1
|
Dong L, Wang X, Gou Y, Yu S, Yu Z. Photoredox/HAT-Catalyzed Intramolecular Hydrocyclization of Alkenes toward 2,3-Fused Quinazolinones and Dihydroquinazolinones. Org Lett 2024; 26:8756-8761. [PMID: 39356628 DOI: 10.1021/acs.orglett.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
New photochemical approaches to 2,3-fused quinazolinones and dihydroquinazolinones are disclosed. The intramolecular hydrocyclization proceeds in moderate to excellent yields across diverse alkenes with high regioselectivity and diastereocontrol. Mechanistic studies indicated that the radical cascade processes involve thiophenol acting as single-electron transfer and hydrogen atom transfer reagents. The success of the gram-scale synthesis proves the strategy can be used for practical applications.
Collapse
Affiliation(s)
- Li Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Xiaoqing Wang
- College of Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Yanhui Gou
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Shuo Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Jiang YF, Ouyang WT, Ji HT, Hou JC, Li T, Luo QX, Wu C, Ou LJ, He WM. Phototriggered Self-Catalyzed Phosphorylation of 3,4-Dihydroquinoxalin-2(1 H)-ones with Diarylphosphine Oxides in EtOH. J Org Chem 2024; 89:13970-13977. [PMID: 39298438 DOI: 10.1021/acs.joc.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A highly effective external photocatalyst- and additive-free method for the phosphorylation of 3,4-dihydroquinoxalin-2(1H)-ones to produce phosphorylated dihydroquinoxalin-2(1H)-ones has been reported. A wide variety of phosphorylated products were formed in good to excellent yields. Preliminary mechanistic studies reveal that the phosphorylation process involves an EnT process, a SET process, a HAT process, and a deprotonation process.
Collapse
Affiliation(s)
- Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qing-Xia Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Jiang B, Zhang C, Fan TG, Ran YS, Shen YT, Qu Y, Li YM. Cascade Cyclization of N-Cyanamide Alkenes for the Divergent Synthesis of Azido-, Nitro-, and Alkenyl-Containing Pyrroloquinazolinones. Org Lett 2024; 26:8028-8033. [PMID: 39283295 DOI: 10.1021/acs.orglett.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radical cascade cyclizations of N-cyanamide alkenes have been developed for the divergent synthesis of pyrroloquinazolinones bearing azido, alkenyl, and nitro groups by controlling the reaction conditions. The reaction temperature and the loading of the base play important roles in the different reaction pathways. These reactions are characterized by wide functional group compatibility and mild conditions.
Collapse
Affiliation(s)
- Bo Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Song Ran
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Gao S, Cai M, Wang X, Jiang D, Lin P, Dai L. Metal-free synthesis of 1,1-dimethyl-2,2,2-trifluoroethyl substituted quinazolinones via tandem radical cyclization of quinazolin-4(3 H)-ones with 3,3,3-trifluoro-2,2-dimethylpropanoic acid. Org Biomol Chem 2024; 22:6376-6384. [PMID: 39046342 DOI: 10.1039/d4ob00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A metal-free (NH4)2S2O8-mediated decarboxylative trifluoromethylation reaction of alkenes with 3,3,3-trifluoro-2,2-dimethylpropionic acid has been proposed. This method offers a novel route for the direct synthesis of a series of CMe2CF3-containing quinazolinones from basic chemical raw materials. The reaction mechanism was studied by a radical trapping test and DFT methods, verifying an oxidation-triggered cascade process promoted by the CMe2CF3 radicals. This strategy provides advantages such as high yield, wide substrate compatibility, and high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Dapeng Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Pen Lin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
5
|
Huang J, Ban C, Qin J, Xu J, Gu Y, Wei L, Yuan JM, Huang G. Visible-light promoted radical cascade cyclization of 3-allyl-2-arylquinazolinones for the synthesis of phosphorylated dihydroisoquinolino[1,2- b]quinazolinones. Chem Commun (Camb) 2024; 60:8119-8122. [PMID: 38995155 DOI: 10.1039/d4cc02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel visible-light promoted metal-free radical cascade cyclization reaction has been developed with 3-allyl-2-arylquinazolinones as a new class of radical acceptor. This photocatalytic protocol represents an efficient approach to construct phosphorylated dihydroisoquinolino[1,2-b]quinazolinones featuring mild conditions, broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Caijin Ban
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiangping Qin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yunqiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Liang Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| |
Collapse
|
6
|
Zhang Y, Zhu L, Lu Y, Lei X, Li Y. "One pot" synthesis of quinazolinone-[2,3]-fused polycyclic scaffolds in a three-step reaction sequence. Org Biomol Chem 2024; 22:4720-4726. [PMID: 38775781 DOI: 10.1039/d4ob00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Diverse quinazolinone-[2,3]-fused polycyclic skeletons occupy a prominent position in drug discovery. Even with currently available methods there still remain unmet needs for flexible access to such structures. Herein, we have explored a mild "one pot" procedure for the construction of various quinazolinone-[2,3]-fused polycycles. The procedure involves Pd-catalyzed carbonylation of N-(2-iodophenyl)acetamides, release of the masked terminal amine, and two sequential and spontaneous cyclizations. This generally applicable approach features easy assembly of precursors from readily available starting materials, mild reaction conditions, non-cumbersome operation, and polycyclic diversity.
Collapse
Affiliation(s)
- Yuanmu Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Lingxuan Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| |
Collapse
|
7
|
Pan XY, Sun GX, Huang FP, Qin WJ, Teng QH, Wang K. Photogenerated chlorine radicals activate C(sp3)-H bonds of alkylbenzenes to access quinazolinones. Org Biomol Chem 2024; 22:2968-2973. [PMID: 38529682 DOI: 10.1039/d4ob00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
An Fe-catalyzed visible-light induced condensation of alkylbenzenes with anthranilamides has been developed. Upon irradiation, the trivalent iron complex could generate chlorine radicals, which successfully abstracted the hydrogen of benzylic C-H bonds to form benzyl radicals. And these benzyl radicals were converted into oxygenated products under air conditions, which subsequently reacted with anthranilamides for the synthesis of quinazolinones.
Collapse
Affiliation(s)
- Xin-Yao Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Gui-Xia Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Fang-Ping Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Jian Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Qing-Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Liu L, Wang Q, Li Y, Liu M, Liu B, Li Q, Feng K. Photodriven Radical Perfluoroalkylation-Thiolation of Unactivated Alkenes Enabled by Electron Donor-Acceptor Complex. Org Lett 2024; 26:2271-2275. [PMID: 38457924 DOI: 10.1021/acs.orglett.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.
Collapse
Affiliation(s)
- Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| |
Collapse
|
9
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
10
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
11
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
12
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Vaskevych A, Dekhtyar M, Vovk M. Cyclizations of Alkenyl(Alkynyl)-Functionalized Quinazolinones and their Heteroanalogues: A Powerful Strategy for the Construction of Polyheterocyclic Structures. CHEM REC 2024; 24:e202300255. [PMID: 37830463 DOI: 10.1002/tcr.202300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Quinazolin-4-one, its heteroanalogues, and derivatives represent an outstandingly important class of compounds in modern organic, medicinal, and pharmaceutical chemistry, as these molecular structures are noted for their wide synthetic and pharmacological potential. In the last years, ever-increasing research attention has been paid to quinazolinone derivatives bearing alkenyl and alkynyl substituents on the pyrimidinone nucleus. The original structural combination of synthetically powerful endocyclic amidine (or amidine-related) and exocyclic unsaturated moieties provides a driving force for cyclizations, which offer an efficient toolkit to construct a variety of fused pyrimidine systems with saturated N- and N,S-heterocycles. In this connection, the present review article is mainly aimed at systematic coverage of the progress in using alkenyl(alkynyl)quinazolinones and their heteroanalogues as convenient bifunctional substrates for regioselective annulation of small- and medium-sized heterocyclic nuclei. Much attention is paid to elucidating the structural and electronic effects of reagents on the regio- and stereoselectivity of the cyclizations as well as to clarifying the relevant reaction mechanisms.
Collapse
Affiliation(s)
- Alla Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine
| | - Maryna Dekhtyar
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| | - Mykhailo Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| |
Collapse
|
14
|
Ouyang WT, Ji HT, Jiang J, Wu C, Hou JC, Zhou MH, Lu YH, Ou LJ, He WM. Ferrocene/air double-mediated FeTiO 3-photocatalyzed semi-heterogeneous annulation of quinoxalin-2(1 H)-ones in EtOH/H 2O. Chem Commun (Camb) 2023; 59:14029-14032. [PMID: 37964611 DOI: 10.1039/d3cc04020h] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
With both ferrocene and air as the redox catalysts, for the first time, the low-cost natural ilmenite (FeTiO3) was successfully used for photocatalytic bond formations. Under the assistance of a traceless H-bond, and HCHO as the methylene reagent, a variety of imidazo[1,5-a]quinoxalinones were semi-heterogeneously photosynthesized in high yields with good functional group compatibility.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
15
|
Wu HL, Zhang WK, Zhang CC, Wang LT, Yang WH, Tian WC, Ge GP, Xie LY, Yi R, Wei WT. Chemodivergent Tandem Radical Cyclization of Alkene-Substituted Quinazolinones: Rapid Access to Mono- and Di-Alkylated Ring-Fused Quinazolinones. Chemistry 2023; 29:e202301390. [PMID: 37280159 DOI: 10.1002/chem.202301390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Chemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp3 )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time. Mechanistic investigations show that the mono-alkylated ring-fused quinazolinones is constructed by the key process of 1,2-hydrogen shift, whereas the di-alkylated ring-fused quinazolinones is mainly achieved through crucial steps of resonance and proton transfer. This protocol is the first example of remote second alkylation on the aromatic ring via α-C(sp3 )-H functionalization and difunctionalization achieved by association of two unsaturated bonds in radical cyclization.
Collapse
Affiliation(s)
- Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei-Kang Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, China
| | - Rongnan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
16
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
17
|
Firuz ME, Rajai-Daryasarei S, Rominger F, Biglari A, Balalaie S. Mn-Mediated Direct Regioselective C-H Trifluoromethylation of Imidazopyridines and Quinoxalines. J Org Chem 2023. [PMID: 37471701 DOI: 10.1021/acs.joc.3c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A simple and highly efficient strategy has been developed for direct C-H trifluoromethylation at C-3 of imidazopyridines and C-8 of quinoxalines with readily available Langlois reagent through KMnO4/AcOH system. This protocol showed broad substrate scope and afforded moderate-to-excellent yields of both products. It is the first report that the functionalization of quinoxalines occurred regioselectively at the C-8 position of quinoxalines. Mechanistic studies revealed that reaction proceeded via radical pathway.
Collapse
Affiliation(s)
- Mahdieh Esi Firuz
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg 69120, Germany
| | - Abbas Biglari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
18
|
Dang-Nguyen A, Legaspi KC, McCarty CT, Smith DK, Gustafson J. A Light-Promoted Innate Trifluoromethylation of Pyridones and Related N-Heteroarenes. Org Lett 2023. [PMID: 37377204 DOI: 10.1021/acs.orglett.3c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We report a practical, light-mediated perfluoroalkylation using Langlois' reagent (sodium trifluoromethylsulfinate) that proceeds in the absence of any photocatalyst or additives. This method has allowed for the facile functionalization of pyridones and related N-heteroarenes such as azaindole. This protocol is operationally simple, uses readily available materials, and is tolerable for electron-neutral and -rich functional pyridones. Cyclic voltammetry was utilized as a mechanistic probe, and preliminary data suggest the reaction may involve an electrophilic radical mechanism.
Collapse
Affiliation(s)
- Ashley Dang-Nguyen
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Kristine C Legaspi
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Connor T McCarty
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Jeffrey Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
19
|
Ghouse AM, Akondi SM. Dicarbofunctionalization of unactivated alkenes via organo-photoredox catalysis in water: access to cyanoalkylated fused quinazolinones. Org Biomol Chem 2023. [PMID: 37334961 DOI: 10.1039/d3ob00716b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A visible light-induced C-C bond cleavage/addition/cyclization cascade of oxime esters and unactivated alkenes has been developed using water as the solvent. This green protocol offers an easy access to medicinally valuable cyanoalkylated quinazolinones. Mild reaction conditions, functional group tolerance and late-stage functionalization of complex molecules are the important features of this transformation.
Collapse
Affiliation(s)
- Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Chen X, Jin L, Wang Y, Yang H, Le Z, Xie Z. Synthesis of fused quinazolinones via visible light induced cyclization of 2-aminobenzaldehydes with tetrahydroisoquinolines. Org Biomol Chem 2023; 21:3863-3870. [PMID: 37093566 DOI: 10.1039/d3ob00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. Moreover, using 2-aminophenone as the substrate and under similar reaction conditions, the same product was obtained when a carbon was removed. The bio-active naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The success of the reaction on the gram-scale and the further transformation of the substrate demonstrated the synthetic practicability of this reaction.
Collapse
Affiliation(s)
- Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yihong Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Hong Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
21
|
Wang Z, Zhao Y, Chen J, Chen M, Li X, Jiang T, Liu F, Yang X, Sun Y, Zhu Y. One-Pot Synthesis of Isoxazole-Fused Tricyclic Quinazoline Alkaloid Derivatives via Intramolecular Cycloaddition of Propargyl-Substituted Methyl Azaarenes under Metal-Free Conditions. Molecules 2023; 28:molecules28062787. [PMID: 36985760 PMCID: PMC10057414 DOI: 10.3390/molecules28062787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuhan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Mengyao Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuehan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ting Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xi Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
22
|
Yang Z, Wu X, Zhang J, Yu JT, Pan C. Metal-Free Photoinduced Hydrocyclization of Unactivated Alkenes toward Ring-Fused Quinazolin-4(3 H)-ones via Intermolecular Hydrogen Atom Transfer. Org Lett 2023; 25:1683-1688. [PMID: 36883803 DOI: 10.1021/acs.orglett.3c00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A visible-light-induced hydrocyclization of unactivated alkenes was developed using 3CzClIPN as the photocatalyst to generate substituted α-methyldeoxyvasicinones and α-methylmackinazolinones in moderate to good yields. An intermolecular hydrogen atom transfer with THF as the hydrogen source was involved. Mechanism studies indicated that the intramolecular addition of the in situ formed aminal radical to the unactivated alkene generated the polycyclic quinazolinone.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.,School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
23
|
Wan X, Wang D, Huang H, Mao GJ, Deng GJ. Radical-mediated photoredox hydroarylation with thiosulfonate. Chem Commun (Camb) 2023; 59:2767-2770. [PMID: 36786060 DOI: 10.1039/d2cc05948g] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report a novel visible light-induced photocatalytic system that enables intramolecular hydroarylation of unactivated alkenes. Thiosulfonate compounds were found to be the key radical precursor that mediates the Minisci-type intramolecular cyclization reaction. Under the optimal reaction conditions, a wide range of pyridyquinazolinone and pyrroloquinazolinone products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Xiaoyuan Wan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422100, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
He X, Chen Z, Zhu X, Liu H, Chen Y, Sun Z, Chu W. Photoredox-catalyzed trifluoromethylation of 2 H-indazoles using TT-CF 3+OTf - in ionic liquids. Org Biomol Chem 2023; 21:1814-1820. [PMID: 36748884 DOI: 10.1039/d3ob00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A protocol for metal and oxidant free photoredox catalyzed trifluoromethylation of 2H-indazoles was developed by using Eosin Y as the photocatalyst and recoverable ionic liquids as the solvents. A series of trifluoromethylated products were obtained in moderate to good yields in this protocol under mild conditions. The reaction proceeded via a free-radical mechanism with a broad substrate range, excellent regioselectivity, and good functional group tolerance. Furthermore, the utility of this protocol was demonstrated by the synthesis of a highly selective ligand for estrogen receptor beta (ERβ) and the drug granisetron. The protocol provides a mild and environmentally friendly solution for trifluoromethylation reaction.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhicheng Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xianghui Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Hao Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanjie Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
25
|
Gui QW, Teng F, Yu P, Wu YF, Nong ZB, Yang LX, Chen X, Yang TB, He WM. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Yuan JW, Zhang MY, Liu Y, Hu WY, Yang LR, Xiao YM, Diao XQ, Zhang SR, Mao J. Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF 2-substituted ring-fused quinazolinones. Org Biomol Chem 2022; 20:9722-9733. [PMID: 36440712 DOI: 10.1039/d2ob01904c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei-Yue Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Qiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| |
Collapse
|
27
|
Ma R, Ren Y, Deng Z, Wang KH, Wang J, Huang D, Hu Y, Lv X. Visible Light Promotes Cascade Trifluoromethylation/Cyclization, Leading to Trifluoromethylated Polycyclic Quinazolinones, Benzimidazoles and Indoles. Molecules 2022; 27:molecules27238389. [PMID: 36500485 PMCID: PMC9737949 DOI: 10.3390/molecules27238389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Efficient visible-light-induced radical cascade trifluoromethylation/cyclization of inactivated alkenes with CF3Br, which is a nonhygroscopic, noncorrosive, cheap and industrially abundant chemical, was developed in this work, producing trifluoromethyl polycyclic quinazolinones, benzimidazoles and indoles under mild reaction conditions. The method features wide functional group compatibility and a broad substrate scope, offering a facile strategy to pharmaceutically produce valuable CF3-containing polycyclic aza-heterocycles.
Collapse
Affiliation(s)
- Ransong Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| | - Xiaobo Lv
- Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321, China
| |
Collapse
|
28
|
Guha S, Prabakar T, Sen S. Blue Light-Emitting Diode-Induced Direct C-H Functionalization of 1,4-Quinones with Aryl and Alkyl Boronic Acids. J Org Chem 2022; 87:15421-15434. [PMID: 36322678 DOI: 10.1021/acs.joc.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A direct functionalization of numerous 1,4-quinones with various aryl boronic acids is reported under blue light-emitting diodes (LEDs). This reaction occurs at room temperature in an open flask without any catalysts, base, and oxidants in acetonitrile (ACN) and is scalable in grams. With diverse 1,4-quinones like 1,4-benzo-, naphtho-, anthra-, and 4-bromonaphthoquinones as substrates, facile cross coupling reactions occur with aryl and alkyl boronic acids without assistance from any photocatalysts. 2-Alkylated cyclohexene-1,4-diones were obtained when the 1,4-quinones were reacted with alkyl boronic acids under standard reaction conditions. However, slight warming of the reaction mixture afforded the desired alkylated 1,4-quinones. The reaction is believed to proceed through the blue LED-induced radical formation of the aryl rings assisted by the 1,4-quinones.
Collapse
Affiliation(s)
- Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Tejas Prabakar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| |
Collapse
|
29
|
Sun B, Zhuang X, Yin J, Zhang K, Zhao H, Jin C. Photoredox-Catalyzed Tandem Radical Cyclization/Hydroxylation for the Synthesis of 4-Hydroxyalkyl-3,3-difluoro-γ-lactams. J Org Chem 2022; 87:14177-14185. [PMID: 36173277 DOI: 10.1021/acs.joc.2c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The photoredox-catalyzed radical difluoroalkylation/cyclization/hydroxylation cascade reaction of various 2-bromo-2,2-difluoro-N-arylacetamides containing unactivated alkene moieties has been developed, providing green and efficient access to various 4-hydroxyalkyl-3,3-difluoro-γ-lactams. Control experiments confirmed a radical process, and inexpensive air acted as the sole hydroxy resource. In addition, the highlights of this protocol include good tolerance for a variety functional groups, lower photocatalyst loading, and ease of operation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jieli Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haiyun Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
30
|
Zhang Y, Ni Q, Pan B, Jiang L, Qiu L. Development of sterically hindered SPOs and enantioselective Ni−Al bimetallic catalyzed C−H cyclization of 4-oxoquinazolines with tethered alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Xu R, Wang Z, Zheng Q, Patil P, Dömling A. A Bifurcated Multicomponent Synthesis Approach to Polycyclic Quinazolinones. J Org Chem 2022; 87:13023-13033. [PMID: 36095044 PMCID: PMC9552225 DOI: 10.1021/acs.joc.2c01561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The rapid synthesis of diverse substituted polycyclic
quinazolinones
was achieved by two orthogonal Ugi four-component reaction (Ugi-4CR)-based
protocols: the first two-step approach via an ammonia-Ugi-4CR followed
by palladium-catalyzed annulation; in the second approach, cyanamide
was used unprecedently as an amine component in Ugi-4CR followed by
an AIBN/tributyltin hydride-induced radical reaction. Like no other
method, MCR and cyclization could efficiently construct many biologically
interesting compounds with tailored properties in very few steps.
Collapse
Affiliation(s)
- Ruixue Xu
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Zefeng Wang
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Qiang Zheng
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Pravin Patil
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| |
Collapse
|
32
|
Mu B, Zhang L, Lv G, Chen K, Wang T, Chen J, Huang T, Guo L, Yang Z, Wu Y. Access to Phosphine-Containing Quinazolinones Enabled by Photo-Induced Radical Phosphorylation/Cyclization of Unactivated Alkenes. J Org Chem 2022; 87:10146-10157. [PMID: 35830565 DOI: 10.1021/acs.joc.2c01092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mild and facile photo-induced cascade radical addition/cyclization of unactivated alkenes has been reported, through which a variety of biologically valuable phosphine-containing quinazolinones could be obtained in moderate to good yields. The protocol was characterized by mild conditions, broad substrate scope, and high atomic economy.
Collapse
Affiliation(s)
- Binsong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Le Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guanghui Lv
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, No. 32 South Renmin Road, Shiyan, Huibei 442000, China
| | - Kang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Zhang X, Wang T, Cui S, Li L, Zheng Z, Mi C, Lin B, Ren X, He X. Design of Photosensitive Cobalt Complex Intermediates and Their Application in the Green Syntheses of Molecules Containing the Quinazolin-4(3 H)-imine Scaffold. J Org Chem 2022; 87:8303-8315. [PMID: 35709489 DOI: 10.1021/acs.joc.1c02987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt/photoredox cooperative catalysis is a well-explored technology for visible-light photoredox catalysis. Recently, the photosensitivity of Co(II) complexes in homogeneous catalysis has aroused the interest of scientists. In this study, photosensitive Co(II) complex intermediates were designed to develop new synthetic methods. These intermediates, consisting of Co(II) and two substrate molecules, bind to O2 and absorb visible light over a wide spectral range, triggering in situ oxidative decarboxylation to produce molecules containing the quinazolin-4(3H)-imine scaffold. These reactions employed glyoxylic acid and ketoacids as new building blocks, and good to excellent yields of the corresponding products were obtained under mild reaction conditions using green and inexpensive reagents and solvents. These results are of importance since the design of Co-based photosensitive intermediates will aid in establishing novel methods for harnessing visible light and hence lead to innovation in organic syntheses.
Collapse
Affiliation(s)
- Xianwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Tianzhao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shisheng Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Lei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Chunlai Mi
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
34
|
Li P, Yang X, Liu J, Zhang Y, Wang L, Gao Y. Photo‐driven Radical Addition/Cyclization of Biaryl Vinyl Ketones with CF3SO2Na and ArCF2CO2K without an External Photocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinhua Li
- Huaibei Normal University Department of Chemistry Dongshan Road 235000 Huaibei CHINA
| | - Xingyu Yang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yicheng Zhang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Lei Wang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Department of chemistry CHINA
| |
Collapse
|
35
|
Moreira NM, dos Santos JRN, Correa A. Greener Synthesis of Pyrroloquinazoline Derivatives: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natália Menezes Moreira
- Federal University of Sao Carlos: Universidade Federal de Sao Carlos Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Jhonathan Renner Nunes dos Santos
- Federal University of Sao Carlos Sciences and Technology Centre: Universidade Federal de Sao Carlos Centro de Ciencias Exatas e de Tecnologia Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Arlene Correa
- Federal University of São Carlos Chemistry Via Washington Luis km 235 13565-905 São Carlos BRAZIL
| |
Collapse
|
36
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
37
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c00580
expr 911091169 + 878873796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
38
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022; 24:2613-2618. [PMID: 35377649 DOI: 10.1021/acs.orglett.2c00580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A rhodium-catalyzed cyclization of azobenzenes and vinylene carbonate via C-H bond activation to construct indazolo[2,3-a]quinolines has been developed. This protocol offers an efficient method for synthesis of the titled products in good yields with broad functional group tolerance. In this reaction, three C-C bonds and C-N bond are formed in one pot, and vinylene carbonate (VC) acts as C1 and C2 synthons as well as "vinylene transfer" agent and acylation reagent in the construction of target-fused heterocycles. Moreover, the products exhibit favorable fluorescence properties, which indicate their potential application as fluorescent materials and biosensors.
Collapse
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
39
|
Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
41
|
Wang X, Liu R, Zhang S, Zhou T, Zhao X, Lu K. Visible-light-induced Radical Cyclization of N-allylbenzamide with [Bis(difluoroacetoxy)iodo]benzene to Difluoromethylated Dihydroisoquinolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Zhuang X, Ling L, Wang Y, Li B, Sun B, Su W, Jin C. Photoinduced Cascade C-N/C═O Bond Formation from Bromodifluoroalkyl Reagents, Amines, and H 2O via a Triple-Cleavage Process. Org Lett 2022; 24:1668-1672. [PMID: 35191309 DOI: 10.1021/acs.orglett.2c00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A green, sustainable, and straightforward method for the synthesis of unsymmetrical oxalamides via photoinduced C-N/C═O bond formation of bromodifluoroacetamide, amine, and H2O through a triple-cleavage process has been developed. In addition, this approach also provides access to the known bioactive compounds, and a feasible reaction mechanism is proposed. Moreover, the advantages of this transformation, including mild reaction conditions, a broad substrate scope, and operational simplicity, make this protocol attractive for further applications.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lan Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingqian Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
43
|
Liu H, Yang Z, Yu JT, Pan C. Radical Polychloromethylation/Cyclization of Unactivated Alkenes: Access to Polychloromethyl‑Substituted Ring‐Fused Quinazolinones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Liu
- Changzhou University - Wujin Campus CHINA
| | | | | | | |
Collapse
|
44
|
Gui QW, Teng F, Yang H, Xun C, Huang WJ, Lu ZQ, Zhu MX, Ouyang WT, He WM. Visible-Light Photosynthesis of CHF 2 /CClF 2 /CBrF 2 -Substituted Ring-fused Quinazolinones in Dimethyl Carbonate. Chem Asian J 2022; 17:e202101139. [PMID: 34837338 DOI: 10.1002/asia.202101139] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Indexed: 12/13/2022]
Abstract
With eco-friendly and sustainable CO2 -derived dimethyl carbonate as the sole solvent, the visible-light-induced cascade radical reactions have been established as a green and efficient tool for constructing various CHF2 /CClF2 /CBrF2 -substituted ring-fused quinazolinones.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Fan Teng
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Hao Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Changping Xun
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Jie Huang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zi-Qin Lu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Meng-Xue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
45
|
Ouyang YN, Yue X, Peng J, Zhu J, Shen Q, Li W. Organic-acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Org Biomol Chem 2022; 20:6619-6629. [DOI: 10.1039/d2ob01187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free method for the Minisci-type arylation of heterocycles with aryl acyl peroxides has been reported. This strategy enables the rapid and simple synthesis of a series of Minisci-type adducts...
Collapse
|
46
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
47
|
Zhu Y, Huang HY, He YQ, Wang M, Wang XY, Song XR, Mao ZJ, Tian WF, Xiao Q. Visible-light enabled photochemical reduction of 1,2-dicarbonyl compounds by Hünig's base. Org Chem Front 2022. [DOI: 10.1039/d1qo01841h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light enabled, chemoselective photoreduction of 1,2-dicarbonyl compounds by using Hünig's base as reductant is reported.
Collapse
Affiliation(s)
- Yao Zhu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Hai-Yang Huang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zhi-Jie Mao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
48
|
Sun B, Tian H, Ni Z, Huang P, Ding H, Li B, Jin C, Wu C, Shen RP. Photocatalyst-, metal- and additive-free, regioselective radical cascade sulfonylation/cyclization of benzimidazoles derivatives with sulfonyl chlorides induced by visible light. Org Chem Front 2022. [DOI: 10.1039/d2qo00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an environmental and practical protocol for the visible-light-triggered regioselective radical cascade sulfonylation/cyclization of unactivated alkenes towards synthesis of polycyclic benzimidazoles containing sulfone group has been developed. Notably, the control...
Collapse
|
49
|
Liu H, Yang Z, Huang G, Yu JT, Pan C. Cyanomethylative cyclization of unactivated alkenes with nitriles for the synthesis of cyano-containing ring-fused quinazolin-4(3 H)-ones. NEW J CHEM 2022. [DOI: 10.1039/d1nj05001j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of cyano-containing pyrrolo- and piperidino-quinazolinones was developed using alkyl nitriles through radical cascade addition/cyclization under metal-free conditions.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
50
|
Sun B, Ding H, Tian H, Huang P, Jin C, Wu C, Shen R. Photo‐Triggered Self‐Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hai‐Xia Tian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Pan‐Yi Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chun‐Lei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| | - Run‐Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| |
Collapse
|