1
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
2
|
Shi R, Lin L, Wang Z, Zou Q, Mudring AV. Manipulation of Luminescence via Surface Site Occupation in Ln 3+-Doped Nanocrystals. J Am Chem Soc 2024; 146:11924-11931. [PMID: 38625035 PMCID: PMC11066861 DOI: 10.1021/jacs.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Ln3+-doped (Ln = lanthanide) nanocrystals are garnering strong interest for their potential as optical materials in various applications. For that reason, a thorough understanding of photophysical processes and ways to tune them in these materials is of great importance. This study, using Eu3+-doped Sr2YF7 as a well-suited model system, underscores the (not unexpected) significance of surface site occupation of Ln3+ and also challenges the prevailing views about their contribution to the luminescence of the system. High-temperature cation exchange and epitaxial shell growth allow nanocrystals to exclusively feature Eu3+ residing at the surface or in the interior, thereby separating their spectral responses. Meticulous experiments reveal that nanocrystals with high doping concentrations exhibit luminescence primarily from surface Eu3+, in contrast to the popular belief that luminescence from surface Ln3+ is largely negligible. The present study shows, on the one hand, the necessity to revise common ideas and also reveals the potential for manipulating the luminescence of such materials through an, until now, unperceived way of surface engineering.
Collapse
Affiliation(s)
- Rui Shi
- Intelligent
Advanced Materials, Department of Biological and Chemical Engineering
and iNANO, Aarhus University, Aarhus C 8000, Denmark
| | - Litian Lin
- State
Key Laboratory of Rare Metals Separation and Comprehensive Utilization,
Guangdong Provincial Key Laboratory of Rare Earth Development and
Application, Institute of Resources Utilization
and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Zijun Wang
- IMRB,
Université Paris Est Créteil, INSERM U955, CNRS, EMR
7000, 94010 Créteil, France
| | - Qilin Zou
- Laboratoire
de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Anja-Verena Mudring
- Intelligent
Advanced Materials, Department of Biological and Chemical Engineering
and iNANO, Aarhus University, Aarhus C 8000, Denmark
- Department
of Physics, Umeå University, Linnaeus väg 24, 901 87 Umeå, Sweden
| |
Collapse
|
3
|
Yan L, Tao L, Zhang Q, Huang H, Zhang Q, Zhou B. Amplifying Photon Upconversion in Alloyed Nanoparticles for a Near-Infrared Photodetector. NANO LETTERS 2024; 24:4580-4587. [PMID: 38573804 DOI: 10.1021/acs.nanolett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photon upconverison has attracted a substantial amount of interest in diverse fields due to its characteristic anti-Stokes emissions. However, obtaining intense emission under low-power laser irradiation has remained a challenge. Here we report a mechanistic design of activator-sensitizer alloyed nanoparticles to achieve bright upconversion under weak infrared irradiation. This design allows a nearest sensitizer-activator separation to facilitate efficient energy transfer that results in remarkably enhanced upconversion (>2 orders of magnitude) under 0.26 W cm-2 irradiation compared to that of the Er sublattice, and the upconversion quantum yield also shows a 20-fold increase. Interestingly, the alloyed nanoparticles exhibit a gradual change in emission color with an increase in Yb3+ content, and moreover, their emission colors can be dynamically controlled by simply modulating the excitation laser power and pulse widths. Such alloyed nanoparticles show great promise for application in a near-infrared photodetector.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qizheng Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Haozhang Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Li H, Zhao K, Liu X, Zhan S, Nie G, Peng L. Efficient monodisperse upconversion composite prepared using high-density local field and its dual-mode temperature sensing. Phys Chem Chem Phys 2024; 26:7398-7406. [PMID: 38351847 DOI: 10.1039/d3cp05792e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Enhanced upconversion via plasmonics has considerable potential in biosensors and solar cells; however, conventional plasmonic configurations such as core-shell assemblies or nanoarray platforms still suffer from the compromise between the enhancement factor and monodispersity, which has failed to meet the requirement of the materials for the in vivo all-solution-prepared solar cells and biosensors. We herein report a monodisperse metal-dielectric-metal (MDM) type upconverted hybrid material with high efficiency. The lanthanide-doped upconversion nanoparticles (UCNPs) were sandwiched by two gold nanodisk mirrors, and the highly localized excitation field around the UCNPs together with the efficient coupling enhanced the upconversion. The upconversion intensity can then be effectively regulated and improved by three to four orders of magnitude. As per the measurement of the temperature-dependent fluorescence intensity and spectra shift, a dual-mode nanothermometer based on our proposed hybrid materials was demonstrated. This MDM-type upconverted hybrid material demonstrated the merits of high efficiency and monodispersity, which demonstrated promise in in vivo biosensors and solar cell fabrication techniques such as spin-coating and roll-to-roll.
Collapse
Affiliation(s)
- Huilin Li
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Kai Zhao
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoyan Liu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shiping Zhan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China.
| | - Guozheng Nie
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Liang Peng
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| |
Collapse
|
5
|
Du P, Lei P, Liang Y, An R, Zhang H. New Strategy: Molten Salt-Assisted Synthesis to Enhance Lanthanide Upconversion Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302465. [PMID: 37162464 DOI: 10.1002/smll.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/30/2023] [Indexed: 05/11/2023]
Abstract
Lanthanide-doped upconversion luminescent materials (LUCMs) have attracted much attention in diverse practical applications because of their superior features. However, the relatively weak luminescence intensity and low efficiency of LUCMs are the bottleneck problems that seriously limit their development. Unfortunately, most of the current major strategies of luminescence enhancement have some inherent shortcomings in their implementation. Here, a new and simple strategy of molten salt-assisted synthesis is proposed to enhance lanthanide upconversion luminescence for the first time. As a proof-of-concept, a series of rare earth oxides with obvious luminescence enhancement are prepared by a one-step method, utilizing molten NaCl as the high-temperature reaction media and rare earth chlorides as the precursors. The enhancement factors at different reaction temperatures are systematically investigated by taking Yb3+ /Er3+ co-doped Y2 O3 as an example, which can be enhanced up to more than six times. In addition, the molten salts are extended to all alkali chlorides, indicating that it is a universal strategy. Finally, the potential application of obtained UCL materials is demonstrated in near-infrared excited upconversion white light-emitting diodes (WLEDs) and other monochromatic LEDs.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Hamraoui K, Torres-Vera VA, Zabala Gutierrez I, Casillas-Rubio A, Alqudwa Fattouh M, Benayas A, Marin R, Natile MM, Manso Silvan M, Rubio-Zuazo J, Jaque D, Melle S, Calderón OG, Rubio-Retama J. Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390496 DOI: 10.1021/acsami.3c04125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.
Collapse
Affiliation(s)
- Khouloud Hamraoui
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Vivian Andrea Torres-Vera
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Irene Zabala Gutierrez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | - Mohammed Alqudwa Fattouh
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Antonio Benayas
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Maria Natile
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Padua, Italy
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Padua, Italy
| | - Miguel Manso Silvan
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Rubio-Zuazo
- Spanish CRG BM25-SpLine Beamline at the ESRF, 38043 Grenoble, France
- Instituto de Ciencias de los Materiales de Madrid-Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
7
|
Li Y, Li Y, Bai Y, Wang R. Activating ultralow upconversion nanothermometry in neodymium sublattice for heart tissue imaging rapid-responsive. Talanta 2023; 264:124764. [PMID: 37301039 DOI: 10.1016/j.talanta.2023.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The fields of biosensitivity and biological imaging have received a lot of attention from rare earth-doped upconversion nanoparticles (UCNPs). However, owing to the relatively large energy difference of rare earth ions, biological sensitivity based on UCNPs is restricted to detect at low temperature. Here, we design core-shell-shell NaErF4:Yb@Nd2O3@SiO2 UCNPs as a dual-mode bioprobe that produces blue, green, and red multi-color upconversion emissions at extremely low temperatures between 100 K and 280 K. Based on the thermally coupled energy levels (TCELs) of Er3+ (2H11/2 and 4S3/2) and Nd3+ (4F5/2 and 4F3/2) at 100 K, the greatest relative sensitivity (SR) approaches 12.7% K-1. NaErF4:Yb@Nd2O3@SiO2 injection is used to achieve blue upconversion emission imaging of frozen heart tissue, showing that this UCNP can serve as a low-temperature sensitive biological fluorescence.
Collapse
Affiliation(s)
- Yuemei Li
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Yongmei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, No.6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin, 300134, China
| | - Yandong Bai
- Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Rui Wang
- Harbin Institute of Technology, No.92 Xidazhi Road, Nangang District, Harbin, China
| |
Collapse
|
8
|
Xie X, Wang W, Chen H, Yang R, Wu H, Gan D, Li B, Kong X, Li Q, Chang Y. CaGdF 5 based heterogeneous core@shell upconversion nanoparticles for sensitive temperature measurement. RSC Adv 2023; 13:8535-8539. [PMID: 36926301 PMCID: PMC10012412 DOI: 10.1039/d3ra00716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted great attention in temperature sensing because of their widespread thermal quenching effect (TQE), a phenomenon in which luminescence intensity decreases as the temperature increases. However, enhancing the TQE of activated ions without changing the dopants or the host is still challenging. Herein, Yb3+ and Er3+ codoped UCNPs in a cubic CaGdF5 host were synthesized by a coprecipitation method for optical temperature sensing. Compared with the homogeneous shell (CaGdF5), those heterogeneous (CaF2) shelled UCNPs exhibited stronger upconversion luminescence (UCL) due to the significantly reduced multiphonon nonradiative relaxation. Further, we investigated the effects of homogeneous and heterogeneous shells on TQE. The relationship between the intensity ratio of the green emission bands of Er3+ ions (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) and temperature are obtained for these two core@shell UCNPs. The results demonstrated that the UCNPs with CaF2 shells are more sensitive to temperature in the 200-300 K. The maximum thermal sensitivity of CaGdF5:Yb,Er@CaF2 could reach 2.2% K-1 at 200 K. These results indicate that the heterogeneous core@shell UCNPs are promising for use as optical temperature sensors.
Collapse
Affiliation(s)
- Xiaoyu Xie
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Wang Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Haoran Chen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China
| | - Run Yang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Han Wu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Dechao Gan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China
| | - Xianggui Kong
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China
| | - Qiqing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 Jilin China
| |
Collapse
|
9
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Monks MJ, Würth C, Kemnitz E, Resch-Genger U. Dopant ion concentration-dependent upconversion luminescence of cubic SrF 2:Yb 3+,Er 3+ nanocrystals prepared by a fluorolytic sol-gel method. NANOSCALE 2022; 14:11590-11599. [PMID: 35856187 DOI: 10.1039/d2nr02337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A fluorolytic sol-gel method was used for the fast and simple synthesis of small cubic-phase SrF2:Yb3+,Er3+ upconversion (UC) nanocrystals (UCNC) of different composition at room temperature. Systematic studies of the crystal phase and particle size of this Yb3+,Er3+-concentration series as well as excitation power density (P)-dependent UC luminescence (UCL) spectra, UCL quantum yields (ΦUCL), and UCL decay kinetics yielded maximum UCL performance for doping amounts of Yb3+ of 13.5% and Er3+ of 1.3% in the studied doping and P-range (30-400 W cm-2). Furthermore, ΦUCL were determined to be similar to popular β-NaYF4:Yb3+,Er3+. The relative spectral UCL distributions revealed that all UCNC show a strong red emission in the studied doping and P-range (30-400 W cm-2) and suggest that the UCL quenching pathway for unshelled cubic-phase SrF2:Yb3+,Er3+ UCNC differs from the commonly accepted population and depopulation pathways of β-NaYF4:Yb3+,Er3+ UCNC. In SrF2:Yb3+,Er3+ UCNC the 4S3/2 → 4I13/2 transition exhibits a notably stronger sensitivity towards P and reveals increasing values for decreasing Yb3+-Yb3+ distances while the 4I9/2 → 4I15/2 transition is significantly less affected by P and energy migration facilitated UCL quenching. These results emphasize the complexity of the UC processes and the decisive role of the crystal phase and symmetry of the host lattice on the operative UCL quenching mechanism in addition to surface effects. Moreover, the room temperature UCNC synthesis enabled a systematic investigation of the influence of the calcination temperature on the crystal phase of powder-UCNC and the associated UCL properties. Calcination studies of solid UCNC of optimized doping concentration in the temperature range of 175 °C and 800 °C showed the beneficial influence of temperature-induced healing of crystal defects on UCL and the onset of a phase separation connected with the oxygenation of the lanthanide ions at elevated temperature. This further emphasizes the sensitivity of the UC process to the crystal phase and quality of the host matrix.
Collapse
Affiliation(s)
- Melissa-Jane Monks
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
- School of Analytical Sciences Adlershof SALSA, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-11, 12489 Berlin, Germany
| | - Christian Würth
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Erhard Kemnitz
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| |
Collapse
|
12
|
Yurkov GY, Kozinkin AV, Shvachko OV, Kubrin SP, Ovchenkov EA, Korobov MS, Kirillov VE, Osipkov AS, Makeev MO, Ryzhenko DS, Solodilov VI, Burakova EA, Bouznik VM. One
‐step synthesis of composite materials based on polytetrafluoroethylene microgranules and Co@
Fe
2
O
3
‐FeF
2
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gleb Yu. Yurkov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
- Bauman Moscow State Technical University Moscow Russian Federation
| | | | | | | | | | - Maxim S. Korobov
- Bauman Moscow State Technical University Moscow Russian Federation
| | - Vladislav E. Kirillov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | | | | - Vitaly I. Solodilov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | |
Collapse
|
13
|
Borse S, Rafique R, Murthy ZVP, Park TJ, Kailasa SK. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Analyst 2022; 147:3155-3179. [PMID: 35730445 DOI: 10.1039/d1an02170b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| | - Rafia Rafique
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| |
Collapse
|
14
|
Wu Y, Xue E, Tian B, Zheng K, Liang J, Wu W. Tunable multimodal printable up-/down-conversion nanomaterials for gradient information encryption. NANOSCALE 2022; 14:7137-7145. [PMID: 35503569 DOI: 10.1039/d2nr01380k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphor-based security techniques have received widespread attention because they can rely on fascinating optical properties (including multicolor emission and various luminous categories) to meet information protection requirements. Carbon dots (CDs) with multicolor fluorescence (FL) and room-temperature phosphorescence (RTP) show enormous potential in advanced information encryption, yet the achievement of tunable multimodal printable CDs confronts numerous challenges. Herein, liquid CDs with color-tunable properties ranging from blue to red are obtained, and the decay time-tunable RTPs of powdered CDs are achieved with a post-treatment of urea in an o-phenylenediamine/H2O/H3PO4 system. Based on various security inks, anti-counterfeiting patterns with multilevel security strength are produced through screen printing technology. Color-tunable security patterns are obtained based on different security inks containing multicolor liquid CDs. The security strength can be boosted by combining the color-tunable properties and dual-mode luminescence of FL and RTP. Furthermore, higher-level anti-counterfeiting is achieved by introducing near-infrared induced upconversion luminescence phosphors into CDs systems. The excellent security performance of gradient information encryption shows that the proposed strategy establishes superior coding capacity for advanced information encryption and provides a good reference for cutting-edge research.
Collapse
Affiliation(s)
- Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Enbo Xue
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
15
|
Xu Z, Jiang Y, Shen Y, Tang L, Hu Z, Lin G, Law WC, Ma M, Dong B, Yong KT, Xu G, Tao Y, Chen R, Yang C. A biocompatible photosensitizer with a high intersystem crossing efficiency for precise two-photon photodynamic therapy. MATERIALS HORIZONS 2022; 9:1283-1292. [PMID: 35170613 DOI: 10.1039/d1mh01869h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic efficiency is strongly dependent on the generation rate of reactive oxygen species (ROS) and the tissue penetration depth. Recent advances in materials science reveal that organic molecules with room-temperature phosphorescence (RTP) can potentially serve as efficient photosensitizers owing to their limited dark cytotoxicity and abundant triplet excitons upon light irradiation. In this study, we combine RTP materials with two-photon excitation to improve the ROS generation, therapeutic precision, and tissue penetration of photodynamic therapy. We successfully prepared a novel RTP-based photosensitizer (BF2DCz) with a high photoluminescence quantum yield of 47.7 ± 3% and a remarkable intersystem crossing efficiency of ∼90.3%. By encapsulation into the bovine serum albumin (BSA) matrix, BF2DCz-BSA exhibits excellent biocompatibility, negligible dark toxicity, and superior photostability. Excitation using a femtosecond laser causes BF2DCz-BSA to efficiently generate ROS and precisely exert cell damage at the desired location.
Collapse
Affiliation(s)
- Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yuanyuan Shen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Lele Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, 11th YukChoi Rd, Hong Hum, Kowloon, Hong Kong
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, 3688th Nanhai Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| |
Collapse
|
16
|
McLellan CA, Siefe C, Casar JR, Peng CS, Fischer S, Lay A, Parakh A, Ke F, Gu XW, Mao W, Chu S, Goodman MB, Dionne JA. Engineering Bright and Mechanosensitive Alkaline-Earth Rare-Earth Upconverting Nanoparticles. J Phys Chem Lett 2022; 13:1547-1553. [PMID: 35133831 PMCID: PMC9587901 DOI: 10.1021/acs.jpclett.1c03841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Upconverting nanoparticles (UCNPs) are an emerging platform for mechanical force sensing at the nanometer scale. An outstanding challenge in realizing nanometer-scale mechano-sensitive UCNPs is maintaining a high mechanical force responsivity in conjunction with bright optical emission. This Letter reports mechano-sensing UCNPs based on the lanthanide dopants Yb3+ and Er3+, which exhibit a strong ratiometric change in emission spectra and bright emission under applied pressure. We synthesize and analyze the pressure response of five different types of nanoparticles, including cubic NaYF4 host nanoparticles and alkaline-earth host materials CaLuF, SrLuF, SrYbF, and BaLuF, all with lengths of 15 nm or less. By combining optical spectroscopy in a diamond anvil cell with single-particle brightness, we determine the noise equivalent sensitivity (GPa/√Hz) of these particles. The SrYb0.72Er0.28F@SrLuF particles exhibit an optimum noise equivalent sensitivity of 0.26 ± 0.04 GPa/√Hz. These particles present the possibility of robust nanometer-scale mechano-sensing.
Collapse
Affiliation(s)
- Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Abhinav Parakh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Feng Ke
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Wendy Mao
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Lei L, Liu E, Wang Y, Hua Y, Zhang J, Chen J, Mao R, Jia G, Xu S. Amplifying Upconversion by Engineering Interfacial Density of State in Sub-10 nm Colloidal Core/Shell Fluoride Nanoparticles. NANO LETTERS 2021; 21:10222-10229. [PMID: 34847665 DOI: 10.1021/acs.nanolett.1c03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals. Through tuning of the metal cations in the shell layer of alkaline-earth-based core/shell nanoparticles, both the interfacial phonon frequency and the density of state are evidently decreased, resulting in the luminescence intensification of up to 8224 times. The generality of this upconversion enhancement strategy has been verified through expansion of this approach to alkali-based core/shell nanoparticles. The engineering of photon density of state in such core/shell nanoparticles enables dynamic display and high-level security information storage.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Enyang Liu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yubin Wang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Youjie Hua
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Junjie Zhang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jiayi Chen
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rundong Mao
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
18
|
Jones CMS, Gakamsky A, Marques-Hueso J. The upconversion quantum yield (UCQY): a review to standardize the measurement methodology, improve comparability, and define efficiency standards. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:810-848. [PMID: 34992499 PMCID: PMC8725918 DOI: 10.1080/14686996.2021.1967698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Advancing the upconversion materials field relies on accurate and contrastable photoluminescence efficiency measurements, which are characterised by the absolute upconversion quantum yield (UCQY). However, the methodology for such measurements cannot be extrapolated directly from traditional photoluminescence quantum yield techniques, primarily due to issues that arise from the non-linear behaviour of the UC process. Subsequently, no UCQY standards exist, and significant variations in their reported magnitude can occur between laboratories. In this work, our aim is to provide a path for determining and reporting the most reliable UCQYs possible, by addressing all the effects and uncertainties that influence its value. Here the UCQY standard, at a given excitation power density, is defined under a range of stated experimental conditions, environmental conditions, material properties, and influential effects that have been estimated or corrected for. A broad range of UCQYs reported for various UC materials are scrutinized and categorized based on our assertion of the provided information associated with each value. This is crucial for improved comparability with other types of photoluminescent materials, and in addition, the next generation of UC materials can be built on top of these reliable standards.
Collapse
Affiliation(s)
- Callum M. S. Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK
| | | | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
19
|
Xu W, Lei L, Wang Y, Liu E, Chen L, Xu S. Modulating electron population pathways for time-dependent dynamic multicolor displays. MATERIALS HORIZONS 2021; 8:3443-3448. [PMID: 34723303 DOI: 10.1039/d1mh01405f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicolor luminescent nanoparticles (NPs) show several potential emerging applications. In this work, we provide a new route that integrates the afterglow and upconversion (UC) that originate in a single activator to achieve color variations without the modulation of any other parameters. The Er3+ ions in Na3HfF7:Yb/Er NPs exhibit bright green afterglow upon X-ray irradiation and single-band red UC under 980 nm laser excitation, which are attributed to the significantly different electron population pathways. The UC intensity is stable and the afterglow decreases gradually over time, thus the output color is clearly changed from green to red naturally via illuminating the pre-X-ray-irradiated NPs with a 980 nm laser. Furthermore, the fine emission profiles of Er3+, Ho3+ and Tm3+ are achieved upon X-ray irradiation. Our results develop a new approach for time-dependent dynamic color displays and a simple route to revealing the electronic fine structures of lanthanide activators at room temperature.
Collapse
Affiliation(s)
- Weixin Xu
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| | - Lei Lei
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| | - Yubin Wang
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| | - Enyang Liu
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| | - Liang Chen
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices, Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China.
| |
Collapse
|
20
|
Hudry D, De Backer A, Popescu R, Busko D, Howard IA, Bals S, Zhang Y, Pedrazo-Tardajos A, Van Aert S, Gerthsen D, Altantzis T, Richards BS. Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104441. [PMID: 34697908 DOI: 10.1002/smll.202104441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Collapse
Affiliation(s)
- Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Annick De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Yang Zhang
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Adrian Pedrazo-Tardajos
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Thomas Altantzis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
21
|
Wang Y, Chen B, Wang F. Overcoming thermal quenching in upconversion nanoparticles. NANOSCALE 2021; 13:3454-3462. [PMID: 33565549 DOI: 10.1039/d0nr08603g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermal quenching that is characterized by loss of light emission with increasing temperature is widely observed in luminescent materials including upconversion nanoparticles, causing problems in technological applications such as lighting, displays, and imaging. Because upconversion processes involve extensive intra-particle energy transfer that is temperature dependent, methods have been established to fight against thermal quenching in upconversion nanoparticles by engineering the energy transfer routes. In this minireview, we discuss the origin of thermal quenching and the role of energy transfer in thermal quenching. Accordingly, recent efforts in overcoming thermal quenching of upconversion are summarized.
Collapse
Affiliation(s)
- Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
22
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Wu W, Wang X, Tian Y, Wang S, De G. Controlled synthesis and luminescent properties of Ca0.80Yb0.20F2.2: 0.2 % Tm3+ nanocrystals. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Li H, Wang X, Ohulchanskyy TY, Chen G. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000678. [PMID: 32638426 DOI: 10.1002/adma.202000678] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023]
Abstract
Light in the near-infrared (NIR) spectral region is increasingly utilized in bioapplications, providing deeper penetration in biological tissues owing to the lower absorption and scattering in comparison with light in the visible range. Lanthanide-doped luminescent nanoparticles with excitation and/or emission in the NIR range have recently attracted tremendous attention as one of the prime candidates for noninvasive biological applications due to their unique optical properties, such as large Stokes shift, spectrally sharp luminescence emissions, long luminescence lifetimes, and excellent photostability. Herein, recent advances of lanthanide-doped nanoparticles with NIR upconversion or downshifting luminescence and their uses in cutting-edge biophotonic applications are presented. A set of efficient strategies for overcoming the fundamental limit of low luminescence brightness of lanthanide-doped nanoparticles is introduced. An in-depth literature review of their state-of-art biophotonics applications is also included, showing their superiority for high-resolution imaging, single-nanoparticle-level detection, and efficacy for tissue-penetrating diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Shi R, Martinez ED, Brites CDS, Carlos LD. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Phys Chem Chem Phys 2021; 23:20-42. [PMID: 33305776 DOI: 10.1039/d0cp05069e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Luminescence thermal stability is a major figure of merit of lanthanide-doped nanoparticles playing an essential role in determining their potential applications in advanced optics. Unfortunately, considering the intensification of multiple electron-vibration interactions as temperature increases, luminescence thermal quenching of lanthanide-doped materials is generally considered to be inevitable. Recently, the emergence of thermally enhanced upconversion luminescence in lanthanide-doped nanoparticles seemed to challenge this stereotype, and the research on this topic rapidly aroused wide attention. While considerable efforts have been made to explore the origin of this phenomenon, the key mechanism of luminescence enhancement is still under debate. Here, to sort out the context of this intriguing finding, the reported results on this exciting topic are reviewed, and the corresponding enhancement mechanisms as proposed by different researchers are summarized. Detailed analyses are provided to evaluate the contribution of the most believed "surface-attached moisture desorption" process on the overall luminescence enhancement of lanthanide-doped nanoparticles at elevated temperatures. The impacts of other surface-related processes and shell passivation on the luminescence behaviour of the lanthanide-doped materials are also elaborated. Lack of standardization in the reported data and the absence of important experimental information, which greatly hinders the cross-checking and reanalysis of the results, is emphasized as well. On the foundation of these discussions, it is realized that the thermal-induced luminescence enhancement is a form of recovery process against the strong luminescence quenching in the system, and the enhancement degree is closely associated with the extent of luminescence loss induced by various quenching effects beforehand.
Collapse
Affiliation(s)
- Rui Shi
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
26
|
Fu H, Ma Y, Liu Y, Hong M. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications. Chem Commun (Camb) 2021; 57:2970-2981. [DOI: 10.1039/d0cc07699f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article overviews the recent advances in the local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for various biological applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yuhan Ma
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
27
|
Fischer S, Siefe C, Swearer DF, McLellan CA, Alivisatos AP, Dionne JA. Bright Infrared‐to‐Ultraviolet/Visible Upconversion in Small Alkaline Earth‐Based Nanoparticles with Biocompatible CaF
2
Shells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Fischer
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Chris Siefe
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Dayne F. Swearer
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Claire A. McLellan
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - A. Paul Alivisatos
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Materials Science and Engineering University of California, Berkeley Berkeley CA 94720 USA
- Kavli Energy Nanoscience Institute Berkeley CA 94720 USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| |
Collapse
|
28
|
Fischer S, Chris S, Swearer DF, McLellan CA, Alivisatos AP, Dionne JA. Bright Infrared-to-Ultraviolet/Visible Upconversion in Small Alkaline Earth-Based Nanoparticles with Biocompatible CaF 2 Shells. Angew Chem Int Ed Engl 2020; 59:21603-21612. [PMID: 32841471 PMCID: PMC8281583 DOI: 10.1002/anie.202007683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Upconverting nanoparticles (UCNPs) are promising candidates for photon-driven reactions, including light-triggered drug delivery, photodynamic therapy, and photocatalysis. Herein, we investigate the NIR-to-UV/visible emission of sub-15 nm alkaline-earth rare-earth fluoride UCNPs (M1-x Lnx F2+x, MLnF) with a CaF2 shell. We synthesize 8 alkaline-earth host materials doped with Yb3+ and Tm3+ , with alkaline-earth (M) spanning Ca, Sr, and Ba, MgSr, CaSr, CaBa, SrBa, and CaSrBa. We explore UCNP composition, size, and lanthanide doping-dependent emission, focusing on upconversion quantum yield (UCQY) and UV emission. UCQY values of 2.46 % at 250 W cm-2 are achieved with 14.5 nm SrLuF@CaF2 particles, with 7.3 % of total emission in the UV. In 10.9 nm SrYbF:1 %Tm3+ @CaF2 particles, UV emission increased to 9.9 % with UCQY at 1.14 %. We demonstrate dye degradation under NIR illumination using SrYbF:1 %Tm3+ @CaF2 , highlighting the efficiency of these UCNPs and their ability to trigger photoprocesses.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 (USA)
| | - Siefe Chris
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 (USA)
| | - Dayne F. Swearer
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 (USA)
| | - Claire A. McLellan
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 (USA)
| | - A. Paul Alivisatos
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA), and Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA), and Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720 (USA), and Kavli Energy Nanoscience Institute, Berkeley, CA 94720 (USA)
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305 (USA)
| |
Collapse
|
29
|
Kostiv U, Kučka J, Lobaz V, Kotov N, Janoušková O, Šlouf M, Krajnik B, Podhorodecki A, Francová P, Šefc L, Jirák D, Horák D. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci Rep 2020; 10:20016. [PMID: 33208804 PMCID: PMC7675969 DOI: 10.1038/s41598-020-77112-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
"All-in-one" multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by 125I to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.
Collapse
Affiliation(s)
- Uliana Kostiv
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Nikolay Kotov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Bartosz Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Artur Podhorodecki
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Pavla Francová
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic
| | - Daniel Jirák
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00, Prague 2, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
30
|
Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J Nanobiotechnology 2020; 18:155. [PMID: 33121499 PMCID: PMC7596963 DOI: 10.1186/s12951-020-00718-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Magnetic nanocomposites with a core-shell nanostructure have huge applications in different sciences especially in the release of the drugs, because of their exclusive physical and chemical properties. In this research, magnetic@layered double hydroxide multicore@shell nanostructure was synthesized by the facile experiment and is used as novel drug nanocarrier. METHODS Magnetic nanospheres were synthesized by a facile one-step solvothermal route, and then, layered double hydroxide nanoflakes were prepared on the magnetic nanospheres by coprecipitation experiment. The synthesized nanostructures were characterized by FTIR, XRD, SEM, VSM, and TEM, respectively. After intercalation with Ibuprofen and Diclofenac as anti-inflammatory drugs and using exchange anion experiment, the basal spacing of synthesized layered double hydroxides was compared with brucite nanosheets from 0.48 nm to 2.62 nm and 2.22 nm, respectively. RESULTS The results indicated that Ibuprofen and Diclofenac were successfully intercalated into the interlay space of LDHs via bridging bidentate interaction. In addition, in-vitro drug release experiments in pH 7.4, phosphate-buffered saline (PBS) showed constant release profiles with Ibuprofen and Diclofenac as model drugs with different lipophilicity, water solubility, size, and steric effect. CONCLUSION The Fe3O4@LDH-ibuprofen and Fe3O4@LDH-diclofenac had the advantage of the strong interaction between the carboxyl groups with higher trivalent cations by bridging bidentate, clarity, and high thermal stability. It is confirmed that Fe3O4@LDH multicore-shell nanostructure may have potential application for constant drug delivery.
Collapse
|
31
|
Li Y, Liu C, Zhang P, Huang J, Ning H, Xiao P, Hou Y, Jing L, Gao M. Doping Lanthanide Nanocrystals With Non-lanthanide Ions to Simultaneously Enhance Up- and Down-Conversion Luminescence. Front Chem 2020; 8:832. [PMID: 33173764 PMCID: PMC7538674 DOI: 10.3389/fchem.2020.00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
The rare-earth nanocrystals containing Er3+ emitters offer very promising tools for imaging applications, as they can not only exhibit up-conversion luminescence but also down-conversion luminescence in the second near-infrared window (NIR II). Doping non-lanthanide cations into host matrix was demonstrated to be an effective measure for improving the luminescence efficiency of Er3+ ions, while still awaiting in-depth investigations on the effects of dopants especially those with high valence states on the optical properties of lanthanide nanocrystals. To address this issue, tetravalent Zr4+ doped hexagonal NaGdF4:Yb,Er nanocrystals were prepared, and the enhancement effects of the Zr4+ doping level on both up-conversion luminescence in the visible window and down-conversion luminescence in NIR II window were investigated, with steady-state and transient luminescence spectroscopies. The key role of the local crystal field distortions around Er3+ emitters was elucidated in combination with the results based on both of Zr4+ and its lower valence counterparts, e.g., Sc3+, Mg2+, Mn2+. Univalent ions such as Li+ was utilized to substitute Na+ ion rather than Gd3+, and the synergistic effects of Zr4+ and Li+ ions by co-doping them into NaGdF4:Yb,Er nanocrystals were investigated toward optimal enhancement. Upon optimization, the up-conversion emission of co-doped NaGdF4:Yb,Er nanocrystals was enhanced by more than one order of magnitude compared with undoped nanocrystals. The current studies thus demonstrate that the local crystal field surrounding emitters is an effective parameter for manipulating the luminescence of lanthanide emitters.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Huang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Ning
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Mingyuan Gao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.,Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Skripka A, Cheng T, Jones CMS, Marin R, Marques-Hueso J, Vetrone F. Spectral characterization of LiYbF 4 upconverting nanoparticles. NANOSCALE 2020; 12:17545-17554. [PMID: 32812995 DOI: 10.1039/d0nr04357e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In light of the recent developments on Yb3+-based upconverting rare-earth nanoparticles (RENPs), we have systematically explored the spectral features of LiYbF4:RE3+/LiYF4 core/shell RENPs doped with various amounts of Tm3+, Er3+, or Ho3+. Tm3+-RENPs displayed photoluminescence from the UV to near-infrared (NIR), and the dominant high-photon-order upconversion emission of these RENPs was tunable by Tm3+ doping. Similarly, Er3+- and Ho3+-RENPs with green and red upconversion showed wide color tuning, depending on the doping amount and excitation power density. From steady-state power plot and photoluminescence decay studies we have observed respective changes in upconversion photon order and average lifetime that attest to a number of cross-relaxation processes occurring at higher RE3+ doping concentration. Particularly in the case of Tm3+-RENPs, cross-relaxation promotes four- and five-photon order upconversion emission in the UV and blue spectral regions. The quantum yield of high-order upconversion emission was on par with classic Yb3+/Tm3+-doped systems, yet due to the high number of sensitizer ions in the LiYbF4 host these RENPs are expected to be brighter and thus better suited for applications such as controlled drug delivery or optogenetics. Overall, LiYbF4:RE3+/LiYF4 RENPs are promising systems to effectively generate high-order upconversion emissions, owing to excitation energy confinement within the Yb3+ network and its efficient funneling to the activator dopants.
Collapse
Affiliation(s)
- Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Ting Cheng
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Callum M S Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Riccardo Marin
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada and Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fiorenzo Vetrone
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| |
Collapse
|
33
|
Ronchi A, Capitani C, Pinchetti V, Gariano G, Zaffalon ML, Meinardi F, Brovelli S, Monguzzi A. High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Hole-Routing in Electronic-Doped Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002953. [PMID: 32761660 DOI: 10.1002/adma.202002953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Low-power photon upconversion (UC) based on sensitized triplet-triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.
Collapse
Affiliation(s)
- Alessandra Ronchi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | - Chiara Capitani
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | | | - Matteo L Zaffalon
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| |
Collapse
|
34
|
Huang J, Li J, Zhang X, Zhang W, Yu Z, Ling B, Yang X, Zhang Y. Artificial Atomic Vacancies Tailor Near-Infrared II Excited Multiplexing Upconversion in Core-Shell Lanthanide Nanoparticles. NANO LETTERS 2020; 20:5236-5242. [PMID: 32501705 DOI: 10.1021/acs.nanolett.0c01539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epitaxial growth of an inert shell around the optical active lanthanide upconversion nanoparticles (UCNPs) is a general strategy to enhance their brightness. Yet, its potential as a tool in multiplexing emission tailoring has rarely been reported. Here, by developing the atomic vacancies into color selectivity actuators, we present an efficient strategy to achieve inert-shell-modulated multiplexing upconversion in 1540 nm activated UCNPs. Artificially generated fluoride atomic vacancies, owing to the decreased NaOH/NH4F dosage during shell growth, reduce the coordination number of Y-F and lattice densities in the inert shell, leading to the core-engineered shell nanoparticles with distinctive emission profiles. The multicolor tailoring is independent of shell thickness and can be readily applied to Lu3+/Gd3+-based shells. The upconversion emission can be exploited to visualize in security decoding and in vivo multiplexing bioimaging. This method of regulating atomic vacancies based on the inert-shell engineering opens new insights of upconversion modulation in core-shell lanthanide nanostructures.
Collapse
Affiliation(s)
- Jinzhao Huang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingqiu Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xuefei Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wanmei Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Bo Ling
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
35
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115646] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Sun X, Wang X, Chen B, Zhao F, Xu X, Ren K, Lu Y, Qiao X, Qian G, Fan X. Phase and morphology evolution of luminescent NaLnF4 (Ln = La to Yb) micro-crystals: understanding the ionic radii and surface energy-dependent solution growth mechanism. CrystEngComm 2019. [DOI: 10.1039/c9ce01287g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lanthanide (Ln)-based NaLnF4 micro-crystals (MCs) exhibit great advantages and strong feasibility for integration into micron-sized photonic devices.
Collapse
Affiliation(s)
- Xinwen Sun
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinwei Wang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Bing Chen
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057
- China
| | - Feiyu Zhao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiuxia Xu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Kai Ren
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yunhao Lu
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|