1
|
Abidi KR, Koskinen P. Gentle tension stabilizes atomically thin metallenes. NANOSCALE 2024; 16:19649-19655. [PMID: 39370967 DOI: 10.1039/d4nr03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Metallenes are atomically thin two-dimensional (2D) materials lacking a layered structure in the bulk form. They can be stabilized by nanoscale constrictions like pores in 2D covalent templates, but the isotropic metallic bonding makes stabilization difficult. A few metallenes have been stabilized but comparison with theory predictions has not always been clear. Here, we use density-functional theory calculations to explore the energetics and dynamic stabilities of 45 metallenes at six lattices (honeycomb, square, hexagonal, and their buckled counterparts) and varying atomic densities. We found that of the 270 different crystalline lattices, 128 were dynamically stable at sporadic densities, mostly under tensile strain. At the energy minima, lattices were often dynamically unstable against amorphization and the breaking down of metallene planarity. Consequently, the results imply that crystalline metallenes should be seen through a novel paradigm: they should be considered not as membranes with fixed structures and lattice constants but as yielding membranes that can be stabilized better under tensile strain and low atomic density. Following this paradigm, we rank the most promising metallenes for 2D stability and hope that the paradigm will help develop new strategies to synthesize larger and more stable metallene samples for plasmonic, optical, and catalytic applications.
Collapse
Affiliation(s)
- Kameyab Raza Abidi
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| | - Pekka Koskinen
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| |
Collapse
|
2
|
Zhu D, Wang C, Zou P, Zhang R, Wang S, Song B, Yang X, Low KB, Xin HL. Deep-Learning Aided Atomic-Scale Phase Segmentation toward Diagnosing Complex Oxide Cathodes for Lithium-Ion Batteries. NANO LETTERS 2023; 23:8272-8279. [PMID: 37643420 DOI: 10.1021/acs.nanolett.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phase transformation─a universal phenomenon in materials─plays a key role in determining their properties. Resolving complex phase domains in materials is critical to fostering a new fundamental understanding that facilitates new material development. So far, although conventional classification strategies such as order-parameter methods have been developed to distinguish remarkably disparate phases, highly accurate and efficient phase segmentation for material systems composed of multiphases remains unavailable. Here, by coupling hard-attention-enhanced U-Net network and geometry simulation with atomic-resolution transmission electron microscopy, we successfully developed a deep-learning tool enabling automated atom-by-atom phase segmentation of intertwined phase domains in technologically important cathode materials for lithium-ion batteries. The new strategy outperforms traditional methods and quantitatively elucidates the correlation between the multiple phases formed during battery operation. Our work demonstrates how deep learning can be employed to foster an in-depth understanding of phase transformation-related key issues in complex materials.
Collapse
Affiliation(s)
- Dong Zhu
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
- Computer Network Information Centre, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunyang Wang
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Peichao Zou
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Rui Zhang
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Shefang Wang
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Bohang Song
- BASF Corporation, Beachwood, Ohio 44122, United States
| | - Xiaoyu Yang
- Computer Network Information Centre, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Bin Low
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Shtepliuk I. 2D noble metals: growth peculiarities and prospects for hydrogen evolution reaction catalysis. Phys Chem Chem Phys 2023; 25:8281-8292. [PMID: 36892012 DOI: 10.1039/d3cp00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
High-performance electrocatalysts for the hydrogen evolution reaction are of interest in the development of next-generation sustainable hydrogen production systems. Although expensive platinum-group metals have been recognized as the most effective HER catalysts, there is an ongoing requirement for the discovery of cost-effective electrode materials. This paper reveals the prospects of two-dimensional (2D) noble metals, possessing a large surface area and a high density of active sites available for hydrogen proton adsorption, as promising catalytic materials for water splitting. An overview of the synthesis techniques is given. The advantages of wet chemistry approaches for the growth of 2D metals over deposition techniques show the potential for kinetic control that is required as a precondition to prevent isotropic growth. An uncontrolled presence of surfactant-related chemicals on a 2D metal surface is however the main disadvantage of kinetically controlled growth methods, which stimulates the development of surfactant-free synthesis approaches, especially template-assisted 2D metal growth on non-metallic substrates. Recent advances in the growth of 2D metals using a graphenized SiC platform are discussed. The existing works in the field of practical application of 2D noble metals for hydrogen evolution reaction are analyzed. This paper shows the technological viability of the "2D noble metals" concept for designing electrochemical electrodes and their implementation into future hydrogen production systems, thereby providing an inspirational background for further experimental and theoretical studies.
Collapse
Affiliation(s)
- Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology-IFM, Linköping University, S-58183 Linköping, Sweden.
| |
Collapse
|
4
|
Xie M, Tang S, Zhang B, Yu G. Metallene-related materials for electrocatalysis and energy conversion. MATERIALS HORIZONS 2023; 10:407-431. [PMID: 36541177 DOI: 10.1039/d2mh01213h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a member of graphene analogs, metallenes are a class of two-dimensional materials with atomic thickness and well-controlled surface atomic arrangement made of metals or alloys. When utilized as catalysts, metallenes exhibit distinctive physicochemical properties endowed from the under-coordinated metal atoms on the surface, making them highly competitive candidates for energy-related electrocatalysis and energy conversion systems. Significantly, their catalytic activity can be precisely tuned through the chemical modification of their surface and subsurface atoms for efficient catalyst engineering. This minireview summarizes the recent progress in the synthesis and characterization of metallenes, together with their use as electrocatalysts toward reactions for energy conversion. In the Synthesis section, we pay particular attention to the strategies designed to tune their exposed facets, composition, and surface strain, as well as the porosity/cavity, defects, and crystallinity on the surface. We then discuss the electrocatalytic properties of metallenes in terms of oxygen reduction, hydrogen evolution, alcohol and acid oxidation, carbon dioxide reduction, and nitrogen reduction reaction, with a small extension regarding photocatalysis. At the end, we offer perspectives on the challenges and opportunities with respect to the synthesis, characterization, modeling, and application of metallenes.
Collapse
Affiliation(s)
- Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Sishuang Tang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Sangolkar AA, Pooja, Pawar R. Structure, stability, and electronic and optical properties of TMDC-coinage metal composites: vertical atomically thin self-assembly of Au clusters. Phys Chem Chem Phys 2023; 25:4177-4192. [PMID: 36655755 DOI: 10.1039/d2cp04000j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Composites of metal clusters supported on transition metal dichalcogenides (TMDCs) often provide promising opportunities for applications in nanoelectronics, catalysis, sensing, etc. In the present investigation, a systematic attempt has been made to unveil the structure and stability of coinage M6 clusters supported on TMDC (MoS2 and WS2) monolayers. The more prominent objective is to explore potential candidates that stabilize the two-dimensional (2D) M6 clusters on their surface. Periodic energy decomposition analysis (pEDA) was carried out to probe the various interaction energy (IE) components that govern the stability of the M6 clusters in the composites. Attention has also been devoted to unravelling the electronic and optical properties of these TMDCs/M6 composites. Moreover, ab initio molecular dynamics (AIMD) simulations were performed to scrutinize the dynamic behaviour of Au cluster on WS2 monolayer. The results reveal that the coinage M6 clusters form energetically more stable composites on MoS2 than WS2 monolayer. It is worth mentioning that WS2 promotes the stability of 2D M6 clusters. Inclusion of dispersion correction marginally altered the geometries of the TMDCs/M6 composites but its impact on the IE values was significant. AIMD simulation explicitly emphasizes that the WS2 surface preferentially facilitates the vertical 2D self-assembling of Au atoms and, interestingly, the planarity is mostly retained during the course of simulations. The adsorption of coinage M6 clusters substantially influences the electronic and optical properties of the TMDCs. HSE06 calculation confirms that the decrease in energy gap is more pronounced in MoS2/M6 composites. The outcomes of this study render fundamental insights into the various TMDCs/M6 composites that would certainly be worthwhile probing for diverse practical applications.
Collapse
Affiliation(s)
- Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Pooja
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| |
Collapse
|
6
|
Jena MK, Roy D, Pathak B. Machine Learning Aided Interpretable Approach for Single Nucleotide-Based DNA Sequencing using a Model Nanopore. J Phys Chem Lett 2022; 13:11818-11830. [PMID: 36520020 DOI: 10.1021/acs.jpclett.2c02824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state nanopore-based electrical detection of DNA nucleotides with the quantum tunneling technique has emerged as a powerful strategy to be the next-generation sequencing technology. However, experimental complexity has been a foremost obstacle in achieving a more accurate high-throughput analysis with industrial scalability. Here, with one of the nucleotide training data sets of a model monolayer gold nanopore, we have predicted the transmission function for all other nucleotides with root-mean-square error scores as low as 0.12 using the optimized eXtreme Gradient Boosting Regression (XGBR) model. Further, the SHapley Additive exPlanations (SHAP) analysis helped in exploring the interpretability of the XGBR model prediction and revealed the complex relationship between the molecular properties of nucleotides and their transmission functions by both global and local interpretable explanations. Hence, experimental integration of our proposed machine-learning-assisted transmission function prediction method can offer a new direction for the realization of cheap, accurate, and ultrafast DNA sequencing.
Collapse
Affiliation(s)
- Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh453552, India
| | - Diptendu Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh453552, India
| |
Collapse
|
7
|
Yue S, Yuan W, Deng Z, Xi W, Shen Y. In Situ TEM Observation of the Atomic Transport Process during the Coalescence of Au Nanoparticles. NANO LETTERS 2022; 22:8115-8121. [PMID: 36197114 DOI: 10.1021/acs.nanolett.2c02491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In practical applications, the coalescence of metal nanoparticles (NPs) is a major factor affecting their physical chemistry properties. Currently, due to a lack of understanding of the atomic-level mechanisms during the nucleation and growth stages of coalescence, the correlation between the different dynamic factors in the different stages of NP coalescence is unclear. In this study, we used advanced in situ characterization techniques to observe the formation of atomic material transport channels (Au chains) during the initiation of coalescence nucleation. We focused on the movement and migration states of Au atoms and discovered an atomic ordered arrangement growth mechanism that occurs after the completion of nucleation. Simultaneously, we used density functional theory to reveal the formation principle of Au chains. These findings improve our understanding of the atomic-scale coalescence process, which can provide a new perspective for further research on coalescence atomic dynamics.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
8
|
Chen C, Wang X, Hao S, Du K. Direct Atomic Observation of Reversible Orientation Switch in Monoatomic-Layered Gold Membrane Conducted by Dynamic Vortex. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32379-32386. [PMID: 35859326 DOI: 10.1021/acsami.2c07397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the material structure at an atomic scale to tune their physicochemical and nanoengineering properties is a major driving force of nanotechnology. However, manipulating the structural variation in monoatomic-layered metals remains a challenge, hindering the full application of their novel properties. Here, we show by experiments and simulations that a reversible orientation rotation of monoatomic-layered gold membrane embedded in the gold crystal is performed through dynamic vortexing that is comprised of the circular motion of atoms. A pair of dynamic vortices are successively generated and together span the entire gold membrane to accomplish the orientation switch. Density functional theory calculations demonstrate that the gold membrane exhibits a Rashba-type spin splitting, while the spin direction reversibly flips with the switching orientation of the gold membrane. The results provide a conceptual approach for constructing a novel electronic system with monoatomic-layered metals and the reversible spin-flip has inspiring applications for future spintronics.
Collapse
Affiliation(s)
- Chunjin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xuelu Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shuhui Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Kui Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
9
|
Sangolkar AA, Pawar R. Enhanced Selectivity of the Propylene Epoxidation Reaction on a Cu Monolayer Surface via Eley-Rideal Mechanism. Chemphyschem 2022; 23:e202200334. [PMID: 35678180 DOI: 10.1002/cphc.202200334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Indexed: 12/19/2022]
Abstract
The aerobic oxidation of propylene to selectively achieve propylene oxide (PO) is a challenging reaction in catalysis. Therefore, an active catalyst which shows enhanced PO selectivity is extremely desired. In the present investigation, an attempt has been made to explore the catalytic activity of a mono-atomically thin two-dimensional (2D) hexagonal (HX) Cu layer for selective propylene epoxidation using molecular O2 with the aid of density functional theory calculations. The results reveal that the conversion of propylene to PO via Eley-Rideal mechanism is an exoergic and barrierless reaction on the O2 pre-adsorbed Cu monolayer. The Pauli energy component plays a decisive role for barrierless reaction whereas the electrostatic and orbital contribution governs the energetic stability of PO. Car-Parrinello molecular dynamics (CPMD) simulation reinforces the outcomes of climbing image nudged elastic band (CI-NEB) calculation. Further, the formation of oxametallacycle OMC-2 (0.47 eV) is kinetically favourable over OMC-1 (0.87 eV) and AHS (0.50 eV) on O pre-adsorbed 2D HX Cu. Interestingly, the energy barrier for the conversion of OMC-2 to PO (0.70 eV) is considerably low in comparison with the acetone formation (0.90 eV). Therefore, it is worth to mention that the 2D HX Cu surface provides a promising platform for selective propylene epoxidation.
Collapse
Affiliation(s)
- Akanksha Ashok Sangolkar
- Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India
| | - Ravinder Pawar
- Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India
| |
Collapse
|
10
|
Sangolkar AA, Jha S, Pawar R. Density Functional Theory‐Based Calculations for 2D Hexagonal Lanthanide Metals. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Akanksha Ashok Sangolkar
- Department of Chemistry National Institute of Technology Warangal (NITW) Warangal Telangana 506004 India
| | - Sakshi Jha
- Department of Chemistry National Institute of Technology Warangal (NITW) Warangal Telangana 506004 India
| | - Ravinder Pawar
- Department of Chemistry National Institute of Technology Warangal (NITW) Warangal Telangana 506004 India
| |
Collapse
|
11
|
Chen C, Song K, Wang X, Du K. Phase Transition to Heptagonal-Cluster-Packed Structure of Gold Nanoribbons. J Am Chem Soc 2022; 144:1158-1163. [PMID: 35025495 DOI: 10.1021/jacs.1c12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transforming periodic crystals into packing of atomic clusters is attracting enormous interest for both fundamental research and potential application, but it still remains a big challenge for noble metals. Here, we have observed gold nanoribbons packed with heptagonal clusters, where every two or three constituent clusters connect edge-to-edge with their neighbors. This is the first reported metallic structure packed from building blocks with heptagonal symmetry. The cluster-packed nanoribbons transited from two-dimensional hexagonal structure under tensile condition and a reverse transition occurred by compression, resolved by in situ observation. The cluster-packed structure was stabilized by the s-d orbital hybridization. Theoretical calculations demonstrate that the conductance of the ribbons undergoes a quantized change from 6 to 4 G0 (G0 = 2e2/h) during the phase transition and backward for the reverse transition.
Collapse
Affiliation(s)
- Chunjin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Kepeng Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuelu Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Kui Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Ouyang W, Hod O, Guerra R. Registry-Dependent Potential for Interfaces of Gold with Graphitic Systems. J Chem Theory Comput 2021; 17:7215-7223. [PMID: 34711058 PMCID: PMC8582252 DOI: 10.1021/acs.jctc.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
present a semi-anisotropic
interfacial potential (SAIP) designed
to classically describe the interaction between gold and two-dimensional
(2D) carbon allotropes such as graphene, fullerenes, or hydrocarbon
molecules. The potential is able to accurately reproduce dispersion-corrected
density functional theory (DFT+D3) calculations performed over selected
configurations: a flat graphene sheet, a benzene molecule, and a C60 fullerene, physisorbed on the Au(111) surface. The effects
of bending and hydrogen passivation on the potential terms are discussed.
The presented SAIP provides a noticeable improvement in the state-of-the-art
description of Au–C interfaces. Furthermore, its functional
form is suitable to describe the interfacial interaction between other
2D and bulk materials.
Collapse
Affiliation(s)
- Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roberto Guerra
- Center for Complexity and Biosystems, Department of Physics, University of Milan, 20133 Milan, Italy
| |
Collapse
|
13
|
Ta HQ, Mendes RG, Liu Y, Yang X, Luo J, Bachmatiuk A, Gemming T, Zeng M, Fu L, Liu L, Rümmeli MH. In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100619. [PMID: 34459155 PMCID: PMC8529443 DOI: 10.1002/advs.202100619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/23/2021] [Indexed: 05/13/2023]
Abstract
In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
Collapse
Affiliation(s)
- Huy Q. Ta
- Soochow Institute for Energy and Materials InnovationsCollege of EnergyCollaborative Innovation Center of SuzhouNano Science and TechnologyKey Laboratory of Advanced Carbon MaterialsWearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
- Institute for Complex MaterialsIFW DresdenP.O. Box D‐01171DresdenGermany
| | - Rafael G. Mendes
- Institute for Complex MaterialsIFW DresdenP.O. Box D‐01171DresdenGermany
| | - Yu Liu
- Soochow Institute for Energy and Materials InnovationsCollege of EnergyCollaborative Innovation Center of SuzhouNano Science and TechnologyKey Laboratory of Advanced Carbon MaterialsWearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
| | - Xiaoqin Yang
- Soochow Institute for Energy and Materials InnovationsCollege of EnergyCollaborative Innovation Center of SuzhouNano Science and TechnologyKey Laboratory of Advanced Carbon MaterialsWearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
- School of Energy and Power EngineeringXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049China
| | - Jingping Luo
- School of Energy and Power EngineeringXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049China
| | - Alicja Bachmatiuk
- Material Science & Engineering CenterŁukasiewicz Research Network – PORT Polish Center for Technology DevelopmentUl. Stabłowicka 147Wrocław54‐066Poland
| | - Thomas Gemming
- Institute for Complex MaterialsIFW DresdenP.O. Box D‐01171DresdenGermany
| | - Mengqi Zeng
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072China
| | - Lei Fu
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072China
| | - Lijun Liu
- School of Energy and Power EngineeringXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049China
| | - Mark H. Rümmeli
- Soochow Institute for Energy and Materials InnovationsCollege of EnergyCollaborative Innovation Center of SuzhouNano Science and TechnologyKey Laboratory of Advanced Carbon MaterialsWearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
- Institute for Complex MaterialsIFW DresdenP.O. Box D‐01171DresdenGermany
- Centre of Polymer and Carbon MaterialsPolish Academy of SciencesM. Curie‐Sklodowskiej 34Zabrze41‐819Poland
- Center for Energy and Environmental TechnologiesVSB‐Technical University of Ostrava17. Listopadu 15Ostrava708 33Czech Republic
| |
Collapse
|
14
|
Zheng S, Wang C, Yuan X, Xin HL. Super-compression of large electron microscopy time series by deep compressive sensing learning. PATTERNS (NEW YORK, N.Y.) 2021; 2:100292. [PMID: 34286306 PMCID: PMC8276025 DOI: 10.1016/j.patter.2021.100292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022]
Abstract
The development of ultrafast detectors for electron microscopy (EM) opens a new door to exploring dynamics of nanomaterials; however, it raises grand challenges for big data processing and storage. Here, we combine deep learning and temporal compressive sensing (TCS) to propose a novel EM big data compression strategy. Specifically, TCS is employed to compress sequential EM images into a single compressed measurement; an end-to-end deep learning network is leveraged to reconstruct the original images. Owing to the significantly improved compression efficiency and built-in denoising capability of the deep learning framework over conventional JPEG compression, compressed videos with a compression ratio of up to 30 can be reconstructed with high fidelity. Using this approach, considerable encoding power, memory, and transmission bandwidth can be saved, allowing it to be deployed to existing detectors. We anticipate the proposed technique will have far-reaching applications in edge computing for EM and other imaging techniques.
Collapse
Affiliation(s)
- Siming Zheng
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Chunyang Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Xin Yuan
- Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
15
|
Zhao X, Loh KP, Pennycook SJ. Electron beam triggered single-atom dynamics in two-dimensional materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:063001. [PMID: 33007771 DOI: 10.1088/1361-648x/abbdb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling atomic structure and dynamics with single-atom precision is the ultimate goal in nanoscience and nanotechnology. Despite great successes being achieved by scanning tunneling microscopy (STM) over the past a few decades, fundamental limitations, such as ultralow temperature, and low throughput, significantly hinder the fabrication of a large array of atomically defined structures by STM. The advent of aberration correction in scanning transmission electron microscopy (STEM) revolutionized the field of nanomaterials characterization pushing the detection limit down to single-atom sensitivity. The sub-angstrom focused electron beam (e-beam) of STEM is capable of interacting with an individual atom, thereby it is the ideal platform to direct and control matter at the level of a single atom or a small cluster. In this article, we discuss the transfer of energy and momentum from the incident e-beam to atoms and their subsequent potential dynamics under different e-beam conditions in 2D materials, particularly transition metal dichalcogenides (TMDs). Next, we systematically discuss the e-beam triggered structural evolutions of atomic defects, line defects, grain boundaries, and stacking faults in a few representative 2D materials. Their formation mechanisms, kinetic paths, and practical applications are comprehensively discussed. We show that desired structural evolution or atom-by-atom assembly can be precisely manipulated by e-beam irradiation which could introduce intriguing functionalities to 2D materials. In particular, we highlight the recent progress on controlling single Si atom migration in real-time on monolayer graphene along an extended path with high throughput in automated STEM. These results unprecedentedly demonstrate that single-atom dynamics can be realized by an atomically focused e-beam. With the burgeoning of artificial intelligence and big data, we can expect that fully automated microscopes with real-time data analysis and feedback could readily design and fabricate large scale nanostructures with unique functionalities in the near future.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| |
Collapse
|
16
|
Zhu Q, Hong Y, Cao G, Zhang Y, Zhang X, Du K, Zhang Z, Zhu T, Wang J. Free-Standing Two-Dimensional Gold Membranes Produced by Extreme Mechanical Thinning. ACS NANO 2020; 14:17091-17099. [PMID: 33152233 DOI: 10.1021/acsnano.0c06697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) materials exhibit exceptional physical and chemical properties owing to their atomically thin structures. However, it remains challenging to produce 2D materials consisting of pure monoelemental metallic atoms. Here free-standing 2D gold (Au) membranes were prepared via in situ transmission electron microscopy straining of Au films. The applied in-plane tensile strain induces an extensive amount of out-of-plane thinning deformation in a local region of an Au thin film, resulting in the nucleation and growth of a free-standing 2D Au membrane surrounded by its film matrix. This 2D membrane is shown to be one atom thick with a simple-hexagonal lattice, which forms an atomically sharp interface with the face-centered cubic lattice of the film matrix. Diffusive transport of surface atoms, in conjunction with the dynamic evolution of interface dislocations, plays important roles in the formation of 2D Au membranes during the mechanical thinning process. These results demonstrate a top-down approach to produce free-standing 2D membranes and provide a general understanding on extreme mechanical thinning of metallic films down to the single-atom-thick limit.
Collapse
Affiliation(s)
- Qi Zhu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Youran Hong
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guang Cao
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yin Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaohan Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kui Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ting Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiangwei Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
17
|
Larionov KV, Seifert G, Sorokin PB. Insights into the regularity of the formation of 2D 3d transition metal monocarbides. NANOSCALE 2020; 12:13407-13413. [PMID: 32614013 DOI: 10.1039/d0nr02436h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, several theoretical predictions have been made about 2D planar FeC, CoC, NiC, and CuC, while their bulk phases still remain unknown. Here, we present a generalization of the 2D family of 3d transition metal monocarbides (TMC) by searching for their stable configurations with DFT methods and an evolutionary algorithm. It is found that in the TMC row (TM = Sc-Cu) the tendency of 3D rocksalt phase formation is monotonously interchanged with 2D phase appearance, namely, planar orthorhombic TMC characterized by carbon dimers inside metal hexagons. Among them, orthorhombic CoC and FeC monocarbides would likely be formed rather than any other 2D metal carbide phase or metal/graphene interface.
Collapse
Affiliation(s)
- K V Larionov
- National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation. and Moscow Institute of Physics and Technology, Institute lane 9, Dolgoprudny, Moscow Region, Russian Federation
| | - G Seifert
- Technische Universitaet Dresden, Bergstr. 66b, Dresden, Germany
| | - P B Sorokin
- National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation. and Moscow Institute of Physics and Technology, Institute lane 9, Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
18
|
Li J, Leonard Deepak F. In situ generation of sub-10 nm silver nanowires under electron beam irradiation in a TEM. Chem Commun (Camb) 2020; 56:4765-4768. [PMID: 32253398 DOI: 10.1039/d0cc00909a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here, we report a facile irradiation-assisted route to fabricate sub-10 nm Ag nanowires from oxide supports using a TEM. The obtained Ag nanowires show a tunable length/diameter aspect ratio with a minimum diameter of about 9.5 nm. Moreover, the nucleation and growth dynamics of Ag nanowires were uncovered from TEM observations.
Collapse
Affiliation(s)
- Junjie Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| | | |
Collapse
|