acac)4 in the synthesis of CsPbBr3 induces oriented growth with a two-dimensional morphology. The Zr(acac)4 can repair the surface defects of the nanocrystal surface, and the surface is also capped with the Zr(OH)4 cluster layer. Therefore, the passivated blue-emitting NPLs exhibit outstanding stability compared to that of pristine NPLs during long-term storage and exposure to light. This work provides a novel strategy for fabricating highly stable PNCs with deep-blue emission and widens their potential applications in blue-emitting optoelectronic devices.
Collapse
Affiliation(s)
- Chunyu Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chengyu Shi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiachen Ou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aizhao Pan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Zhang H, Qiu S, Huang B, Li S, Gao X, Zhuang S. Light-induced transformation of all-inorganic mixed-halide perovskite nanoplatelets: ion migration and coalescence. OPTICS EXPRESS 2024; 32:22340-22351. [PMID: 39538722 DOI: 10.1364/oe.525033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024]
Abstract
When exposed to light, the colloidal perovskite nanoplatelets (NPLs) in the film can fuse into larger grains, and this phenomenon was thought to be closely related to ion migration. However, the available CsPbBr3 NPLs are not conducive to directly distinguishing this hypothesis. Herein, we prepare mixed-halide perovskite CsPbBr2.7I0.3 NPLs by a ligand-assisted reprecipitation method and investigate the photoluminescence evolution of NPLs under laser irradiation. At a low-irradiation intensity, 4.5-monolayer NPLs exhibit blue-shifted photoluminescence peaks due to the migration of iodide ions. Under higher laser fluence, a new photoluminescence component appears in the long wavelength region after the spectral blue shift, which is attributed to the coalescence of NPLs according to transmission electron microscopy analysis. A similar spectral evolution is also observed in 8-monolayer NPLs, while only the spectral blue shift caused by ion migration is detected in cuboidal CsPbBr2.7I0.3 nanocrystals. The use of strong bonding ligands can inhibit the fusion process of the NPLs, but not to impede ion migration, suggesting that fusion requires ligand detachment rather than ion migration. Similar suppression effects can be achieved in a vacuum atmosphere. Moreover, we demonstrate that mixed-halide NPLs can be used to realize anti-counterfeiting applications with superior photosensitivity.
Collapse
|
15
|
Wang L, Liu J, Gong Y, Yu J, Li Q, Liu Z, Zhang C, Wang S, Zhang X, Yang X. Efficient, Color-Stable, Pure-Blue Light-Emitting Diodes Based on Aromatic Ligand-Engineered Perovskite Nanoplatelets. NANO LETTERS 2024; 24:7004-7011. [PMID: 38804892 DOI: 10.1021/acs.nanolett.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Perovskite nanoplatelets (NPLs) show great potential for high-color-purity light-emitting diodes (LEDs) due to their narrow line width and high exciton binding energy. However, the performance of perovskite NPL LEDs lags far behind perovskite quantum dot-/film-based LEDs, owing to their material instability and poor carrier transport. Here, we achieved efficient and stable pure blue-emitting CsPbBr3 NPLs with outstanding optical and electrical properties by using an aromatic ligand, 4-bromothiophene-2-carboxaldehyde (BTC). The BTC ligands with thiophene groups can guide two-dimensional growth and inhibit out-of-plane ripening of CsPbBr3 NPLs, which, meanwhile, increases their structural stability via strongly interacting with PbBr64- octahedra. Moreover, aromatic structures with delocalized π-bonds facilitate charge transport, diminish band tail states, and suppress Auger processes in CsPbBr3 NPLs. Consequently, the LEDs demonstrate efficient and color-stable blue emissions at 465 nm with a narrow emission line width of 17 nm and a maximum external quantum efficiency (EQE) of 5.4%, representing the state-of-the-art CsPbBr3 NPL LEDs.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
| | - Junchuan Liu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
| | - Yingqun Gong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
| | - Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Qian Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Chengxi Zhang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
| |
Collapse
|
16
|
Lian K, Zhang X, Zhao Y, Deng Z, Zhang F, Wang Z, Zhang H, Han J, Fan C, Sun C. High-Efficiency Blue-Emitting Mn-Ligand passivated CsPbBr 3 nanoplatelets. J Colloid Interface Sci 2024; 663:157-166. [PMID: 38401437 DOI: 10.1016/j.jcis.2024.02.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perovskite nanoplatelets (NPLs), as a promising material to achieve pure blue emission, have attracted significant attention in high gamut displays. However, the high surface-to-volume ratio and the loosely connected ligands of NPLs make them susceptible to degradation from light, air and heat. As a result, NPLs often exhibit low photoluminescence (PL) intensity and instability. Here, an Mn-ligand passivation strategy is proposed, in which Mn-doped DMAPbBr3 is used as a precursor. During the perovskite transformation, Mn2+ ions migrate from the lattice of DMAPbBr3 to the surface of CsPbBr3 NPLs, which have strong binding forces with ligands. The final products Mn-CsPbBr3 (M-CPB) NPLs are then acquired by the ligand-induced ripening growth process, which not only exhibit pure blue emission with narrow full width at half maximum (FWHM), but also possess near-unity PL quantum yields (QYs). Besides, M-CPB NPLs show excellent stability due to the strong Mn-ligand passivation layer. Based on the new growth mechanism discovery, the reaction time can be shortened to several minutes by heating. The innovative growth model proposed in this work will provide a paradigm for designing and optimizing future synthesis schemes.
Collapse
Affiliation(s)
- Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, PR China.
| | - Yiwei Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhihui Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Fuhao Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| |
Collapse
|
17
|
Liu Q, Li H, Wang X, He J, Luo X, Wang M, Liu J, Liu Y. Synthesis and Properties of Size-Adjustable CsPbBr 3 Nanosheets for Potential Photocatalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2563. [PMID: 38893827 PMCID: PMC11173759 DOI: 10.3390/ma17112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Amidst the rapid advancements in the fields of photovoltaics and optoelectronic devices, CsPbBr3 nanosheets (NSs) have emerged as a focal point of research due to their exceptional optical and electronic properties. This work explores the application potential of CsPbBr3 NSs in photonic and catalytic domains. Utilizing an optimized hot-injection method and a ZnBr2-assisted in situ passivation strategy, we successfully synthesized CsPbBr3 NSs with controlled dimensions and optical characteristics. Comprehensive characterization revealed that the nucleation environment and thickness significantly influenced the structure and optical performance of the materials. The results indicate that the optimized synthesis method enables control over the lateral dimensions of the nanoparticles, ranging from 9.1 ± 0.06 nm to 334.5 ± 4.40 nm, facilitating the tuning of the excitation wavelength from 460 nm (blue) to 510 nm (green). Further analyses involving photoresponse and electrochemical impedance spectroscopy demonstrated the substantial potential of these NSs in applications such as photocatalysis and energy conversion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering (ISMSE), Wuhan University of Technology, Wuhan 430070, China; (Q.L.); (H.L.); (X.W.); (J.H.); (X.L.); (M.W.); (J.L.)
| |
Collapse
|
18
|
He J, Li H, Liu C, Wang X, Zhang Q, Liu J, Wang M, Liu Y. Hot-Injection Synthesis of Cesium Lead Halide Perovskite Nanowires with Tunable Optical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2173. [PMID: 38793240 PMCID: PMC11123179 DOI: 10.3390/ma17102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Metal halide perovskite semiconductors have emerged as promising materials for various optoelectronic applications due to their unique crystal structure and outstanding properties. Among different forms, perovskite nanowires (NWs) offer distinct advantages, including a high aspect ratio, superior crystallinity, excellent light absorption, and carrier transport properties, as well as unique anisotropic luminescence properties. Understanding the formation mechanism and structure-property relationship of perovskite NWs is crucial for exploring their potential in optoelectronic devices. In this study, we successfully synthesized all-inorganic halide perovskite NWs with high aspect ratios and an orthorhombic crystal phase using the hot-injection method with controlled reaction conditions and surface ligands. These NWs exhibit excellent optical and electrical properties. Moreover, precise control over the halogen composition through a simple anion exchange process enables the tuning of the bandgap, leading to fluorescence emission, covering a wide range of colors across the visible spectrum. Consequently, these perovskite NWs hold great potential for efficient energy conversion and catalytic applications in photoelectrocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering (ISMSE), Wuhan University of Technology (WUT), Wuhan 430070, China; (J.H.); (H.L.); (C.L.); (X.W.); (Q.Z.); (J.L.); (M.W.)
| |
Collapse
|
19
|
Samanta S, Paul S, Debnath T. Obtaining Ligand-Free Aqueous Au-Nanoparticles Using Reversible CsPbBr 3 ↔ Au@CsPbBr 3 Nanocrystal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311712. [PMID: 38258404 DOI: 10.1002/smll.202311712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Water-hexane interfacial preparation of photostable Au@CsPbBr3 (Au@CPB) hybrid nanocrystals (NCs) from pure CsPbBr3 (CPB) NCs is reported, with the coexistence of exciton and localized surface plasmon resonance with equal dominance. This enables strong exciton-plasmon coupling in these plasmonic perovskite NCs where not only the photoluminescence is quenched intrinsically due to ultrafast charge separation, but also the light absorption property increases significantly, covering the entire visible region. Using a controlled interfacial strategy, a reversible chemical transformation between CPB and Au@CPB NCs is shown, with the simultaneous eruption of larger-size ligand-free aqueous Au nanoparticles (NPs). An adsorption-desorption mechanism is proposed for the reversible transformation, while the overgrowth reaction of the Au NPs passes through the Au aggregation intermediate. This study further shows that the plasmonic Au@CPB hybrid NCs as well as ligand-free Au NPs exhibit clear surface enhanced Raman scattering (SERS) effect of a commercially available probe molecule. Overall, the beautiful interfacial chemistry delivers two independent plasmonic materials, i.e., Au@CPB NCs and ligand-free aqueous Au NPs, which may find important implications in photocatalytic and biomedical applications.
Collapse
Affiliation(s)
- Subarna Samanta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujay Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
20
|
Liu J, Lu R, Yu A. Origin of the low-energy tail in the photoluminescence spectrum of CsPbBr 3 nanoplatelets: a femtosecond transient absorption spectroscopic study. Phys Chem Chem Phys 2024; 26:12179-12187. [PMID: 38591257 DOI: 10.1039/d4cp00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
CsPbBr3 nanoplatelets (NPLs), as some of the two-dimensional lead halide perovskites, have been intensively investigated due to their outstanding photophysical and photoelectric properties. However, there remain unclear fundamental issues on their carrier kinetics and the low-energy tail in their photoluminescence (PL) spectrum. In this paper, we synthesized CsPbBr3 NPLs with five [PbBr6]4- monolayers and performed comprehensive studies by using steady-state absorption, PL, and femtosecond transient absorption (fs-TA) spectroscopic measurements. We determined both the biexciton Auger recombination time (7 ± 2 ps) and trapped exciton lifetime (110 ± 15 ps) of the five monolayer CsPbBr3 NPLs. We also investigated the origin of the low-energy tail emission in their PL spectrum. More importantly, we found that a negative ΔA feature in the energy range of 2.45-2.55 eV appears in their fs-TA spectrum at 2, 4 and 10 ps delay times, which could help them act as a laser gain medium. The low-energy tail emission in their PL spectrum overlaps well with the negative ΔA feature in the energy range of 2.45-2.55 eV in their fs-TA spectrum at 2, 4 and 10 ps delay times.
Collapse
Affiliation(s)
- Jinwei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Rong Lu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Anchi Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
21
|
Chen M, Zhang T, Elsukova A, Hu Z, Zhang R, Wang Y, Liu X, Liu X, Gao F. Kinetically Controlled Synthesis of Quasi-Square CsPbI 3 Nanoplatelets with Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306360. [PMID: 38010121 DOI: 10.1002/smll.202306360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3 -), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.
Collapse
Affiliation(s)
- Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Tiankai Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Anna Elsukova
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Yonghong Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Xiaoke Liu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
22
|
Kshirsagar AS, Koch KA, Srimath Kandada AR, Gangishetty MK. Unraveling the Luminescence Quenching Mechanism in Strong and Weak Quantum-Confined CsPbBr 3 Triggered by Triarylamine-Based Hole Transport Layers. JACS AU 2024; 4:1229-1242. [PMID: 38559743 PMCID: PMC10976578 DOI: 10.1021/jacsau.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs), which is particularly prominent in blue-emitting devices. While a variety of material systems have been used as interfacial layers, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB), in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with a maximum quenching efficiency of 98%. The quenching rate in NCs is faster than that in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D nuclear overhauser effect spectroscopy nuclear magnetic resonance (NOESY NMR) study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to rationally choose the interfacial layers for developing efficient LEDs.
Collapse
Affiliation(s)
- Anuraj S. Kshirsagar
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Katherine A. Koch
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Ajay Ram Srimath Kandada
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Mahesh K. Gangishetty
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Physics and Astronomy, Mississippi State
University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
23
|
Krajewska CJ, Kick M, Kaplan AEK, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets. ACS NANO 2024; 18:8248-8258. [PMID: 38428021 DOI: 10.1021/acsnano.3c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Qin C, Wang X, Zhou Z, Song J, Jia G, Ma S, Zhang J, Jiao Z, Zheng S. Ultrafast energy transfer dynamics in CsPbBr 3 nanoplatelets-BODIPY heterostructure. OPTICS EXPRESS 2024; 32:9306-9315. [PMID: 38571168 DOI: 10.1364/oe.516679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 04/05/2024]
Abstract
Understanding and directing the energy transfer in nanocrystals-chromophore heterostructure is critical to improve the efficiency of their photocatalytic and optoelectronic applications. In this work, we studied the energy transfer process between inorganic-organic molecular complexes composed of cesium halide perovskite nanoplatelets (CsPbBr3 NPLs) and boron dipyrromethene (BODIPY) by photoluminescence spectroscopy (PL), time-correlated single photon-counting (TCSPC) and femtosecond transient absorption spectroscopy. The quenching of PL in CsPbBr3 NPLs occurred simultaneously with the PL enhancement of BODIPY implied the singlet energy transfer process. The rate of energy transfer has been determined by transient absorption spectrum as kET = 3.8 × 109 s-1. The efficiency of Förster energy transfer (FRET) has been quantitatively calculated up to 70%. Our work advances the understanding of the interaction between BODIPY and perovskite nanoplatelets, providing a new solution based on their optoelectronic and photocatalytic applications.
Collapse
|
25
|
Li S, Zhang H, Huang B, Yang H, Bao W, Qiu S, Gao X, Zhuang S. Continuous Nanomanufacturing of Inorganic Lead Halide Perovskite Nanocrystals with High-Concentration Precursors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11704-11714. [PMID: 38406990 DOI: 10.1021/acsami.3c18838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The microscale flow preparation scheme has been widely used in the preparation of inorganic perovskite nanocrystals (NCs). It is considered to be the most promising method for large-scale production. Recently, it has been suggested that increasing the precursor concentration can further improve efficiency, but there is still a lack of understanding of high-concentration synthesis. Here, we develop a microscale flow synthesis scheme using high-concentration precursors, and the typical concentration value in the reaction phase reaches 0.035 mol/L using cesium acetate. The CsPbBr3 NCs with sharp photoluminescence (PL) at 515.7 nm can be obtained, and their PL quantum yield after post-treatment exceeds 90%. The effect of the molar ratio of Pb/Cs (Rm), reaction time, reaction temperature, and excess ligands on this flow reaction is studied. Several new phenomena are observed in our experiment. At 120 °C, some Cs4PbBr6 NCs exist in addition to the usual CsPbBr3 nanoplatelets. Excess ligands lead to the formation of numerous Cs4PbBr6 NCs with a bright green PL, and these NCs will spontaneously transform into a nonemission form in the film. Moreover, mixed-halide CsPbBrxI3-x NCs and CsPbI3 NCs are also prepared in this scheme, and then they are used to obtain LEDs in a range of colors.
Collapse
Affiliation(s)
- Shitong Li
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Huichao Zhang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Bo Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Hongyu Yang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou 310024, China
| | - Wangting Bao
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Sibin Qiu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Xiumin Gao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
26
|
Wang H, Du Z, Jiang X, Cao S, Zou B, Zheng J, Zhao J. Ultrastable Photodetectors Based on Blue CsPbBr 3 Perovskite Nanoplatelets via a Surface Engineering Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11694-11703. [PMID: 38387044 DOI: 10.1021/acsami.3c18659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Recently, photodetectors based on perovskite nanoplatelets (NPLs) have attracted considerable attention in the visible spectral region owing to their large absorption cross-section, high exciton binding energy, excellent charge transfer properties, and appropriate flexibility. However, their stability and performance are still challenging for perovskite NPL photodetectors. Here, a surface engineering strategy to enhance the optical stability of blue-light CsPbBr3 NPLs by acetylenedicarboxylic acid (ATDA) treatment has been developed. ATDA has strong binding capacity and a short chain length, which can effectively passivate defects and significantly improve the photoluminescence quantum efficiency, stability, and carrier mobility of NPLs. As a result, ATDA-treated CsPbBr3 NPLs exhibit improved optical properties in both solutions and films. The NPL solution maintains high PL performance even after being heated at 80 °C for 2 h, and the NPL film remains nondegradable after 4 h of exposure to ultraviolet irradiation. Especially, photodetectors based on the treated CsPbBr3 NPL films demonstrate exceptional performance, especially when the detectivity approaches up to 9.36 × 1012 Jones, which can be comparable to the best CsPbBr3 NPL photodetectors ever reported. More importantly, the assembled devices demonstrated high stability (stored in an air environment for more than 30 days), significantly exceeding that of untreated NPLs.
Collapse
Affiliation(s)
- Hao Wang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Zhentao Du
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Jiang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
- School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Wang P, Wang B, Li N, He T, Zhang H, Zhang L, Liu SF. Alkali-Metal-Assisted Green-Solvent Synthesis for In Situ Growth of Perovskite Nanocrystals in Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305880. [PMID: 38239033 DOI: 10.1002/advs.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Indexed: 03/28/2024]
Abstract
Inorganic metal halide perovskite CsPbX3 (X = I, Br, and Cl) nanocrystals (NCs) are rapidly developed due to their excellent photophysical properties and potential applications in lighting, lasers, and scintillators. However, the materials for growing perovskite NCs are insoluble or hydrolyzed in most green solvents, limiting their further development. Based on rational chemical analysis, an alkali-metal-assisted green-solvent synthesis method for in situ growth of CsPbBr3 NCs within SAPO-34 zeolite with bright luminescence is developed. Water is the only solvent used in the whole process. Surprisingly, by the synergistic effect of the channel structure of SAPO-34 and alkali-metal ions crystallization regulation, the CsPbBr3 NCs embedded in SAPO-34 assisted by Na+ emit bright blue light under ultraviolet illumination, with a 30 nm blue shift comparing to the CsPbBr3 NCs assisted by K+. Moreover, CsPbBr3 NCs can also be grown in mesoporous SiO2 SBA-15 and zeolites including ZSM-5, AlPO-5, and SOD, indicating that the method is universal for in situ growth of luminescent perovskite NCs in porous materials. This alkali-metal-assisted green-solvent synthesis provides a new strategy for developing high-quantum-yield, tunable-emission, and stable perovskite luminescent materials.
Collapse
Affiliation(s)
- Peijun Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Zhang L, Zhou H, Chen Y, Zheng Z, Huang L, Wang C, Dong K, Hu Z, Ke W, Fang G. Spontaneous crystallization of strongly confined CsSn xPb 1-xI 3 perovskite colloidal quantum dots at room temperature. Nat Commun 2024; 15:1609. [PMID: 38383585 PMCID: PMC10881968 DOI: 10.1038/s41467-024-45945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The scalable and low-cost room temperature (RT) synthesis for pure-iodine all-inorganic perovskite colloidal quantum dots (QDs) is a challenge due to the phase transition induced by thermal unequilibrium. Here, we introduce a direct RT strongly confined spontaneous crystallization strategy in a Cs-deficient reaction system without polar solvents for synthesizing stable pure-iodine all-inorganic tin-lead (Sn-Pb) alloyed perovskite colloidal QDs, which exhibit bright yellow luminescence. By tuning the ratio of Cs/Pb precursors, the size confinement effect and optical band gap of the resultant CsSnxPb1-xI3 perovskite QDs can be well controlled. This strongly confined RT approach is universal for wider bandgap bromine- and chlorine-based all-inorganic and iodine-based hybrid perovskite QDs. The alloyed CsSn0.09Pb0.91I3 QDs show superior yellow emission properties with prolonged carrier lifetime and significantly increased colloidal stability compared to the pristine CsPbI3 QDs, which is enabled by strong size confinement, Sn2+ passivation and enhanced formation energy. These findings provide a RT size-stabilized synthesis pathway to achieve high-performance pure-iodine all-inorganic Sn-Pb mixed perovskite colloidal QDs for optoelectronic applications.
Collapse
Affiliation(s)
- Louwen Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, 523808, Guangdong, P. R. China
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hai Zhou
- International School of Microelectronics, Dongguan University of Technology, Dongguan, 523808, Guangdong, P. R. China.
| | - Yibo Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Zhimiao Zheng
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Lishuai Huang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Wang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Kailian Dong
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weijun Ke
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Guojia Fang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
29
|
Chen D, Wang T, Kei Ko P, Shi J, Liu M, Halpert JE. Sterically Controlled Synthesis of Amine-Free CsPbBr 3 Nanoplatelets for Stable, Pure-Blue Light Emission. Angew Chem Int Ed Engl 2024; 63:e202317590. [PMID: 38153600 DOI: 10.1002/anie.202317590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Metal halide perovskite nanoplatelets (NPLs) have demonstrated excellent optical properties for light-emitting applications and achieved tunable blue luminescence through thickness control. However, their translation into electronic devices has lagged behind due to poor colloidal and film stability. The main reason for this is the deprotonation of their surface-capped ammonium passivating ligands, resulting in NPL aggregation. Here we report the first facile synthesis of amine-free pure-blue CsPbBr3 NPLs with outstanding thermal and light stability. This is achieved by utilizing an amine-free phosphine oxide route with a surface capping molecule exhibiting large steric hindrance to prevent NPL aggregation. Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy suggests slower ligand exchange in amine-free NPLs compared to the conventional NPLs, which can be attributed to the strong binding strength of the designated ligand. Consequently, the amine-free NPLs exhibited superior stability against radiation, heat and moisture. We further demonstrate the importance of acid-base equilibrium in this amine-free synthesis route. Through solvent neutralization and passivation with various alkali carbonates, the resulting NPLs attained near-unity photoluminescence quantum yield (PLQY) and pure blue emission.
Collapse
Affiliation(s)
- Dezhang Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Tyler Wang
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Pui Kei Ko
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Jinquan Shi
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Mengxia Liu
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Jonathan E Halpert
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong SAR, Hong Kong
| |
Collapse
|
30
|
Liang S, Hao J, Gu Z, Pang X, He Y. Regulating Charge Carrier Dynamics in Stable Perovskite Nanorods for Photo-Induced Atom Transfer Radical Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306506. [PMID: 37803459 DOI: 10.1002/smll.202306506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Semiconducting nanocrystals have attracted world-wide research interest in artificial photosynthesis due to their appealing properties and enticing potentials in converting solar energy into valuable chemicals. Compared to 0D nanoparticles, 1D nanorods afford long-distance charge carriers separation and extended charge carriers lifetime due to the release of quantum confinement in axial direction. Herein, stable CsPbBr3 nanorods of distinctive dimensions are crafted without altering their properties and morphology via grafting hydrophobic polystyrene (PS) chains through a post-synthesis ligand exchange process. The resulting PS-capped CsPbBr3 nanorods exhibit a series of enhanced stabilities against UV irradiation, elevated temperature, and polar solvent, making them promising candidates for photo-induced atom transfer radical polymerization (ATRP). Tailoring the surface chemistry and dimension of the PS-capped CsPbBr3 nanorods endows stable, but variable reaction kinetics in the photo-induced ATRP of methyl methacrylate. The trapping-detrapping process of photogenerated charge carriers lead to extended lifetime of charge carriers in lengthened CsPbBr3 nanorods, contributing to a facilitated reaction kinetics of photo-induced ATRP. Therefore, by leveraging such stable PS-capped CsPbBr3 nanorods, the effects of surface chemistry and charge carriers dynamics on its photocatalytic performance are scrutinized, providing fundamental understandings for designing next-generation efficient nanostructured photocatalyst in artificial photosynthesis and solar energy conversion.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55415-4310, United States
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongheng Gu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
31
|
Moral RF, Malfatti-Gasperini AA, Bonato LG, Vale BRC, Fonseca AFV, Padilha LA, Oliveira CLP, Nogueira AF. Self-assembly of perovskite nanoplates in colloidal suspensions. MATERIALS HORIZONS 2023; 10:5822-5834. [PMID: 37842783 DOI: 10.1039/d3mh01401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.
Collapse
Affiliation(s)
- Raphael F Moral
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Luiz G Bonato
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Brener R C Vale
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André F V Fonseca
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Lazaro A Padilha
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana F Nogueira
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
32
|
Movilla JL, Planelles J, Climente JI. Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects. NANOSCALE ADVANCES 2023; 5:6093-6101. [PMID: 37941960 PMCID: PMC10628976 DOI: 10.1039/d3na00592e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
A theoretical model for excitons confined in metal halide perovskite nanoplatelets is presented. The model accounts for quantum confinement, dielectric confinement, short and long range polaron interactions by means of effective mass theory, image charges and Haken potentials. We use it to describe the band edge exciton of MAPbI3 structures surrounded by organic ligands. It is shown that the quasi-2D quantum and dielectric confinement squeezes the exciton radius, and this in turn enhances short-range polaron effects as compared to 3D structures. Dielectric screening is then weaker than expected from the static dielectric constant. This boosts the binding energies and radiative recombination probabilities, which is a requisite to match experimental data in related systems. The thickness dependence of Coulomb polarization and self-energy potentials is in fair agreement with sophisticated atomistic models.
Collapse
Affiliation(s)
- Jose L Movilla
- Departament d'Educació i Didàctiques Específiques, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| | - Josep Planelles
- Departament de Química Física i Analítica, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I Av. Sos Baynat, s/n 12071 Castelló Spain
| |
Collapse
|
33
|
Chen G, Liu X, An J, Wang S, Zhao X, Gu Z, Yuan C, Xu X, Bao J, Hu HS, Li J, Wang X. Nucleation-mediated growth of chiral 3D organic-inorganic perovskite single crystals. Nat Chem 2023; 15:1581-1590. [PMID: 37550390 DOI: 10.1038/s41557-023-01290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic-inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl-Br or Br-I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4- octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic-inorganic perovskites served in a circularly polarized light photodetector prototype successfully.
Collapse
Affiliation(s)
- Gaoyu Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiakun An
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Shibin Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaokun Zhao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhongzheng Gu
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, China
| | - Caojin Yuan
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, China
| | - Xiangxing Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Han-Shi Hu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Jun Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
34
|
Wu Y, Zhao T, Shao X, Chen J, Zhang T, Li B, Jiang S. Ligand-Assisted Self-Assembly of 3D Perovskite Nanocrystals into Chiral Inorganic Quasi-2D Perovskites (n = 3) with Ligand-Ratio-Dependent Chirality Inversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301034. [PMID: 37165614 DOI: 10.1002/smll.202301034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Indexed: 05/12/2023]
Abstract
Chiral inorganic quasi-2D perovskites are prepared by self-assembling 3D perovskites in solution for the first time. The quasi-2D perovskite synthesized is a pure-phase perovskite with = 3 and is periodically arranged, which is a big breakthrough in quasi-2D inorganic perovskites. With the individual chiral CsPbBr3 nanocrystals (NCs) assemble into quasi-2D perovskite, the g-factor significantly improved (≈5 × 10-3 ). In addition, the chiroptical activity of quasi-2D perovskites is explored to be improved with the lateral size increasing. In the first stage of assembly, chiral optical activity is increased due to the lateral size-dependent optical activity, while the changes in the later stages are attributable to the chiral morphology. Interestingly, chirality inversion is found to be correlated to the number of ligands. It is believed that different conformers of chiral ligands caused by steric hindrance of the original ligand oleylamine result in opposite circular dichroism (CD) polarities. The chirality inversion phenomenon is universal, regardless of the choice of ligands. This work opens up a new path for the synthesis of quasi-2D perovskites and provides more opportunities for the modulation of chiral optical activity.
Collapse
Affiliation(s)
- Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Tianzhe Zhao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Junyu Chen
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
35
|
Yoo JH, Kim S, Lee H, Park C, Lee TW, Park JW. Room-Temperature, Homogeneous, Single-Step, and Large-Scale Synthesis of Perovskite Nanoplatelets for Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39461-39471. [PMID: 37555994 DOI: 10.1021/acsami.3c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Inorganic perovskite nanocrystals (IPNCs) have attracted considerable attention due to their excellent optoelectronic properties. However, problems arise from anion migration during the preparation of a blue light-emitting diode (LED), and only small-scale syntheses have been conducted on a laboratory scale. By using only Br as the anion here, CsPbBr3 was synthesized in the form of nanoplatelets to eliminate the effects of anion migration and to prepare an inorganic perovskite nanoplatelet (IPNPL) emitting blue light. In addition, the synthesis was performed under ambient conditions at room temperature, and the synthetic process was shortened to enable large-scale synthesis. We used a 1 L bottle for large-scale synthesis, and a photoluminescence quantum yield (PLQY) of 78% was observed at 460 nm. We fabricated LEDs by using IPNPLs, and we observed an electroluminescence peak at 461 nm. The developed synthetic method is expected to pave the way for commercialization of IPNCs and the next-generation display market.
Collapse
Affiliation(s)
- Ju-Hyun Yoo
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjin Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
Wei Z, Mulder JT, Dubey RK, Evers WH, Jager WF, Houtepen AJ, Grozema FC. Tuning the Driving Force for Charge Transfer in Perovskite-Chromophore Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15406-15415. [PMID: 37583440 PMCID: PMC10424230 DOI: 10.1021/acs.jpcc.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr3 nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr3 NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.
Collapse
Affiliation(s)
- Zimu Wei
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jence T. Mulder
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rajeev K. Dubey
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wolter F. Jager
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J. Houtepen
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ferdinand C. Grozema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
37
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
38
|
Vinçon I, Barfüßer A, Feldmann J, Akkerman QA. Quantum Dot Metal Salt Interactions Unraveled by the Sphere of Action Model. J Am Chem Soc 2023. [PMID: 37267531 DOI: 10.1021/jacs.3c03582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Postsynthetic metal salt treatments are frequently employed in the luminescence enhancement of quantum dots (QDs); however, its microscopic picture remains unclear. CsPbBr3-QDs, featuring strong excitonic absorption and high photoluminescence (PL) quantum yield, are ideal QDs to unravel the intricate interaction between QDs and such surface-bound metal salts. Herein, we study this interaction based on the controlled PL quenching of CsPbBr3-QDs with BiBr3. Upon the addition of BiBr3, an instant and complete PL quenching is observed, which can be fully recovered after the addition of an excess of PbBr2. This, together with the complete preservation of the excitonic absorption suggests a surface-driven adsorption equilibrium. Additionally, time-resolved studies reveal a non-homogeneous surface trap formation. Based on the so-called sphere of action model for the adsorption process, we show that already a single BiBr3 adsorption suffices to completely quench a QD's luminescence. This approach is expanded to analyze size-, ligand-, and metal-dependent quenching dynamics. Facet junctions are identified as regions of enhanced surface reactivity. A Langmuir-type ligand coverage is exposed with a strong impact on adsorption. Our results provide a detailed mechanistic insight into postsynthetic interaction of QDs with metal salts, opening pathways for future surface manipulations.
Collapse
Affiliation(s)
- Ilka Vinçon
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Anja Barfüßer
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Quinten A Akkerman
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| |
Collapse
|
39
|
Wani T, Shamsi J, Bai X, Arora N, Dar MI. Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices. ACS OMEGA 2023; 8:17337-17349. [PMID: 37251151 PMCID: PMC10210016 DOI: 10.1021/acsomega.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence.
Collapse
Affiliation(s)
- Tajamul
A. Wani
- Department
of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Javad Shamsi
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Xinyu Bai
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Neha Arora
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - M. Ibrahim Dar
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
40
|
Diroll BT, Banerjee P, Shevchenko EV. Optical anisotropy of CsPbBr 3 perovskite nanoplatelets. NANO CONVERGENCE 2023; 10:18. [PMID: 37186268 PMCID: PMC10130288 DOI: 10.1186/s40580-023-00367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
The two-dimensional CsPbBr3 nanoplatelets have a quantum well electronic structure with a band gap tunable with sample thicknesses in discreet steps based upon the number of monolayers. The polarized optical properties of CsPbBr3 nanoplatelets are studied using fluorescence anisotropy and polarized transient absorption spectroscopies. Polarized spectroscopy shows that they have absorption and emission transitions which are strongly plane-polarized. In particular, photoluminescence excitation and transient absorption measurements reveal a band-edge polarization approaching 0.1, the limit of isotropic two-dimensional ensembles. The degree of anisotropy is found to depend on the thickness of the nanoplatelets: multiple measurements show a progressive decrease in optical anisotropy from 2 to 5 monolayer thick nanoplatelets. In turn, larger cuboidal CsPbBr3 nanocrystals, are found to have consistently positive anisotropy which may be attributed to symmetry breaking from ideal perovskite cubes. Optical measurements of anisotropy are described with respect to the theoretical framework developed to describe exciton fine structure in these materials. The observed planar absorption and emission are close to predicted values at thinner nanoplatelet sizes and follow the predicted trend in anisotropy with thickness, but with larger anisotropy than theoretical predictions. Dominant planar emission, albeit confined to the thinnest nanoplatelets, is a valuable attribute for enhanced efficiency of light-emitting devices.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA.
| | - Progna Banerjee
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA
| |
Collapse
|
41
|
Treber F, Frank K, Nickel B, Lampe C, Urban AS. Lead-Free, Luminescent Perovskite Nanocrystals Obtained through Ambient Condition Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300525. [PMID: 37060231 DOI: 10.1002/smll.202300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Heterovalently substituting toxic lead is an increasingly popular design strategy to obtain environmentally sustainable variants of the exciting material class of halide perovskites. Perovskite nanocrystals (NCs) obtained through solution-based methods exhibit exceedingly high optical quality. Unfortunately, most of these synthesis routes still require reaction under inert gas and at very high temperatures. Herein a novel synthesis routine for lead-free double perovskite (LFDP) NCs is presented. An approach based upon the hot injection and ligand-assisted reprecipitation (LARP) methods to achieve a low-temperature and ambient atmosphere-based synthesis for manganese-doped Cs2 NaBiCl6 NCs is presented. Mn incorporation is critical for the otherwise non-emissive material, with a 9:1 Bi:Mn precursor ratio maximizing the bright orange photoluminescence (PL) and quantum yield (QY). Higher synthesis temperatures slightly increase the material's performance, yet NCs synthesized at room temperature are still emissive, highlighting the versatility of the synthetic approach. While the material's indirect bandgap limits its appeal for optoelectronics, this feature could benefit photocatalysis due to longer carrier lifetimes. Moreover, the developed synthesis is facile and can rapidly be adapted to other more viable material compositions and up-scaled to realize applications directly.
Collapse
Affiliation(s)
- Fiona Treber
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kilian Frank
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Bert Nickel
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
42
|
Kostopoulou A, Konidakis I, Stratakis E. Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1643-1710. [PMID: 39634119 PMCID: PMC11501535 DOI: 10.1515/nanoph-2022-0797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Size- and shape-dependent unique properties of the metal halide perovskite nanocrystals make them promising building blocks for constructing various electronic and optoelectronic devices. These unique properties together with their easy colloidal synthesis render them efficient nanoscale functional components for multiple applications ranging from light emission devices to energy conversion and storage devices. Recently, two-dimensional (2D) metal halide perovskites in the form of nanosheets (NSs) or nanoplatelets (NPls) are being intensively studied due to their promising 2D geometry which is more compatible with the conventional electronic and optoelectronic device structures where film-like components are usually employed. In particular, 2D perovskites exhibit unique thickness-dependent properties due to the strong quantum confinement effect, while enabling the bandgap tuning in a wide spectral range. In this review the synthesis procedures of 2D perovskite nanostructures will be summarized, while the application-related properties together with the corresponding applications will be extensively discussed. In addition, perovskite nanocrystals/2D material heterostructures will be reviewed in detail. Finally, the wide application range of the 2D perovskite-based structures developed to date, including pure perovskites and their heterostructures, will be presented while the improved synergetic properties of the multifunctional materials will be discussed in a comprehensive way.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Ioannis Konidakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Emmanuel Stratakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| |
Collapse
|
43
|
Lampe C, Kouroudis I, Harth M, Martin S, Gagliardi A, Urban AS. Rapid Data-Efficient Optimization of Perovskite Nanocrystal Syntheses through Machine Learning Algorithm Fusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208772. [PMID: 36681859 DOI: 10.1002/adma.202208772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
With the demand for renewable energy and efficient devices rapidly increasing, a need arises to find and optimize novel (nano)materials. With sheer limitless possibilities for material combinations and synthetic procedures, obtaining novel, highly functional materials has been a tedious trial and error process. Recently, machine learning has emerged as a powerful tool to help optimize syntheses; however, most approaches require a substantial amount of input data, limiting their pertinence. Here, three well-known machine-learning models are merged with Bayesian optimization into one to optimize the synthesis of CsPbBr3 nanoplatelets with limited data demand. The algorithm can accurately predict the photoluminescence emission maxima of nanoplatelet dispersions using only the three precursor ratios as input parameters. This allows us to fabricate previously unobtainable seven and eight monolayer-thick nanoplatelets. Moreover, the algorithm dramatically improves the homogeneity of 2-6-monolayer-thick nanoplatelet dispersions, as evidenced by narrower and more symmetric photoluminescence spectra. Decisively, only 200 total syntheses are required to achieve this vast improvement, highlighting how rapidly material properties can be optimized. The algorithm is highly versatile and can incorporate additional synthetic parameters. Accordingly, it is readily applicable to other less-explored nanocrystal syntheses and can help rapidly identify and improve exciting compositions' quality.
Collapse
Affiliation(s)
- Carola Lampe
- Nanospectroscopy Group and Center for NanoScience, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Ioannis Kouroudis
- Department of Electrical and Computer Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching bei München, Germany
| | - Milan Harth
- Department of Electrical and Computer Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching bei München, Germany
| | - Stefan Martin
- Nanospectroscopy Group and Center for NanoScience, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Alessio Gagliardi
- Department of Electrical and Computer Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching bei München, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for NanoScience, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| |
Collapse
|
44
|
Krajewska CJ, Kaplan AEK, Kick M, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets. NANO LETTERS 2023; 23:2148-2157. [PMID: 36884029 DOI: 10.1021/acs.nanolett.2c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Zhao Q, Chen F, Li C, Shang C, Huang Q, Yan B, Zhu H, Wang K, Zhang W, Zhou T, Ding J. Challenges and developments for the blue perovskite nanocrystal light-emitting diodes. Dalton Trans 2023; 52:3921-3941. [PMID: 36939177 DOI: 10.1039/d3dt00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Perovskite nanomaterials have been highly thought as next-generation light emitters after recent development owing to their benefits of simple synthesis, low-cost, large-area, and wide color gamut. Encouragingly, the external quantum efficiencies (EQEs) of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs) have exceeded more than 20%. However, the performance of the blue PeLEDs is still lower than other analogs, which severely limits the applications of PeLEDs in future full-color displays. Herein, we have reviewed the advances in blue perovskite NCs and their applications in blue PeLEDs. Promising blue perovskite emitters and strategies for fabricating highly efficient blue PeLEDs based on perovskite NCs are investigated and highlighted. Moreover, we point out the main challenges in blue perovskite NC LEDs including low electroluminescence efficiency (EL), spectral instability, the difficulty of charge injection, and device optimization. The perspectives for the further development of blue PeLEDs are also presented.
Collapse
Affiliation(s)
- Qiqi Zhao
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Feitong Chen
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Changqian Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chenyu Shang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qi Huang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Bin Yan
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Huiling Zhu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Kunhua Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Weiwei Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Tianliang Zhou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
46
|
Mishra L, Behera RK, Panigrahi A, Dubey P, Dutta S, Sarangi MK. Deciphering the Relevance of Quantum Confinement in the Optoelectronics of CsPbBr 3 Perovskite Nanostructures. J Phys Chem Lett 2023; 14:2651-2659. [PMID: 36924080 DOI: 10.1021/acs.jpclett.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perovskites (PVKs) have emerged as an exciting class of semiconducting materials owing to their magnificent photophysical properties and been used in solar cells, light-emitting diodes, photodetectors, etc. The growth of multidimensional nanostructures has revealed many exciting alterations in their optoelectronic properties compared to those of their bulk counterparts. In this work, we have spotlighted the influence of quantum confinement in CsPbBr3 PVKs like the quantum dot (PQD), nanoplatelet (PNPL), and nanorod (PNR) on their charge transfer (CT) dynamics with 1,4-naphthoquinone (NPQ). The energy band alignment facilitates the transfer of both electrons and holes in the PNPL to NPQ, enhancing its CT rate, while only electron transfer in the PQD and PNR diminishes CT. The tunneling current across a metal-nanostructure-metal junction for the PNPL is observed to be higher than others. The higher exciton binding energy in the PNPL results in efficient charge transport by enhancing the mobility of the excited-state carrier and its lifetime compared to those of the PNR and PQD.
Collapse
Affiliation(s)
- Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Ranjan Kumar Behera
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Priyanka Dubey
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Soumi Dutta
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| |
Collapse
|
47
|
He S, Jin T, Ni A, Lian T. Electron Trapping Prolongs the Lifetime of Charge-Separated States in 2D Perovskite Nanoplatelet-Hole Acceptor Complexes. J Phys Chem Lett 2023; 14:2241-2250. [PMID: 36820889 PMCID: PMC10009813 DOI: 10.1021/acs.jpclett.2c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) lead halide perovskite nanoplatelets (NPLs) are promising materials for blue light emission because of the strong quantum confinement in the 2D morphology. However, the identity of carrier traps and the trap influence on charge transfer in these NPLs remain unclear. Herein, transient absorption studies revealed two types of electron traps in 3 monolayer lead bromide perovskite NPLs with trapping lifetime of 9.0 ± 0.6 and 516 ± 59 ps, respectively, while no hole traps were observed. Systematic charge transfer experiments show that electron traps have negligible influence on ultrafast electron transfer or hole transfer but extend the half-lifetime of the charge-separated state from 2.1 ± 0.1 to 68 ± 3 ns after hole transfer, which is explained by the reduced electron-hole overlap. This work contributes to the understanding of the fundamental carrier dynamics in 2D perovskite NPLs and offers guidelines for boosting their performance in optoelectronics and photocatalysis.
Collapse
|
48
|
Shi J, Wang M, Zhang C, Wang J, Zhou Y, Xu Y, Gaponenko NV, Bhatti AS. In Situ Fabrication of Lead-Free Double Perovskite/Polymer Composite Films for Optoelectronic Devices and Anticounterfeit Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12383-12392. [PMID: 36821493 DOI: 10.1021/acsami.2c22752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lead-free double perovskites (DP) have the potential to become a rising star in the next generation of lighting markets by addressing the toxicity and instability issues associated with traditional lead-based perovskites. However, high concentrations of hydrochloric acid (HCl) were often employed as a solvent in the preparation of most DPs, accompanied by slow crystallization at high temperatures, which not only raised the risk and cost in the preparation process, but also had a potential threat to the environment. Here, an in situ fabrication strategy was proposed to realize the crystallization of DP in the polymer at low temperature with a mild dimethyl sulfoxide (DMSO) solvent, and subsequently obtained optically well-behaved Cs2Na0.8Ag0.2BiCl6/PMMA composite films (CFs) by doping with Ag+, generating bright orange luminescence with a photoluminescence quantum yield (PLQY) of up to 21.52%. Moreover, the growth dynamics of Cs2Na0.8Ag0.2BiCl6/PMMA CFs was further investigated by in situ optical transformation, which was extended to other DP-based polymer CFs. Finally, these CFs exhibited excellent performance in optoelectronic devices and anticounterfeit printing, the results of which provide a new pathway to advance the development of lead-free DP materials in the optical field.
Collapse
Affiliation(s)
- Jindou Shi
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Chen Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Junnan Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Yun Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Nikolai V Gaponenko
- Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan
| |
Collapse
|
49
|
Ghosh S, Pradhan B, Lin W, Zhang Y, Leoncino L, Chabera P, Zheng K, Solano E, Hofkens J, Pullerits T. Slower Auger Recombination in 12-Faceted Dodecahedron CsPbBr 3 Nanocrystals. J Phys Chem Lett 2023; 14:1066-1072. [PMID: 36696665 DOI: 10.1021/acs.jpclett.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Over the past two decades, intensive research efforts have been devoted to suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for the application of photovoltaics and light emitting devices (LEDs). Here, we have explored dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body interactions that are manifested under high excitation flux density in both NCs using ultrafast spectroscopic pump-probe measurements. We demonstrate that the Auger recombination rate due to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate excitation density, the majority of carriers recombine through biexcitonic recombination. However, at high excitation density (>1018 cm-3) a higher number of many-body Auger process dominates over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics and LEDs.
Collapse
Affiliation(s)
- Supriya Ghosh
- The Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100Lund, Sweden
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio43210, United States
| | - Bapi Pradhan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Heverlee, Belgium
| | - Weihua Lin
- The Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100Lund, Sweden
| | - Yiyue Zhang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Heverlee, Belgium
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, Genova16163, Italy
| | - Pavel Chabera
- The Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100Lund, Sweden
| | - Kaibo Zheng
- The Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100Lund, Sweden
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290Spain
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Heverlee, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128Mainz, Germany
| | - Tõnu Pullerits
- The Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100Lund, Sweden
| |
Collapse
|
50
|
Manna M, Pal S, Goswami T, Bhandari S, Debnath T. Halide-Driven Halogen-Hydrogen Bonding versus Chelation in Perovskite Nanocrystals: A Concept of Charge Transfer Bridging. J Phys Chem Lett 2023; 14:354-362. [PMID: 36606726 DOI: 10.1021/acs.jpclett.2c03738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The choice of surface functionalized ligands to encapsulate semiconductor nanocrystals (NCs) is important for tailoring their optoelectronic properties. We use a small bidentate 8-hydroxyquinoline (HQ) molecule to surface functionalize CsPbX3 perovskite NCs (X = Cl, Br, I), along with traditional long-chain monodentate ligands. Our experimental results using optical and ultrafast spectroscopy depict a halogen-hydrogen bonding formation in the HQ functionalized CsPbCl3 and CsPbBr3 NCs, which act as a charge transfer (CT) bridging for the interfacial hole transfer from the NCs to the HQ molecule as fast as 540 fs. In contrast, weak chelation is observed for HQ-coupled CsPbI3 NCs without an active CT process. We explain two distinct surface coupling mechanisms via the polarizability of halides and larger PbI64- octahedral cage size. Control of two contrasting halide-dependent surface coupling phenomena of a small molecule that further regulate the CT process may have significant implications in their development in optoelectronics.
Collapse
Affiliation(s)
- Mihir Manna
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Srimanta Pal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali140306, Punjab, India
| | - Satyapriya Bhandari
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal734013, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| |
Collapse
|