1
|
Li Q, Napier S, Singh AN, Vickery TP, Fan Y, Hernandez E, Wang T, Dalby SM. General chemoselective hindered amide coupling enabled by TCFH-catalytic Oxyma and transient imine protection. Chem Commun (Camb) 2025; 61:721-724. [PMID: 39661044 DOI: 10.1039/d4cc05313c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
We report a general chemoselective strategy for amide bond formation with poorly nucleophilic amines in the presence of reactive primary alcohols or amines as the competing nucleophiles. The selectivity for less reactive amines over competing alcohols was achieved using TCFH and catalytic Oxyma as a highly reactive, inexpensive, and safe reagent combination. By temporarily masking more reactive amines as imines through the use of electron-deficient aldehydes, the hindered amines could be similarly coupled with high efficiency and selectivity.
Collapse
Affiliation(s)
- Qiuhan Li
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | - Sarah Napier
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | - Andrew N Singh
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Thomas P Vickery
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | - Yi Fan
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Edgar Hernandez
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Tao Wang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | - Stephen M Dalby
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| |
Collapse
|
2
|
Kröger L, Borgert S, Lauwers M, Steinkrüger M, Jose J, Pietsch M, Wünsch B. Structure-Activity Relationship Studies of Tetracyclic Pyrrolocarbazoles Inhibiting Heterotetrameric Protein Kinase CK2. Molecules 2024; 30:63. [PMID: 39795120 PMCID: PMC11722180 DOI: 10.3390/molecules30010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer. Starting with the lead furocarbazole W16 (4) inhibiting the CK2α/CK2β interaction, analogous pyrrolocarbazoles were prepared and tested for their protein-protein interaction inhibition (PPII). The key step of the synthesis was a multicomponent Levy reaction of 2-(indolyl)acetate 6, benzaldehydes 7, and N-substituted maleimides 8. Targeted modifications were performed by the saponification of the tetracyclic ester 9a, followed by the coupling of the resulting acid 10 with diverse amines. The replacement of the O-atom of the lead furocarbazole 4 by an N-atom in pyrrolocarbazoles retained or even increased the inhibition of the CK2α/CK2β interaction. The large benzyloxazolidinyl moiety of 4 could be replaced by smaller N-substituents without the loss of the PPII. The introduction of larger substituents at the 2-position and/or at p-position of the phenyl moiety at the 10-position to increase the surface for the inhibition of the PPI did not enhance the inhibition of the CK2α/CK2β association. The strong inhibition of the CK2α/CK2β association by the histidine derivative (+)-20a (Ki = 6.1 µM) translated into a high inhibition of the kinase activity of the CK2 holoenzyme (CK2α2β2, IC50 = 2.5 µM). Thus, 20a represents a novel lead compound inhibiting CK2 via the inhibition of the association of the CK2α and Ck2β subunits.
Collapse
Affiliation(s)
- Lukas Kröger
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Sebastian Borgert
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Miriam Lauwers
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
| | - Michaela Steinkrüger
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, D-51379 Leverkusen, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| |
Collapse
|
3
|
Mizushima G, Fujita H, Kunishima M. Development of a Triazinyluronium-Based Dehydrative Condensing Reagent with No Heteroatomic Bonds. J Org Chem 2024; 89:18660-18664. [PMID: 39626268 DOI: 10.1021/acs.joc.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A triazinyluronium-based dehydrative condensing reagent, 2-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (DMT-TU), has been developed. Unlike commonly used guanidinium- and uronium-based reagents, DMT-TU does not contain high-energy N-N and N-O bonds, reducing its explosivity, as suggested by differential scanning calorimetry. Using DMT-TU in the presence of iPr2EtN at room temperature, carboxylic acids and amines were effectively converted to their corresponding amides. Additionally, peptide bond formation with DMT-TU exhibited suppressed racemization ratios.
Collapse
Affiliation(s)
- Gaku Mizushima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
4
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
5
|
Song F, Salter R, Chen L. Carbon-14 Labeling Synthesis of RORγt Inhibitor JNJ-61803534. J Labelled Comp Radiopharm 2024; 67:288-294. [PMID: 38803015 DOI: 10.1002/jlcr.4114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Carbon-14 labeling synthesis of RORγt inhibitor JNJ-61803534 (1) was accomplished in four steps with the C14 label located at the thiazole-2-carboxamide carbon. The synthesis featured a highly efficient conversion of nitrile [14C]-12 to ester [14C]-17 under mild conditions via an imidate intermediate, overcoming the unsuccessful direct hydrolysis of nitrile 12 under either acidic or basic conditions. Since carbon-14 labeling via [14C]-nitrile installation and subsequent conversion to [14C]-carboxylic acid derivatives is a common labeling strategy, an efficient conversion of a nitrile to an ester under mild conditions could be of use for the future C14 labeling syntheses.
Collapse
Affiliation(s)
- Fengbin Song
- Therapeutics Discovery, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Rhys Salter
- Therapeutics Discovery, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Lu Chen
- Therapeutics Discovery, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
6
|
Mukherjee S, Rogers A, Creech G, Hang C, Ramirez A, Dummeldinger M, Brueggemeier S, Mapelli C, Zaretsky S, Huang M, Black R, Peddicord MB, Cuniere N, Kempson J, Pawluczyk J, Allen M, Parsons R, Sfouggatakis C. Process Development of a Macrocyclic Peptide Inhibitor of PD-L1. J Org Chem 2024; 89:6651-6663. [PMID: 38663026 DOI: 10.1021/acs.joc.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).
Collapse
Affiliation(s)
- Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Gardner Creech
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael Dummeldinger
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Claudio Mapelli
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Masano Huang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Regina Black
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael B Peddicord
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Nicolas Cuniere
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Pawluczyk
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Martin Allen
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Rodney Parsons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
7
|
Ansari M, White AD. Learning peptide properties with positive examples only. DIGITAL DISCOVERY 2024; 3:977-986. [PMID: 38756224 PMCID: PMC11094695 DOI: 10.1039/d3dd00218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024]
Abstract
Deep learning can create accurate predictive models by exploiting existing large-scale experimental data, and guide the design of molecules. However, a major barrier is the requirement of both positive and negative examples in the classical supervised learning frameworks. Notably, most peptide databases come with missing information and low number of observations on negative examples, as such sequences are hard to obtain using high-throughput screening methods. To address this challenge, we solely exploit the limited known positive examples in a semi-supervised setting, and discover peptide sequences that are likely to map to certain antimicrobial properties via positive-unlabeled learning (PU). In particular, we use the two learning strategies of adapting base classifier and reliable negative identification to build deep learning models for inferring solubility, hemolysis, binding against SHP-2, and non-fouling activity of peptides, given their sequence. We evaluate the predictive performance of our PU learning method and show that by only using the positive data, it can achieve competitive performance when compared with the classical positive-negative (PN) classification approach, where there is access to both positive and negative examples.
Collapse
Affiliation(s)
- Mehrad Ansari
- Department of Chemical Engineering, University of Rochester Rochester NY 14627 USA
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester Rochester NY 14627 USA
| |
Collapse
|
8
|
Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK, Kenworthy MN, Gallou F, Lopez J, Koenig SG, Payne PR, Eissler S, Arumugam B, Li C, Mukherjee S, Isidro-Llobet A, Ludemann-Hombourger O, Richardson P, Kittelmann J, Sejer Pedersen D, van den Bos LJ. Process Mass Intensity (PMI): A Holistic Analysis of Current Peptide Manufacturing Processes Informs Sustainability in Peptide Synthesis. J Org Chem 2024; 89:4261-4282. [PMID: 38508870 PMCID: PMC11002941 DOI: 10.1021/acs.joc.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.
Collapse
Affiliation(s)
- Ivy Kekessie
- Early Discovery
Biochemistry - Peptide Therapeutics, Genentech,
Inc., A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Katarzyna Wegner
- Active Pharmaceutical
Ingredient Development, Ipsen Manufacturing
Ireland Ltd., Blanchardstown
Industrial Park, Dublin 15, Ireland
| | - Isamir Martinez
- Green Chemistry
Institute, American Chemical Society, 1155 16th St North West, Washington, District of Columbia, 20036, United
States
| | - Michael E. Kopach
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Timothy D. White
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Janine K. Tom
- Drug Substance
Technologies, Amgen, Inc., 1 Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Martin N. Kenworthy
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Fabrice Gallou
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - John Lopez
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - Stefan G. Koenig
- Small
Molecule
Pharmaceutical Sciences, Genentech, Inc.,
A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Philippa R. Payne
- Outsourced
Manufacturing, Pharmaceutical Development & Manufacturing, Gilead Alberta ULC, 1021 Hayter Rd NW, Edmonton, T6S 1A1, Canada
| | - Stefan Eissler
- Bachem
AG, Hauptstrasse 144, 4416 Bubendorf, Switzerland
| | - Balasubramanian Arumugam
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Changfeng Li
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Subha Mukherjee
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | | | | | - Paul Richardson
- Chemistry, Pfizer, 10578 Science Center Drive (CB6), San Diego, California 09121, United States
| | | | | | | |
Collapse
|
9
|
Wang JY, Stevens JM, Kariofillis SK, Tom MJ, Golden DL, Li J, Tabora JE, Parasram M, Shields BJ, Primer DN, Hao B, Del Valle D, DiSomma S, Furman A, Zipp GG, Melnikov S, Paulson J, Doyle AG. Identifying general reaction conditions by bandit optimization. Nature 2024; 626:1025-1033. [PMID: 38418912 DOI: 10.1038/s41586-024-07021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1-6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7-10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.
Collapse
Affiliation(s)
- Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jason M Stevens
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Stavros K Kariofillis
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mai-Jan Tom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dung L Golden
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Jun Li
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Jose E Tabora
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Molecular Structure and Design, Bristol Myers Squibb, Cambridge, MA, USA
| | - David N Primer
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Bo Hao
- Janssen Research and Development, Spring House, PA, USA
| | - David Del Valle
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Stacey DiSomma
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ariel Furman
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - G Greg Zipp
- Discovery Synthesis, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - James Paulson
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhong W, Wan C, Zhou Z, Dai C, Zhang Y, Lu F, Yin F, Li Z. 4-Iodine N-Methylpyridinium-Mediated Peptide Synthesis. Org Lett 2023; 25:8661-8665. [PMID: 38009639 DOI: 10.1021/acs.orglett.3c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Through systematic optimization of halopyridinium compounds, we established a peptide coupling protocol utilizing 4-iodine N-methylpyridinium (4IMP) for solid-phase peptide synthesis (SPPS). The 4IMP coupling reagent is easily prepared, bench stable, and cost-effective. Employing 4IMP in the SPPS process has showcased remarkable chemoselectivity and efficiency, effectively eliminating racemization and epimerization. This achievement has been substantiated through the successful synthesis of a range of peptides via the direct utilization of commercially available amino acid substrates for SPPS.
Collapse
Affiliation(s)
- Wanjin Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chuan Dai
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| |
Collapse
|
11
|
Tian J, Li W, Deng X, Lakshminarayanan R, Srinivasan R. Chemoselective N-Acylation of Amines with Acylsilanes under Aqueous Acidic Conditions. Org Lett 2023; 25:5740-5744. [PMID: 37515781 DOI: 10.1021/acs.orglett.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We report a facile method for forming amide bonds between acylsilanes and a wide range of amines in the presence of a mild chlorinating agent under aqueous acidic conditions. The reaction is highly chemoselective, as exemplified by the late-stage modification of a panel of approved drugs and natural products containing reactive functionalities.
Collapse
Affiliation(s)
- Jing Tian
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007, P. R. China
| | - Wei Li
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | - Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | | | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
12
|
Joynson BW, Cumming GR, Ball LT. Photochemically Mediated Ring Expansion of Indoles and Pyrroles with Chlorodiazirines: Synthetic Methodology and Thermal Hazard Assessment. Angew Chem Int Ed Engl 2023; 62:e202305081. [PMID: 37294032 PMCID: PMC11497286 DOI: 10.1002/anie.202305081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
We demonstrate that arylchlorodiazirines serve as photo-activated halocarbene precursors for the selective one-carbon ring expansion of N-substituted pyrroles and indoles to the corresponding pyridinium and quinolinium salts. Preliminary investigations indicate that the same strategy also enables the conversion of N-substituted pyrazoles to pyrimidinium salts. The N-substituent of the substrate plays an essential role in: (1) increasing substrate scope by preventing product degradation, (2) enhancing yields by suppressing co-product inhibition, and (3) activating the azinium products towards subsequent synthetic manipulations. This latter point is illustrated by subjecting the quinolinium salts to four complementary partial reductions, which provide concise access to ring-expanded products with different degrees of increased C(sp3 ) character. Thermal analysis of the diazirines by differential scanning calorimetry (DSC) provides detailed insight into their energetic properties, and highlights the safety benefits of photolyzing-rather than thermolyzing-these reagents.
Collapse
Affiliation(s)
- Ben W. Joynson
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Graham R. Cumming
- Centro de Investigación Lilly S. A.Avda. de la Industria 30, AlcobendasMadrid28108Spain
| | - Liam T. Ball
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
13
|
Chen D, Xu L, Ren B, Wang Z, Liu C. Triflylpyridinium as Coupling Reagent for Rapid Amide and Ester Synthesis. Org Lett 2023. [PMID: 37290965 DOI: 10.1021/acs.orglett.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective method has been developed to facilitate the synthesis of amides and esters at ambient temperature within 5 min, in which a stable and easily accessible triflylpyridinium reagent is used. Remarkably, this method not only has a wide range of substrate compatibility but also could realize the scalable synthesis of peptide and ester via a continuous flow process. Moreover, excellent chirality retentions are presented during activation of carboxylic acid.
Collapse
Affiliation(s)
- Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxuan Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ansari M, White AD. Learning Peptide Properties with Positive Examples Only. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543289. [PMID: 37333233 PMCID: PMC10274696 DOI: 10.1101/2023.06.01.543289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Deep learning can create accurate predictive models by exploiting existing large-scale experimental data, and guide the design of molecules. However, a major barrier is the requirement of both positive and negative examples in the classical supervised learning frameworks. Notably, most peptide databases come with missing information and low number of observations on negative examples, as such sequences are hard to obtain using high-throughput screening methods. To address this challenge, we solely exploit the limited known positive examples in a semi-supervised setting, and discover peptide sequences that are likely to map to certain antimicrobial properties via positive-unlabeled learning (PU). In particular, we use the two learning strategies of adapting base classifier and reliable negative identification to build deep learning models for inferring solubility, hemolysis, binding against SHP-2, and non-fouling activity of peptides, given their sequence. We evaluate the predictive performance of our PU learning method and show that by only using the positive data, it can achieve competitive performance when compared with the classical positive-negative (PN) classification approach, where there is access to both positive and negative examples.
Collapse
Affiliation(s)
- Mehrad Ansari
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
15
|
Yang E, Tucker JW, Chappie TA, Weaver JD, Chapman C, Duzguner R, Humphrey JM. Synthesis of a Pyridoazepine Scaffold via Rhodium-Catalyzed Ring Expansion and Nitroacetamide Condensation. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eddie Yang
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Joseph W. Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Thomas A. Chappie
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - John D. Weaver
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Caroline Chapman
- Pfizer R&D UK Limited, Chemical R&D, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK
| | - Remzi Duzguner
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John M. Humphrey
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Lathrop SP, Mlinar LB, Manjrekar ON, Zhou Y, Harper KC, Sacia ER, Higgins M, Bogdan AR, Wang Z, Richter SM, Gong W, Voight EA, Henle J, Diwan M, Kallemeyn JM, Sharland JC, Wei B, Davies HML. Continuous Process to Safely Manufacture an Aryldiazoacetate and Its Direct Use in a Dirhodium-Catalyzed Enantioselective Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephen P. Lathrop
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Laurie B. Mlinar
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Onkar N. Manjrekar
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yong Zhou
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Kaid C. Harper
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Eric R. Sacia
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Molly Higgins
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Andrew R. Bogdan
- Advanced Chemistry Technologies, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Zhe Wang
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Steven M. Richter
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Wei Gong
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Eric A. Voight
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jeremy Henle
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Moiz Diwan
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jeffrey M. Kallemeyn
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Bo Wei
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
18
|
Magano J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Magano
- Chemical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
19
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
20
|
Graham JC, Trejo-Martin A, Chilton ML, Kostal J, Bercu J, Beutner GL, Bruen US, Dolan DG, Gomez S, Hillegass J, Nicolette J, Schmitz M. An Evaluation of the Occupational Health Hazards of Peptide Couplers. Chem Res Toxicol 2022; 35:1011-1022. [PMID: 35532537 PMCID: PMC9214767 DOI: 10.1021/acs.chemrestox.2c00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide couplers (also known as amide bond-forming reagents or coupling reagents) are broadly used in organic chemical syntheses, especially in the pharmaceutical industry. Yet, occupational health hazards associated with this chemical class are largely unexplored, which is disconcerting given the intrinsic reactivity of these compounds. Several case studies involving occupational exposures reported adverse respiratory and dermal health effects, providing initial evidence of chemical sensitization. To address the paucity of toxicological data, a pharmaceutical cross-industry task force was formed to evaluate and assess the potential of these compounds to cause eye and dermal irritation as well as corrosivity and dermal sensitization. The goal of our work was to inform health and safety professionals as well as pharmaceutical and organic chemists of the occupational health hazards associated with this chemical class. To that end, 25 of the most commonly used peptide couplers and five hydrolysis products were selected for in vivo, in vitro, and in silico testing. Our findings confirmed that dermal sensitization is a concern for this chemical class with 21/25 peptide couplers testing positive for dermal sensitization and 15 of these being strong/extreme sensitizers. We also found that dermal corrosion and irritation (8/25) as well as eye irritation (9/25) were health hazards associated with peptide couplers and their hydrolysis products (4/5 were dermal irritants or corrosive and 4/5 were eye irritants). Resulting outcomes were synthesized to inform decision making in peptide coupler selection and enable data-driven hazard communication to workers. The latter includes harmonized hazard classifications, appropriate handling recommendations, and accurate safety data sheets, which support the industrial hygiene hierarchy of control strategies and risk assessment. Our study demonstrates the merits of an integrated, in vivo -in silico analysis, applied here to the skin sensitization endpoint using the Computer-Aided Discovery and REdesign (CADRE) and Derek Nexus programs. We show that experimental data can improve predictive models by filling existing data gaps while, concurrently, providing computational insights into key initiating events and elucidating the chemical structural features contributing to adverse health effects. This interactive, interdisciplinary approach is consistent with Green Chemistry principles that seek to improve the selection and design of less hazardous reagents in industrial processes and applications.
Collapse
Affiliation(s)
- Jessica C Graham
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Martyn L Chilton
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, UK
| | - Jakub Kostal
- The George Washington University, Washington, D.C. 20052, United States
| | - Joel Bercu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory L Beutner
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Uma S Bruen
- Organon, Inc., 30 Hudson Street, Jersey City, New Jersey 07302, United States
| | - David G Dolan
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States
| | - Stephen Gomez
- Theravance Biopharma US, Inc., South San Francisco, California 94080, United States
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - John Nicolette
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthew Schmitz
- Takeda Pharmaceutical Company Limited, 35 Landsdowne St., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Zhang W, Li S, Liu H, Zhang Y, Xie H, Peng D, Peng H, Ou Z, Peng Z, Dong W, An D. Development of the Enabling Route for a Novel HCV NS3/4A Inhibitor, Furaprevir. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weihong Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shixi Li
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Haiwang Liu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
- Dongguan HEC TaiGen Biopharmaceuticals Co. Ltd., Dongguan 523000, P. R. China
| | - Hongpeng Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Dahua Peng
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Hongtao Peng
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Zijian Ou
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd., Dongguan 523871, P. R. China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Delie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
22
|
Daniels DSB, Crook R, Dirat O, Fussell SJ, Gymer A, Hawksworth M, Knight CJ, Laity D, Mathew SP, Oke SV, Peach P, Prior S. Development of an Intrinsically Safer Methanolysis/Aromatic Nitro Group Reduction for Step 1 and 2 of Talazoparib Tosylate. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David S. B. Daniels
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Robert Crook
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Olivier Dirat
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Steven J. Fussell
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Adam Gymer
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Michael Hawksworth
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Craig J. Knight
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Daniel Laity
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Suju P. Mathew
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Samantha V. Oke
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Philip Peach
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Samantha Prior
- Pfizer R&D UK Ltd., Discovery Park House, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| |
Collapse
|
23
|
Continuous Flow Synthesis of Anticancer Drugs. Molecules 2021; 26:molecules26226992. [PMID: 34834084 PMCID: PMC8625794 DOI: 10.3390/molecules26226992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Continuous flow chemistry is by now an established and valued synthesis technology regularly exploited in academic and industrial laboratories to bring about the improved preparation of a variety of molecular structures. Benefits such as better heat and mass transfer, improved process control and safety, a small equipment footprint, as well as the ability to integrate in-line analysis and purification tools into telescoped sequences are often cited when comparing flow to analogous batch processes. In this short review, the latest developments regarding the exploitation of continuous flow protocols towards the synthesis of anticancer drugs are evaluated. Our efforts focus predominately on the period of 2016-2021 and highlight key case studies where either the final active pharmaceutical ingredient (API) or its building blocks were produced continuously. It is hoped that this manuscript will serve as a useful synopsis showcasing the impact of continuous flow chemistry towards the generation of important anticancer drugs.
Collapse
|
24
|
Zhao R, Furman TR, Roth M. MSD’s Process Safety Scale-Up Methodology for Pilot Plant Scale and Beyond. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ralph Zhao
- Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey 07033 United States
| | - Theodore R. Furman
- Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey 07033 United States
| | - Megan Roth
- Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey 07033 United States
| |
Collapse
|
25
|
Ren JW, Tong MN, Zhao YF, Ni F. Synthesis of Dipeptide, Amide, and Ester without Racemization by Oxalyl Chloride and Catalytic Triphenylphosphine Oxide. Org Lett 2021; 23:7497-7502. [PMID: 34553596 DOI: 10.1021/acs.orglett.1c02614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient triphenylphosphine oxide-catalyzed amidation and esterification for the rapid synthesis of a series of dipeptides, amides, and esters is described. This reaction is applicable to challenging couplings of hindered carboxylic acids with weakly nucleophilic amines or alcohols, giving the products in good yields (67-90%) without racemization. This system employs the highly reactive intermediate Ph3PCl2 as the activator of the carboxylate in a catalytic manner and drives the reaction to completion in a short reaction time (less than 10 min).
Collapse
Affiliation(s)
- Ji-Wei Ren
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Meng-Nan Tong
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
26
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
27
|
Pfaff P, Anderl F, Fink M, Balkenhohl M, Carreira EM. Azoacetylenes for the Synthesis of Arylazotriazole Photoswitches. J Am Chem Soc 2021; 143:14495-14501. [PMID: 34478268 PMCID: PMC8447256 DOI: 10.1021/jacs.1c06014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a modular approach toward novel arylazotriazole photoswitches and their photophysical characterization. Addition of lithiated TIPS-acetylene to aryldiazonium tetrafluoroborate salts gives a wide range of azoacetylenes, constituting an underexplored class of stable intermediates. In situ desilylation transiently leads to terminal arylazoacetylenes that undergo copper-catalyzed cycloadditions (CuAAC) with a diverse collection of organoazides. These include complex molecules derived from natural products or drugs, such as colchicine, taxol, tamiflu, and arachidonic acid. The arylazotriazoles display near-quantitative photoisomerization and long thermal Z-half-lives. Using the method, we introduce for the first time the design and synthesis of a diacetylene platform. It permits implementation of consecutive and diversity-oriented approaches linking two different conjugants to independently addressable acetylenes within a common photoswitchable azotriazole. This is showcased in the synthesis of several photoswitchable conjugates, with potential applications as photoPROTACs and biotin conjugates.
Collapse
|
28
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
29
|
Sperry JB, Stone S, Azuma M, Barrett C. Importance of Thermal Stability Data to Avoid Dangerous Reagents: Temozolomide Case Study. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey B. Sperry
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Shane Stone
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael Azuma
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Connor Barrett
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
30
|
Tao Y, Qu D, Tian C, Huang Y, Xue L, Ju C, Hao M, Zhang C. Modular synthesis of amphiphilic chitosan derivatives based on copper-free click reaction for drug delivery. Int J Pharm 2021; 605:120798. [PMID: 34126177 DOI: 10.1016/j.ijpharm.2021.120798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Amphiphilic chitosan derivatives have attracted wide attention as drug carriers due to their physicochemical properties. However, obtaining a desired amphiphilic chitosan derivative by tuning the various functional groups was complex and time-consuming. Therefore, a facile and common synthesis strategy would be promising. In this study, a modular strategy based on strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction was designed and applied in synthesizing deoxycholic acid- or octanoic acid-modified N-azido propionyl-N,O-sulfate chitosan through tuning the hydrophobic groups. Additionally, chitosan derivatives with the same substitute groups were prepared via amide coupling as controls. We demonstrated that these derivates via the two strategies showed no obvious difference in physicochemical properties, drug loading ability and biosafety, indicating the feasibility of modular strategy. Notably, the modular strategy exhibited advantages including high reactivity, flexibility and reproducibility. We believe that this modular strategy could provide varied chitosan derivatives in an easy and high-efficiency way for improving multifunctional drug carriers.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ding Qu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Chunli Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yingshuang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Ng W, Lam Y, Hu R, Ng W, Yeung Y. Zwitterion‐Catalyzed Amino‐Dibromination of Nitroalkenes: Scope, Mechanism, and Application to The Synthesis of Glycinamides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wing‐Hin Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Ying‐Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Rong‐Bin Hu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Wing‐Lok Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| | - Ying‐Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, NT Hong Kong P. R. China
| |
Collapse
|
32
|
Maule I, Razzetti G, Restelli A, Palmieri A, Colombo C, Ballini R. Thermal Stability Evaluation of Nitroalkanes with Differential Scanning Calorimetry. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivano Maule
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | - Gabriele Razzetti
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | | | - Alessandro Palmieri
- Green Chemistry Group-School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cinzia Colombo
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | - Roberto Ballini
- Green Chemistry Group-School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
33
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
34
|
Deng X, Zhou G, Tian J, Srinivasan R. Chemoselective Amide-Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angew Chem Int Ed Engl 2021; 60:7024-7029. [PMID: 33135292 DOI: 10.1002/anie.202012459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/19/2020] [Indexed: 12/20/2022]
Abstract
We report the facile amide-forming ligation of acylsilanes with hydroxylamines (ASHA ligation) under aqueous conditions. The ligation is fast, chemoselective, mild, high-yielding and displays excellent functional-group tolerance. Late-stage modifications of an array of marketed drugs, peptides, natural products, and biologically active compounds showcase the robustness and functional-group tolerance of the reaction. The key to the success of the reaction could be the possible formation of the strong Si-O bond via a Brook-type rearrangement. Given its simplicity and efficiency, this ligation has the potential to unfold new applications in the areas of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, 92 Weijin Road, Building 24, Nankai District, Tianjin, 300072, P. R. China
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, 92 Weijin Road, Building 24, Nankai District, Tianjin, 300072, P. R. China
| | - Jing Tian
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, 92 Weijin Road, Building 24, Nankai District, Tianjin, 300072, P. R. China
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, 92 Weijin Road, Building 24, Nankai District, Tianjin, 300072, P. R. China
| |
Collapse
|
35
|
Sperry JB, Azuma M, Stone S. Explosive Hazard Identification in Pharmaceutical Process Development: A Novel Screening Method and Workflow for Shipping Potentially Explosive Materials. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeffrey B. Sperry
- Process Chemistry, Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael Azuma
- Process Chemistry, Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Shane Stone
- Process Chemistry, Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
36
|
Schmidt B. The Role of Total Synthesis in Structure Revision and Elucidation of Decanolides (Nonanolides). PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:1-57. [PMID: 33797640 DOI: 10.1007/978-3-030-64853-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ten-membered lactones are commonly observed structures of natural products. They are mostly fungal metabolites, which often act as plant pathogens, but recently ten-membered lactones were identified as pheromones of frogs and termites. Although modern spectroscopic methods are nowadays routinely used to elucidate the structure of natural products, structural assignments of ten-membered lactones often remain incomplete or are surprisingly often erroneous. Most errors concern the absolute configuration. The examples discussed in this chapter demonstrate that enantioselective total synthesis is not only an efficient tool for corroborating or revising a proposed structure, but that the synthesis of different stereoisomers as references for gas chromatographic investigations can be a vital part of the structure elucidation process if only minute amounts of material are available. As a method of outstanding importance for the synthesis of ten-membered lactones olefin metathesis has emerged. Most of the examples discussed herein use one or more olefin metathesis reactions as key steps.
Collapse
Affiliation(s)
- Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Vasudevan N, Aka EC, Barré E, Wimmer E, Cortés-Borda D, Giraudeau P, Farjon J, Rodriguez-Zubiri M, Felpin FX. Development of a continuous flow synthesis of FGIN-1-27 enabled by in-line 19F NMR analyses and optimization algorithms. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00220a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A continuous flow synthesis of FGIN-1-27 has been developed using enabling technologies such as real-time in-line benchtop 19F NMR analysis and an optimization algorithm.
Collapse
Affiliation(s)
- N. Vasudevan
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Ehu C. Aka
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Elvina Barré
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Eric Wimmer
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| | - Daniel Cortés-Borda
- Universidad del Atlántico, Facultad de ciencias básicas, Carrera 30 # 8-49, Puerto Colombia, Atlántico, Colombia
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | | | - François-Xavier Felpin
- Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
38
|
Deng X, Zhou G, Tian J, Srinivasan R. Chemoselective Amide‐Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST) Tianjin University 92 Weijin Road, Building 24, Nankai District Tianjin 300072 P. R. China
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST) Tianjin University 92 Weijin Road, Building 24, Nankai District Tianjin 300072 P. R. China
| | - Jing Tian
- School of Pharmaceutical Science and Technology (SPST) Tianjin University 92 Weijin Road, Building 24, Nankai District Tianjin 300072 P. R. China
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST) Tianjin University 92 Weijin Road, Building 24, Nankai District Tianjin 300072 P. R. China
| |
Collapse
|
39
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
40
|
Allian AD, Shah NP, Ferretti AC, Brown DB, Kolis SP, Sperry JB. Process Safety in the Pharmaceutical Industry—Part I: Thermal and Reaction Hazard Evaluation Processes and Techniques. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ayman D. Allian
- Process Development, One Amgen Center Drive, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Nisha P. Shah
- Process Development, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Antonio C. Ferretti
- Chemical Process Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, New Jersey 07901, United States
| | - Derek B. Brown
- Process Development, One Amgen Center Drive, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Stanley P. Kolis
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jeffrey B. Sperry
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
41
|
Biyani SA, Qi Q, Wu J, Moriuchi Y, Larocque EA, Sintim HO, Thompson DH. Use of High-Throughput Tools for Telescoped Continuous Flow Synthesis of an Alkynylnaphthyridine Anticancer Agent, HSN608. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shruti A. Biyani
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingqing Qi
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jingze Wu
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuta Moriuchi
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Elizabeth A. Larocque
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - David H. Thompson
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
42
|
Kurasaki H, Nagaya A, Kobayashi Y, Matsuda A, Matsumoto M, Morimoto K, Taguri T, Takeuchi H, Handa M, Cary DR, Nishizawa N, Masuya K. Isostearyl Mixed Anhydrides for the Preparation of N-Methylated Peptides Using C-Terminally Unprotected N-Methylamino Acids. Org Lett 2020; 22:8039-8043. [DOI: 10.1021/acs.orglett.0c02984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haruaki Kurasaki
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Akihiro Nagaya
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Yutaka Kobayashi
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Ayumu Matsuda
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Masatoshi Matsumoto
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Koki Morimoto
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Tomonori Taguri
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Hisayuki Takeuchi
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Michiharu Handa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Douglas R. Cary
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Naoki Nishizawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Keiichi Masuya
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
43
|
Noda H, Shibasaki M, Kumagai N. Design, Synthesis, and Application of Multiboron Heterocycle to Direct Amidation Catalyst. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
45
|
Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sebastian P. Green
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
- Department of Chemical Engineering Imperial College London South Kensington Campus, Exhibition Road London SW7 2AZ UK
| | - Katherine M. Wheelhouse
- Chemical Development Product Development & Supply GlaxoSmithKline GSK Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Andrew D. Payne
- Process Safety Clinical Supply Chain GlaxoSmithKline GSK Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Jason P. Hallett
- Department of Chemical Engineering Imperial College London South Kensington Campus, Exhibition Road London SW7 2AZ UK
| | - Philip W. Miller
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
46
|
Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angew Chem Int Ed Engl 2020; 59:15798-15802. [PMID: 32893978 DOI: 10.1002/anie.202007028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Differential scanning calorimetry (DSC) is increasingly used as evidence to support a favourable safety profile of novel chemistry, or to highlight the need for caution. DSC enables preliminary assessment of the thermal hazards of a potentially energetic compound. However, unlike other standard characterisation methods, which have well defined formats for reporting data, the current reporting of DSC results for thermal hazard assessment has shown concerning trends. Around half of all results in 2019 did not include experimental details required to replicate the procedure. Furthermore, analysis for thermal hazard assessment is often only conducted in unsealed crucibles, which could lead to misleading results and dangerously incorrect conclusions. We highlight the specific issues with DSC analysis of hazardous compounds currently in the organic chemistry literature and provide simple "best practice" guidelines which will give chemists confidence in reported DSC results and the conclusions drawn from them.
Collapse
Affiliation(s)
- Sebastian P Green
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.,Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Katherine M Wheelhouse
- Chemical Development, Product Development & Supply, GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Andrew D Payne
- Process Safety, Clinical Supply Chain, GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
47
|
Erny M, Lundqvist M, Rasmussen JH, Ludemann-Hombourger O, Bihel F, Pawlas J. Minimizing HCN in DIC/Oxyma-Mediated Amide Bond-Forming Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marion Erny
- PolyPeptide Group, 7 rue de Boulogne, 67100 Strasbourg, France
- Faculty of Pharmacy, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, UMR7200, CNRS, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Marika Lundqvist
- PolyPeptide Group, Limhamnsvägen 108, PO Box 30089, 20061 Limhamn, Sweden
| | - Jon H. Rasmussen
- PolyPeptide Group, Limhamnsvägen 108, PO Box 30089, 20061 Limhamn, Sweden
| | | | - Frédéric Bihel
- Faculty of Pharmacy, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, UMR7200, CNRS, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Jan Pawlas
- PolyPeptide Group, Limhamnsvägen 108, PO Box 30089, 20061 Limhamn, Sweden
| |
Collapse
|
48
|
Li B, Weisenburger GA, McWilliams JC. Practical Considerations and Examples in Adapting Amidations to Continuous Flow Processing in Early Development. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan Li
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gerald A. Weisenburger
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - J. Christopher McWilliams
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
49
|
Lepage ML, Simhadri C, Liu C, Takaffoli M, Bi L, Crawford B, Milani AS, Wulff JE. A broadly applicable cross-linker for aliphatic polymers containing C-H bonds. Science 2020; 366:875-878. [PMID: 31727835 DOI: 10.1126/science.aay6230] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Addition of molecular cross-links to polymers increases mechanical strength and improves corrosion resistance. However, it remains challenging to install cross-links in low-functionality macromolecules in a well-controlled manner. Typically, high-energy processes are required to generate highly reactive radicals in situ, allowing only limited control over the degree and type of cross-link. We rationally designed a bis-diazirine molecule whose decomposition into carbenes under mild and controllable conditions enables the cross-linking of essentially any organic polymer through double C-H activation. The utility of this molecule as a cross-linker was demonstrated for several diverse polymer substrates (including polypropylene, a low-functionality polymer of long-standing challenge to the field) and in applications including adhesion of low-surface-energy materials and the strengthening of polyethylene fabric.
Collapse
Affiliation(s)
- Mathieu L Lepage
- Department ofChemistry, University of Victoria, Victoria, BC V8W-3V6, Canada
| | | | - Chang Liu
- Department ofChemistry, University of Victoria, Victoria, BC V8W-3V6, Canada
| | - Mahdi Takaffoli
- Materials and Manufacturing Research Institute, University of British Columbia, Kelowna, BC V1V-1V7, Canada
| | - Liting Bi
- Department ofChemistry, University of Victoria, Victoria, BC V8W-3V6, Canada
| | - Bryn Crawford
- Materials and Manufacturing Research Institute, University of British Columbia, Kelowna, BC V1V-1V7, Canada
| | - Abbas S Milani
- Materials and Manufacturing Research Institute, University of British Columbia, Kelowna, BC V1V-1V7, Canada
| | - Jeremy E Wulff
- Department ofChemistry, University of Victoria, Victoria, BC V8W-3V6, Canada.
| |
Collapse
|
50
|
Green S, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev 2020; 24:67-84. [PMID: 31983869 PMCID: PMC6972035 DOI: 10.1021/acs.oprd.9b00422] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Despite their wide use in academia as metal-carbene precursors, diazo compounds are often avoided in industry owing to concerns over their instability, exothermic decomposition, and potential explosive behavior. The stability of sulfonyl azides and other diazo transfer reagents is relatively well understood, but there is little reliable data available for diazo compounds. This work first collates available sensitivity and thermal analysis data for diazo transfer reagents and diazo compounds to act as an accessible reference resource. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and accelerating rate calorimetry (ARC) data for the model donor/acceptor diazo compound ethyl (phenyl)diazoacetate are presented. We also present a rigorous DSC dataset with 43 other diazo compounds, enabling direct comparison to other energetic materials to provide a clear reference work to the academic and industrial chemistry communities. Interestingly, there is a wide range of onset temperatures (T onset) for this series of compounds, which varied between 75 and 160 °C. The thermal stability variation depends on the electronic effect of substituents and the amount of charge delocalization. A statistical model is demonstrated to predict the thermal stability of differently substituted phenyl diazoacetates. A maximum recommended process temperature (T D24) to avoid decomposition is estimated for selected diazo compounds. The average enthalpy of decomposition (ΔH D) for diazo compounds without other energetic functional groups is -102 kJ mol-1. Several diazo transfer reagents are analyzed using the same DSC protocol and found to have higher thermal stability, which is in general agreement with the reported values. For sulfonyl azide reagents, an average ΔH D of -201 kJ mol-1 is observed. High-quality thermal data from ARC experiments shows the initiation of decomposition for ethyl (phenyl)diazoacetate to be 60 °C, compared to that of 100 °C for the common diazo transfer reagent p-acetamidobenzenesulfonyl azide (p-ABSA). The Yoshida correlation is applied to DSC data for each diazo compound to provide an indication of both their impact sensitivity (IS) and explosivity. As a neat substance, none of the diazo compounds tested are predicted to be explosive, but many (particularly donor/acceptor diazo compounds) are predicted to be impact-sensitive. It is therefore recommended that manipulation, agitation, and other processing of neat diazo compounds are conducted with due care to avoid impacts, particularly in large quantities. The full dataset is presented to inform chemists of the nature and magnitude of hazards when using diazo compounds and diazo transfer reagents. Given the demonstrated potential for rapid heat generation and gas evolution, adequate temperature control and cautious addition of reagents that begin a reaction are strongly recommended when conducting reactions with diazo compounds.
Collapse
Affiliation(s)
- Sebastian
P. Green
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Katherine M. Wheelhouse
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Andrew D. Payne
- API Chemistry, Product Development & Supply and Process Safety,
Pilot Plant Operations, GlaxoSmithKline,
GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Philip W. Miller
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|