1
|
Meng X, Jiang J, Yang X, Zhao H, Meng Q, Bai Y, Wang Q, Song J, Katan C, Even J, Yu WW, Liu F. Organic-Inorganic Hybrid Cuprous-Based Metal Halides with Unique Two-Dimensional Crystal Structure for White Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202411047. [PMID: 39008226 DOI: 10.1002/anie.202411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Ternary cuprous (Cu+)-based metal halides, represented by cesium copper iodide (e.g., CsCu2I3 and Cs3Cu2I5), are garnering increasing interest for light-emitting applications owing to their intrinsically high photoluminescence quantum yield and direct band gap. Toward electrically driven light-emitting diodes (LEDs), it is highly desirable for the light emitters to have a high structural dimensionality as it may favor efficient electrical injection. However, unlike lead-based halide perovskites whose light-emitting units can be facilely arranged in three-dimensional (3D) ways, to date, nearly all ternary Cu+-based metal halides crystallize into 0D or 1D networks of Cu-X (X=Cl, Br, I) polyhedra, whereas 3D and even 2D structures remain mostly uncharted. Here, by employing a fluorinated organic cation, we report a new kind of ternary Cu+-based metal halides, (DFPD)CuX2 (DFPD+=4,4-difluoropiperidinium), which exhibits unique 2D layered crystal structure. Theoretical calculations reveal a highly dispersive conduction band of (DFPD)CuBr2, which is beneficial for charge carrier injection. It is also of particular significance to find that the 2D (DFPD)CuBr2 crystals show appealing properties, including improved ambient stability and an efficient warm white-light emission, making it a promising candidate for single-component lighting and display applications.
Collapse
Affiliation(s)
- Xuan Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Junke Jiang
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000, Rennes, France
| | - Xinyu Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Hongyuan Zhao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Qichao Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Yunfei Bai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Qiujie Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Jitao Song
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000, Rennes, France
| | - William W Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, China
| | - Feng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
3
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Ren B, Zhang D, Qiu X, Ding Y, Zhang Q, Fu Y, Liao JF, Poddar S, Chan CLJ, Cao B, Wang C, Zhou Y, Kuang DB, Zeng H, Fan Z. Full-color fiber light-emitting diodes based on perovskite quantum wires. SCIENCE ADVANCES 2024; 10:eadn1095. [PMID: 38748790 PMCID: PMC11095450 DOI: 10.1126/sciadv.adn1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.
Collapse
Affiliation(s)
- Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Fu
- School of Advanced Energy, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Bai Y, Wu H, Wang D, Liu M, Lu ZH, Ding H. In situcell-scale probing nucleation, growth and evolution of CsPbBr 3nanowires by optical absorption spectroscopy. NANOTECHNOLOGY 2024; 35:305701. [PMID: 38631322 DOI: 10.1088/1361-6528/ad3fc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The growth kinetics of colloidal lead halide perovskite nanomaterials are an integral part of their applications, remains poorly understood due to complex nucleation processes and lack ofin situsize monitoring method. Here we demonstrated that absorption spectra can be used to observein situgrowth processes of ultrathin CsPbBr3nanowires in solution with reference to the effective mass infinite deep square potential well model. By means of this method, we have found that the ultrathin nanowires, fabricated by hot injection method, were firstly formed within one minute. Subsequently, they merge with each other into a thicker structure with increasing reaction time. We revealed that the nucleation, growth, and merging of the CsPbBr3nanowires are determined by the acid concentration and ligand chain length. At lower acidity, the critical nucleation size of the nanowire is smaller, while the shorter the ligand chain length, the faster the merging among the nanowires. Moreover, the merging mode between nanowires changed with their nucleation size. This growth kinetics of CsPbBr3nanowires provides a reference for optimizing the synthesis conditions to obtain the one-dimensional CsPbBr3with desired size, thus enabling accurate control of the nanowire shape.
Collapse
Affiliation(s)
- Yan Bai
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Heqian Wu
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Dengke Wang
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Mei Liu
- Key Laboratory of Smart Drugs Control (Yunnan Police College), Ministry of Education, No. 249 Jiaochang North Road, Kunming 650032, Yunnan Province, People's Republic of China
| | - Zheng-Hong Lu
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| | - Huaiyi Ding
- Key Laboratory of Yunnan Provincial Higher Education Institution for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, People's Republic of China
| |
Collapse
|
6
|
Chen P, Peng B, Liu Z, Liu J, Li D, Li Z, Xu X, Wang H, Zhou X, Zhai T. Room-Temperature Magnetic-Induced Circularly Polarized Photoluminescence in Two-Dimensional Er 2O 2S. J Am Chem Soc 2024; 146:6053-6060. [PMID: 38404063 DOI: 10.1021/jacs.3c13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhen Liu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
7
|
Cao YB, Zhang D, Zhang Q, Qiu X, Zhou Y, Poddar S, Fu Y, Zhu Y, Liao JF, Shu L, Ren B, Ding Y, Han B, He Z, Kuang DB, Wang K, Zeng H, Fan Z. High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat Commun 2023; 14:4611. [PMID: 37528109 PMCID: PMC10393990 DOI: 10.1038/s41467-023-40150-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Metal halide perovskites have shown great promise as a potential candidate for next-generation solid state lighting and display technologies. However, a generic organic ligand-free and antisolvent-free solution method to fabricate highly efficient full-color perovskite light-emitting diodes has not been realized. Herein, by utilizing porous alumina membranes with ultra-small pore size as templates, we have successfully fabricated crystalline all-inorganic perovskite quantum wire arrays with ultrahigh density and excellent uniformity, using a generic organic ligand-free and anti-solvent-free solution method. The quantum confinement effect, in conjunction with the high light out-coupling efficiency, results in high photoluminescence quantum yield for blue, sky-blue, green and pure-red perovskite quantum wires arrays. Consequently, blue, sky-blue, green and pure-red LED devices with spectrally stable electroluminescence have been successfully fabricated, demonstrating external quantum efficiencies of 12.41%, 16.49%, 26.09% and 9.97%, respectively, after introducing a dual-functional small molecule, which serves as surface passivation and hole transporting layer, and a halide vacancy healing agent.
Collapse
Affiliation(s)
- Yang Bryan Cao
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Fu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yudong Zhu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Shu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Beitao Ren
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yucheng Ding
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bing Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, China
| | - Zhubing He
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kefan Wang
- Henan Provinces Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, Henan, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Advanced Display and Optoelectronics Technologies HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Ha D, Yoon Y, Park IJ, Cantu LT, Martinez A, Zhitenev N. Nanoscale Characterization of Photocurrent and Photovoltage in Polycrystalline Solar Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11429-11437. [PMID: 37377500 PMCID: PMC10291557 DOI: 10.1021/acs.jpcc.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/19/2023] [Indexed: 06/29/2023]
Abstract
We investigate the role of grain structures in nanoscale carrier dynamics of polycrystalline solar cells. By using Kelvin probe force microscopy (KPFM) and near-field scanning photocurrent microscopy (NSPM) techniques, we characterize nanoscopic photovoltage and photocurrent patterns of inorganic CdTe and organic-inorganic hybrid perovskite solar cells. For CdTe solar cells, we analyze the nanoscale electric power patterns that are created by correlating nanoscale photovoltage and photocurrent maps on the same location. Distinct relations between the sample preparation conditions and the nanoscale photovoltaic properties of microscopic CdTe grain structures are observed. The same techniques are applied for characterization of a perovskite solar cell. It is found that a moderate amount of PbI2 near grain boundaries leads to the enhanced photogenerated carrier collections at grain boundaries. Finally, the capabilities and the limitations of the nanoscale techniques are discussed.
Collapse
Affiliation(s)
- Dongheon Ha
- Department
of Physics, Eastern Illinois University, Charleston, Illinois 61920, United States
- Physical
Measurement Laboratory, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Research in Electronics and Applied Physics, University of Maryland, College
Park, Maryland 20742, United States
| | - Yohan Yoon
- Physical
Measurement Laboratory, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Research in Electronics and Applied Physics, University of Maryland, College
Park, Maryland 20742, United States
- Department
of Materials Science and Engineering, Korea
Aerospace University, Goyang-si, Gyeonggi-do 10540, Korea
| | - Ik Jae Park
- Department
of Materials Physics, Sookmyung Women’s
University, Seoul 04310, Korea
| | - Luis Torres Cantu
- Department
of Physics, Eastern Illinois University, Charleston, Illinois 61920, United States
| | - Aries Martinez
- Department
of Physics, Eastern Illinois University, Charleston, Illinois 61920, United States
| | - Nikolai Zhitenev
- Physical
Measurement Laboratory, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Patil P, Sangale SS, Kwon SN, Na SI. Innovative Approaches to Semi-Transparent Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1084. [PMID: 36985978 PMCID: PMC10057987 DOI: 10.3390/nano13061084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising application that utilizes the tunable transmittance of perovskite photoactive layers, which can be used in tandem solar cells (TSC) and building-integrated photovoltaics (BIPV). However, the inverse relationship between light transmittance and efficiency is a challenge in the development of ST-PSCs. To overcome these challenges, numerous studies are underway, including those on band-gap tuning, high-performance charge transport layers and electrodes, and creating island-shaped microstructures. This review provides a general and concise summary of the innovative approaches in ST-PSCs, including advances in the perovskite photoactive layer, transparent electrodes, device structures and their applications in TSC and BIPV. Furthermore, the essential requirements and challenges to be addressed to realize ST-PSCs are discussed, and the prospects of ST-PSCs are presented.
Collapse
Affiliation(s)
| | | | - Sung-Nam Kwon
- Correspondence: (S.-N.K.); (S.-I.N.); Tel.: +82-63-270-4465 (S.-I.N.); Fax: +82-63-270-2341 (S.-I.N.)
| | - Seok-In Na
- Correspondence: (S.-N.K.); (S.-I.N.); Tel.: +82-63-270-4465 (S.-I.N.); Fax: +82-63-270-2341 (S.-I.N.)
| |
Collapse
|
10
|
Zhu Y, Shu L, Poddar S, Zhang Q, Chen Z, Ding Y, Long Z, Ma S, Ren B, Qiu X, Fan Z. Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability. NANO LETTERS 2022; 22:9586-9595. [PMID: 36394382 DOI: 10.1021/acs.nanolett.2c03694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perovskite nanopillars (PNPs) are propitious candidates for solar irradiation harvesting and are potential alternatives to thin films in flexible photovoltaics. To realize efficient daily energy output, photovoltaics must absorb sunlight over a broad range of incident angles and wavelengths congruent with the solar spectrum. Herein, we report highly periodic three-dimensional (3D) PNP-based flexible photovoltaics possessing a core-shell structure. The vertically aligned PNP arrays demonstrate up to 95.70% and 75.10% absorption at peak and under an incident angle of 60°. The efficient absorption and the orthogonal carrier collection facilitate an external quantum efficiency of 84.0%-89.18% for broadband wavelength. PNPs have been successfully implemented in flexible solar cells. The porous alumina membrane protects PNPs against water and oxygen intrusion and thereby imparts robustness to photovoltaic devices. Meanwhile, the excellent tolerance to mechanical stress/strain enables our unique PNP-based device to provide efficient solar-to-electricity conversion while undergoing mechanical bending.
Collapse
Affiliation(s)
- Yiyi Zhu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhenghao Long
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Suman Ma
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Shenzhen, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
11
|
Ding Y, Liu G, Long Z, Zhou Y, Qiu X, Ren B, Zhang Q, Chi C, Wan Z, Huang B, Fan Z. Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging. SCIENCE ADVANCES 2022; 8:eabq8432. [PMID: 36044578 PMCID: PMC9432836 DOI: 10.1126/sciadv.abq8432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared vision is highly desirable for applications in multifarious fields. Of the few species with this visual capability, snakes have exceptional infrared perception with the assistance of pit organs. Inspired by the pit organ design we present here a hemispherical biomimetic infrared imaging device. The devices use high-density ionic thermoelectric polymer nanowire arrays that serve as the sensing nerve cells. The individual nanowires exhibit notable voltage response to temperature variation in test objects. An infrared sensor array with 625 pixels on the hemispherical substrate is successfully demonstrated with an ultrawide field of view up to 135°. The device can image body temperature objects without a cooling system and external power supply. This work opens up opportunities for the design and fabrication of bioinspired infrared imaging devices based on emerging ionic thermoelectric materials.
Collapse
Affiliation(s)
- Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Microelectronics Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Gongze Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghao Long
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Cheng Chi
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhu’an Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Jiang Z, Liu H, Zou J, Huang Y, Xu Z, Li C, Liu D. Near-UV Phototransistors Based on an All-Inorganic Lead-Free Cs 3Cu 2I 5/CuTCNQ Hierarchical Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34937-34945. [PMID: 35860898 DOI: 10.1021/acsami.2c09470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid advances in metal halide perovskite optoelectronics, eliminating toxic lead from perovskites has been an urgent demand. However, state-of-the-art lead-free perovskite photodetectors are still challenged with issues of low photoresponse, poor stability, etc. Here, all-inorganic lead-free perovskite (Cs3Cu2I5) single crystals that possess good stability under air exposure are synthesized via a facile solid reaction method. Meanwhile, a higher photoluminescence quantum yield of 95.2% and a prolonged carrier lifetime of 1.127 μs are obtained by further optimizing the synthesis. Benefiting from the polyporous surface and hollow structure of Cu-7,7,8,8-tetracyanoquinodimethane (CuTCNQ) microtubes, more Cs3Cu2I5 nanocrystals can adhere on the innershell and outershell of CuTCNQ-15 microtubes. This unique structure contributes to the improved efficiency of utilizing incident light and promotes charge carrier generation and transportation. As a result, the hierarchical CuTCNQ/Cs3Cu2I5 (hollow microtube/nanocrystal) heterostructure phototransistor exhibits a high responsivity of 88.36 A W-1 and a large detectivity of 1.66 × 1012 Jones. The proposed lead-free perovskites and mixed-dimensional heterojunctions are promising for sensitive light detection.
Collapse
Affiliation(s)
- Zhi Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Hezhuang Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Jihua Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Yixuan Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Zhaoquan Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Caihong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Desheng Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| |
Collapse
|
13
|
Mannar S, Mandal P, Roy A, Viswanatha R. Experimental Determination of the Molar Absorption Coefficient of Cesium Lead Halide Perovskite Quantum Dots. J Phys Chem Lett 2022; 13:6290-6297. [PMID: 35786971 DOI: 10.1021/acs.jpclett.2c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead halide perovskite (CsPbX3, where X = Cl, Br, or I) quantum dots (QDs), with tunable optical and electronic properties, have attracted attention because of their promising applications in solar cells and next-generation optoelectronic devices. Hence, it is crucial to investigate in detail the fundamental size-dependent properties of these perovskite QDs to obtain high-quality nanocrystals for practical use. We propose a direct method for determining the concentration of solution-processed CsPbX3 QDs by means of spectrophotometry, in which the molar absorption coefficient (ε) is obtained using absorption and the Beer-Lambert law. By tuning the size of CsPbX3 QDs, we obtain their corresponding ε leading to a calibration curve for calculating the nanocrystal concentrations. The ε at the band edge for CsPbX3 (X = Cl, Br, or I) nanocrystals was found to be strongly dependent on the bandgap of the nanocrystals. We also obtained a reliable size dependence of the bandgap calibration curves to estimate the size of QDs from the absorption spectra.
Collapse
Affiliation(s)
- Subhashri Mannar
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
| | | | - Angira Roy
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
| | - Ranjani Viswanatha
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
- New Chemistry Unit (NCU), JNCASR, Bangalore 560064, India
| |
Collapse
|
14
|
Poddar S, Zhang Y, Chen Z, Ma Z, Fu Y, Ding Y, Chan CLJ, Zhang Q, Zhang D, Song Z, Fan Z. Image processing with a multi-level ultra-fast three dimensionally integrated perovskite nanowire array. NANOSCALE HORIZONS 2022; 7:759-769. [PMID: 35638535 DOI: 10.1039/d2nh00183g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Besides its ubiquitous applications in optoelectronics, halide-perovskites (HPs) have also carved a niche in the domain of resistive switching memories (Re-RAMs). However owing to the material and electrical instability challenges faced by HP thin-films, rarely perovskite Re-RAMs are used to experimentally demonstrate data processing which is a fundamental requirement for neuromorphic applications. Here, for the first time, lead-free, ultrahigh density HP nanowire (NW) array Re-RAM has been utilized to demonstrate image processing via design of convolutional kernels. The devices exhibited superior switching characteristics including a high endurance of 5 × 106 cycles, an ultra-fast erasing and writing speed of 900 ps and 2 ns, respectively, and a retention time >5 × 104 s for the resistances. The work is bolstered by an in-depth mechanistic study and first-principles simulations which provide evidence of electrochemical metallization triggering the switching. Employing the robust multi-level switching behaviour, image processing functions of embossing, outlining and sharpening were successfully implemented.
Collapse
Affiliation(s)
- Swapnadeep Poddar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yuting Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Zhesi Chen
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Zichao Ma
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yu Fu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yucheng Ding
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Chak Lam Jonathan Chan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Qianpeng Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Zhitang Song
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
15
|
Fu Y, Poddar S, Ren B, Xie Y, Zhang Q, Zhang D, Cao B, Tang Y, Ding Y, Qiu X, Shu L, Liao JF, Kuang DB, Fan Z. Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting Diodes. ACS NANO 2022; 16:8388-8398. [PMID: 35522604 DOI: 10.1021/acsnano.2c02795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Color tunability of perovskite light-emitting diodes (PeLEDs) by mixed halide compositional engineering is one of the primary intriguing characteristics of PeLEDs. However, mixed halide PeLEDs are often susceptible to color red-shifting caused by halide ion segregation. In this work, strongly quantum-confined perovskite nanowires (QPNWs) made of CsPbBr3 are grown in nanoporous anodic alumina templates using a closed space sublimation process. By tuning the pore size with atomic layer deposition, QPNWs with a diameter of 6.6 to 2.8 nm have been successfully obtained, with continuous tunable photoluminescence emission color from green (512 nm) to pure blue (467 nm). To better understand the photophysics of QPNWs, carrier dynamics and the benefit of alumina passivation are studied and discussed in detail. Eventually, PeLEDs using various diameters of CsPbBr3 QPNWs are successfully fabricated with cyan color (492 nm) PeLEDs, achieving a record high 7.1% external quantum efficiency (EQE) for all CsPbBr3-based cyan color PeLEDs. Sky blue (481 nm) and pure blue (467 nm) PeLEDs have also been successfully demonstrated, respectively. The work here demonstrates a different approach to achieve quantum-confined one-dimensional perovskite structures and color-tunable PeLEDs, particularly blue PeLEDs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying Xie
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yunqi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510217, Guangdong, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510217, Guangdong, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
17
|
Zhang D, Zhu Y, Zhang Q, Ren B, Cao B, Li Q, Poddar S, Zhou Y, Qiu X, He Z, Fan Z. Vertical Heterogeneous Integration of Metal Halide Perovskite Quantum-Wires/Nanowires for Flexible Narrowband Photodetectors. NANO LETTERS 2022; 22:3062-3070. [PMID: 35312323 DOI: 10.1021/acs.nanolett.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Charge collection narrowing (CCN) has been reported to be an efficient strategy to achieve optical filter-free narrowband photodetection (NPD) with metal halide perovskite (MHP) single crystals. However, the necessity of utilizing thick crystals in CCN limits their applications in large scale, flexible, self-driven, and high-performance optoelectronics. Here, for the first time, we fabricate vertically integrated MHP quantum wire/nanowire (QW/NW) array based photodetectors in nanoengineered porous alumina membranes (PAMs) showing self-driven broadband photodetection (BPD) and NPD capability simultaneously. Two cutoff detection edges of the NPDs are located at around 770 and 730 nm, with a full-width at half-maxima (fwhm) of around 40 nm. The optical bandgap difference between the NWs and the QWs, in conjunction with the high carrier recombination rate in QWs, contributes to the intriguing NPD performance. Thanks to the excellent mechanical flexibility of the PAMs, a flexible NPD is demonstrated with respectable performance. Our work here opens a new pathway to design and engineer a nanostructured MHP for novel color selective and full color sensing devices.
Collapse
Affiliation(s)
- Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Yudong Zhu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Qizhen Li
- School of Materials, University of Manchester, Manchester M139PL, United Kingdom
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| | - Zhubing He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000000, China
| |
Collapse
|
18
|
Kim DW, Hyun C, Shin TJ, Jeong U. Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS NANO 2022; 16:2521-2534. [PMID: 35044152 DOI: 10.1021/acsnano.1c09140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing perovskite precursor solutions on cellulose papers. Depending on the volume of the printed precursor solutions, the PeNCs are autonomously grown into three discrete sizes, and their relative size population is controlled; accordingly, not only the number of multiple PL peaks but also their relative intensities can be precisely tuned. This autonomous size control is obtained through the efflorescence, which is advection of salt ions toward the surface of a porous medium during solvent evaporation and also through the confined crystal growth in the hierarchical structure of cellulose fibers. The infiltrated PeNCs are environmentally stable against moisture (for 3 months in air at 70% relative humidity) and strong light exposure by hydrophobic surface treatment. This study also demonstrates invisible encryption and highly secured unclonable anticounterfeiting patterns on deformable cellulose substrates and banknotes.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| | - Chohee Hyun
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
- Gradute School of Semiconductor Material and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
19
|
Huang Y, Lai Z, Jin J, Lin F, Li F, Lin L, Tian D, Wang Y, Xie R, Chen X. Ultrasensitive Temperature Sensing Based on Ligand-Free Alloyed CsPbCl x Br 3-x Perovskite Nanocrystals Confined in Hollow Mesoporous Silica with High Density of Halide Vacancies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103425. [PMID: 34647396 DOI: 10.1002/smll.202103425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Temperature sensing based on fluorescent semiconductor nanocrystals has recently received immense attention. Enhancing the trap-facilitated thermal quenching of the fluorescence should be an effective approach to achieve high sensitivity for temperature sensing. Compared with conventional semiconductor nanocrystals, the defect-tolerant feature of lead halide perovskite nanocrystals (LHP NCs) endows them with high density of defects. Here, hollow mesoporous silica (h-SiO2 ) template-assisted ligand-free synthesis and halogen manipulation (chloride-importing) are proposed to fabricate highly defective yet fluorescent CsPbCl1.2 Br1.8 NCs confined in h-SiO2 (CsPbCl1.2 Br1.8 NCs@h-SiO2 ) for ultrasensitive temperature sensing. The trap barrier heights, exciton-phonon scattering, and trap state filling process in the CsPbCl1.2 Br1.8 NCs@h-SiO2 and CsPbBr3 NCs@h-SiO2 are studied to illustrate the higher temperature sensitivity of CsPbCl1.2 Br1.8 NCs@h-SiO2 at physiological temperature range. By integrating the thermal-sensitive CsPbCl1.2 Br1.8 NCs@h-SiO2 and thermal-insensitive K2 SiF6 :Mn4+ phosphor into the flexible ethylene-vinyl acetate polymer matrix, ratiometric temperature sensing from 30.0 °C to 45.0 °C is demonstrated with a relative temperature sensitivity up to 13.44% °C-1 at 37.0 °C. The composite film shows high potential as a thermometer for monitoring the body temperature. This work demonstrates the unparalleled temperature sensing performance of LHP NCs and provides new inspiration on switching the defects into advantages in sensing applications.
Collapse
Affiliation(s)
- Yipeng Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Lai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingwen Jin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fangyuan Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Longhui Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongjie Tian
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rongjun Xie
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
20
|
Dani Nandiyanto AB, Kito Y, Hirano T, Ragadhita R, Le PH, Ogi T. Spherical submicron YAG:Ce particles with controllable particle outer diameters and crystallite sizes and their photoluminescence properties. RSC Adv 2021; 11:30305-30314. [PMID: 35480242 PMCID: PMC9041146 DOI: 10.1039/d1ra04800g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to demonstrate the preparation of spherical submicron YAG:Ce particles with controllable particle outer diameters and crystallite sizes and their photoluminescence (PL) properties, which were produced using a flame-assisted spray-pyrolysis method followed by the annealing process. The correlation of particle outer diameter, crystallite size, and PL performance of the prepared particles was also investigated. Experimental results showed that the increases in the particle outer diameters have an impact on the obtainment of higher PL performance. Large particle outer diameters permitted the crystallites to grow more, whereas this is in contrast to the condition for small particle outer diameter having limitations in crystallite growth. This study also found that too large outer diameter (>557 nm) was not effective since crystallites cannot grow anymore and it permits possible scattering problems. This study provides significant information for optimizing synthesis parameters for controlling particle outer diameters and crystallite sizes, which could be relevant to other functional properties, especially for lens, solar cell, and LED applications.
Collapse
Affiliation(s)
- Asep Bayu Dani Nandiyanto
- Departemen Kimia, Universitas Pendidikan Indonesia Jl. Dr Setiabudhi No. 229 Bandung 40154 Indonesia
| | - Yusuke Kito
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima City Hiroshima 739-8527 Japan +81-82-424-3765 +81-82-424-3765
| | - Tomoyuki Hirano
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima City Hiroshima 739-8527 Japan +81-82-424-3765 +81-82-424-3765
| | - Risti Ragadhita
- Departemen Kimia, Universitas Pendidikan Indonesia Jl. Dr Setiabudhi No. 229 Bandung 40154 Indonesia
| | - Phong Hoai Le
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima City Hiroshima 739-8527 Japan +81-82-424-3765 +81-82-424-3765
| | - Takashi Ogi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima City Hiroshima 739-8527 Japan +81-82-424-3765 +81-82-424-3765
| |
Collapse
|
21
|
Zhang Y, Poddar S, Huang H, Gu L, Zhang Q, Zhou Y, Yan S, Zhang S, Song Z, Huang B, Shen G, Fan Z. Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. SCIENCE ADVANCES 2021; 7:eabg3788. [PMID: 34516897 PMCID: PMC8442916 DOI: 10.1126/sciadv.abg3788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Resistive random access memories (Re-RAMs) have transpired as a foremost candidate among emerging nonvolatile memory technologies with a potential to bridge the gap between the traditional volatile and fast dynamic RAMs and the nonvolatile and slow FLASH memories. Here, we report electrochemical metallization (ECM) Re-RAMs based on high-density three-dimensional halide perovskite nanowires (NWs) array as the switching layer clubbed between silver and aluminum contacts. NW Re-RAMs made of three types of methyl ammonium lead halide perovskites (MAPbX3; X = Cl, Br, I) have been explored. A trade-off between device switching speed and retention time was intriguingly found. Ultrafast switching speed (200 ps) for monocrystalline MAPbI3 and ~7 × 109 s ultralong extrapolated retention time for polycrystalline MAPbCl3 NW devices were obtained. Further, first-principles calculation revealed that Ag diffusion energy barrier increases when lattice size shrinks from MAPbI3 to MAPbCl3, culminating in the trade-off between the device switching speed and retention time.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511458, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511458, China
| | - He Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Leilei Gu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511458, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shuai Yan
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Sifan Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhitang Song
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511458, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
22
|
Wei Y, Ma T, Chen J, Zhao M, Zeng H. Metal Halide Perovskites for Optical Parametric Modulation. J Phys Chem Lett 2021; 12:3090-3098. [PMID: 33752334 DOI: 10.1021/acs.jpclett.0c03754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal halide perovskites (MHPs) have attracted considerable academic and industrial attention because of their remarkable optoelectronic properties. The development of optical parametric modulation is urgently needed because it plays an important role in display applications and optical communication. Perovskites can become the bridge between materials and optics. Through changing the composition and nanostructure of perovskites, we can modulate optical parameters, including optical intensity, frequency, polarization, and phase. This Perspective provides a brief introduction to this field and summarizes the methods of modulating optical parameters. It is instructive for building a relationship between perovskite nanostructures and optics, which is meaningful for display technologies and optical communication.
Collapse
Affiliation(s)
- Yi Wei
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Teng Ma
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Chen
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingyou Zhao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Chen W, Zhang F, Wang C, Jia M, Zhao X, Liu Z, Ge Y, Zhang Y, Zhang H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004446. [PMID: 33543536 DOI: 10.1002/adma.202004446] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Low-dimensional metal-halide perovskites have exhibited significantly superior nonlinear optical properties compared to traditional semiconductor counterparts, thanks to their peculiar physical and electronic structures. Their exceptional nonlinear optical characteristics make them excellent candidates for revolutionizing widespread applications. However, the research of nonlinear photonics based on low-dimensional metal-halide perovskites is in its infancy. There is a lack of comprehensive and in-depth summary of this research realm. Here, the state-of-the-art research progress related to third-and higher-order nonlinear optical properties of low-dimensional metal-halide perovskites with diverse crystal structures from 3D down to 0D, together with their practical applications, is summarized comprehensively. Critical discussions are offered on the fundamental mechanisms beneath their exceptional nonlinear optical performance from the physics viewpoint, attempting to disclose the role of intrinsic attributes (e.g., composition, bandgap, size, shape, and structure) and external modulation strategies (e.g., developing core-shell structures, transition metal ion doping, and hybridization with dielectric microspheres) in tuning the response. Additionally, their potential applications in nonlinear photonics, nonlinear optoelectronics, and biophotonics are systematically and thoroughly summed up and categorized. Lastly, insights into the current technical challenges and future research opportunities of nonlinear photonics based on low-dimensional metal-halide perovskites are provided.
Collapse
Affiliation(s)
- Weiqiang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Feng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Mingshuang Jia
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xinghang Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhaoran Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yanqi Ge
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
24
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
25
|
Garnett EC, Ehrler B, Polman A, Alarcon-Llado E. Photonics for Photovoltaics: Advances and Opportunities. ACS PHOTONICS 2021; 8:61-70. [PMID: 33506072 PMCID: PMC7821300 DOI: 10.1021/acsphotonics.0c01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 05/03/2023]
Abstract
Photovoltaic systems have reached impressive efficiencies, with records in the range of 20-30% for single-junction cells based on many different materials, yet the fundamental Shockley-Queisser efficiency limit of 34% is still out of reach. Improved photonic design can help approach the efficiency limit by eliminating losses from incomplete absorption or nonradiative recombination. This Perspective reviews nanopatterning methods and metasurfaces for increased light incoupling and light trapping in light absorbers and describes nanophotonics opportunities to reduce carrier recombination and utilize spectral conversion. Beyond the state-of-the-art single junction cells, photonic design plays a crucial role in the next generation of photovoltaics, including tandem and self-adaptive solar cells, and to extend the applicability of solar cells in many different ways. We address the exciting research opportunities and challenges in photonic design principles and fabrication that will accelerate the massive upscaling and (invisible) integration of photovoltaics into every available surface.
Collapse
Affiliation(s)
- Erik C. Garnett
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bruno Ehrler
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Albert Polman
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Esther Alarcon-Llado
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
26
|
Orientation-Dependent Conversion of VLS-Grown Lead Iodide Nanowires into Organic-Inorganic Hybrid Perovskites. NANOMATERIALS 2021; 11:nano11010223. [PMID: 33467057 PMCID: PMC7830942 DOI: 10.3390/nano11010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
In this study, we demonstrate Sn-assisted vapor-liquid-solid (VLS) growth of lead iodide (PbI2) nanowires with van der Waals layered crystal structure and subsequent vapor-phase conversion into methylammonium lead iodide (CH3NH3PbI3) perovskites. Our systematic microscopic investigations confirmed that the VLS-grown PbI2 nanowires display two major growth orientations of [0001] and [1¯21¯0], corresponding to the stacking configurations of PbI2 layers to the nanowire axis (transverse for [0001] vs. parallel for [1¯21¯0]). The resulting difference in the sidewall morphologies was correlated with the perovskite conversion, where [0001] nanowires showed strong localized conversion at top and bottom, as opposed to [1¯21¯0] nanowires with an evenly distributed degree of conversion. An ab initio energy calculation suggests that CH3NH3I preferentially diffuses and intercalates into (112¯0) sidewall facets parallel to the [1¯21¯0] nanowire axis. Our results underscore the ability to control the crystal structures of van der Waals type PbI2 in nanowire via the VLS technique, which is critical for the subsequent conversion process into perovskite nanostructures and corresponding properties.
Collapse
|
27
|
Ko J, Berger R, Lee H, Yoon H, Cho J, Char K. Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem Soc Rev 2021; 50:3585-3628. [DOI: 10.1039/d0cs01501f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a comprehensive overview of the electronic effects of nano-confinement (from 1D to 3D geometries) on optoelectronic materials and their applications.
Collapse
Affiliation(s)
- Jongkuk Ko
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- School of Chemical & Biological Engineering
| | - Rüdiger Berger
- Physics at Interfaces
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Hyemin Lee
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Hyunsik Yoon
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology
| | - Kookheon Char
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
28
|
Liu DS, Wu J, Xu H, Wang Z. Emerging Light-Emitting Materials for Photonic Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003733. [PMID: 33306201 DOI: 10.1002/adma.202003733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Indexed: 06/12/2023]
Abstract
The arrival of the information explosion era is urging the development of large-bandwidth high-data-rate optical interconnection technology. Up to now, the biggest stumbling block in optical interconnections has been the lack of efficient light sources despite significant progress that has been made in germanium-on-silicon (Ge-on-Si) and III-V-on-silicon (III-V-on-Si) lasers. 2D materials and metal halide perovskites have attracted much attention in recent years, and exhibit distinctive advantages in the application of on-chip light emitters. Herein, this Progress Report reviews the recent progress made in light-emitting materials with a focus on new materials, i.e., 2D materials and metal halide perovskites. The report briefly introduces the current status of Ge-on-Si and III-V-on-Si lasers and discusses the advances of 2D and perovskite light-emitting materials for photonic integration, including their optical properties, preparation methods, as well as the light sources based on these materials. Finally, challenges and perspectives of these emerging materials on the way to the efficient light sources are discussed.
Collapse
Affiliation(s)
- De-Sheng Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
29
|
Wei S, Li T, Zhang X, Zhang H, Jiang C, Sun G. An "on-off-on" selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for detecting Cu 2+ and GSH in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5110-5119. [PMID: 33057477 DOI: 10.1039/d0ay01662d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal level of Cu2+ or GSH can cause variety of neurodegenerative diseases in humans. Thus, the selective and sensitive detection of Cu2+ and GSH has inspired intensive research efforts in biological sample analysis fields. Herein, an "on-off-on" fluorescent probe based on nitrogen and sulfur co-doped carbon dots (N,S-CDs) has been successfully prepared for the detection of Cu2+ and GSH. The "turn-off" process of fluorescence in the presence of Cu2+ ions was induced by forming a non-luminescent ground state complex due to the interaction between surface groups of the probe and Cu2+ ions. Moreover, the strong coordination between GSH and Cu2+ could destroy the structure of the complex and restore the fluorescence to "turn-on". This fluorescent probe had excellent selectivity and high sensitivity toward Cu2+ and GSH with the limits of detection (LODs) of 38 nM and 41 nM. More importantly, the as-prepared N,S-CDs served as an efficient fluorescent probe for not only detecting Cu2+ ions in lake water and tap water, and GSH in BSA solution, but also sensing Cu2+ and GSH in living cells. Therefore, these N,S-CDs could be considered as a promising fluorescence probe candidate for environmental monitoring and biological imaging.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | | | | | | | | | | |
Collapse
|
30
|
Jeong B, Han H, Park C. Micro- and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000597. [PMID: 32530144 DOI: 10.1002/adma.202000597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 05/25/2023]
Abstract
Tremendous efforts have been devoted to developing thin film halide perovskites (HPs) for use in high-performance photoelectronic devices, including solar cells, displays, and photodetectors. Furthermore, structured HPs with periodic micro- or nanopatterns have recently attracted significant interest due to their potential to not only improve the efficiency of an individual device via the controlled arrangement of HP crystals into a confined geometry, but also to technologically pixelate the device into arrays suitable for future commercialization. However, micro- or nanopatterning of HPs is not usually compatible with conventional photolithography, which is detrimental to ionic HPs and requires special techniques. Herein, a comprehensive overview of the state-of-the-art technologies used to develop micro- and nanometer-scale HP patterns, with an emphasis on their controlled microstructures based on top-down and bottom-up approaches, and their potential for future applications, is provided. Top-down approaches include modified conventional lithographic techniques and soft-lithographic methods, while bottom-up approaches include template-assisted patterning of HPs based on lithographically defined prepatterns and self-assembly. HP patterning is shown here to not only improve device performance, but also to reveal the unprecedented functionality of HPs, leading to new research areas that utilize their novel photophysical properties.
Collapse
Affiliation(s)
- Beomjin Jeong
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
31
|
Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Huang Y, Wang S, Zhu Y, Li F, Jin J, Dong J, Lin F, Wang Y, Chen X. Dual-Mode of Fluorescence Turn-On and Wavelength-Shift for Methylamine Gas Sensing Based on Space-Confined Growth of Methylammonium Lead Tribromide Perovskite Nanocrystals. Anal Chem 2020; 92:5661-5665. [DOI: 10.1021/acs.analchem.0c00698] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yipeng Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuya Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yimeng Zhu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Feiming Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Jingwen Jin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Dong
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fangyuan Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
33
|
Zhang Q, Zhang D, Gu L, Tsui KH, Poddar S, Fu Y, Shu L, Fan Z. Three-Dimensional Perovskite Nanophotonic Wire Array-Based Light-Emitting Diodes with Significantly Improved Efficiency and Stability. ACS NANO 2020; 14:1577-1585. [PMID: 31944666 DOI: 10.1021/acsnano.9b06663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hybrid perovskites have emerged as promising candidates for highly efficient light-emitting diodes in the past few years due to their excellent crystallinity, high color purity, wide-range bandgap tunability, and solution processability. However, the reported device external quantum efficiency has not reached the level on par with that of conventional inorganic and organic light-emitting diodes. Moreover, device stability still needs substantial improvement. In this work, we demonstrate the fabrication of perovskite nanophotonic wire array-based light-emitting diodes with a capillary-effect-assisted template method. Compared with the planar control device, the nanostructured device demonstrates 45% improvement of external quantum efficiency from 11% to 16% owing to substantial enhancement on device light extraction efficiency verified by optical modeling. Intriguingly, it is also discovered that the nanostructured device possesses 3.89 times lifetime compared to the planar control device, due to effective template passivation. The results here have clearly shown that with a proper photonic device structure design, both the device performance and lifetime can be significantly improved.
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Leilei Gu
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Kwong-Hoi Tsui
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
| | - Yu Fu
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Lei Shu
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong SAR , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| |
Collapse
|
34
|
Jeong B, Han H, Kim HH, Choi WK, Park YJ, Park C. Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS NANO 2020; 14:1645-1655. [PMID: 31951365 DOI: 10.1021/acsnano.9b06980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the great interest in inorganic halide perovskites (IHPs) for a variety of photoelectronic applications, environmentally robust nanopatterns of IHPs have hardly been developed mainly owing to the uncontrollable rapid crystallization or temperature and humidity sensitive polymorphs. Herein, we present a facile route for fabricating environment- and phase-stable IHP nanopatterns over large areas. Our method is based on nanoimprinting of a soft and moldable IHP adduct. A small amount of poly(ethylene oxide) was added to an IHP precursor solution to fabricate a spin-coated film that is soft and moldable in an amorphous adduct state. Subsequently, a topographically prepatterned elastomeric mold was used to nanoimprint the film to develop well-defined IHP nanopatterns of CsPbBr3 and CsPbI3 of 200 nm in width over a large area. To ensure environment- and phase-stable black CsPbI3 nanopatterns, a polymer backfilling process was employed on a nanopatterned CsPbI3. The CsPbI3 nanopatterns were overcoated with a thin poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) film, followed by thermal melting of PVDF-TrFE, which formed the air-exposed CsPbI3 nanopatterns laterally confined with PVDF-TrFE. Our polymer backfilled CsPbI3 nanopatterns exhibited excellent environmental stability over one year at ambient conditions and for 10 h at 85 °C, allowing the development of arrays of two-terminal, parallel-type photodetectors with nanopatterned photoactive CsPbI3 channels. Our polymer-assisted nanoimprinting offers a fast, low-pressure/temperature patterning method for high-quality nanopatterns on various substrates over a large area, overcoming conventional costly time-consuming lithographic techniques.
Collapse
Affiliation(s)
- Beomjin Jeong
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Hong Hee Kim
- Center for Optoelectronic Materials and Devices , Korea Institute of Science and Technology (KIST) , Hwarang-ro 14 , Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Won Kook Choi
- Center for Optoelectronic Materials and Devices , Korea Institute of Science and Technology (KIST) , Hwarang-ro 14 , Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Youn Jung Park
- Samsung Electronics Co. , Seongchon-gil 33 , Seocho-gu , Seoul 06765 , Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| |
Collapse
|
35
|
Yun S, Kim T, Choi YJ, Lee SH, Kim H, Kim D. Polarization‐Dependent Photoluminescence of a Highly (100)‐Oriented Perovskite Film. Chemphyschem 2020; 21:204-211. [DOI: 10.1002/cphc.201901085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sangeun Yun
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 03722 Republic of Korea
| | - Taehee Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 03722 Republic of Korea
| | - Yung Ji Choi
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 03722 Republic of Korea
| | - Sang Hyeon Lee
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 03722 Republic of Korea
| | - Hae‐Jin Kim
- School of Mechanical and Aerospace EngineeringGyeongsang National University Jinju 52828 Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of ChemistryYonsei University Seoul 03722 Republic of Korea
| |
Collapse
|