1
|
Ruiz‐Molina A, Pech‐Puch D, Millán RE, Ageitos L, Villegas‐Hernández H, Pachón J, Pérez Sestelo J, Sánchez‐Céspedes J, Rodríguez J, Jiménez C. Uncovering the Potent Antiviral Activity of the Sesterterpenoids from the Sponge Ircinia Felix Against Human Adenoviruses: from the Natural Source to the Total Synthesis. Chemistry 2024; 30:e202401844. [PMID: 39301783 PMCID: PMC11590176 DOI: 10.1002/chem.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Human Adenovirus (HAdV) infections in immunocompromised patients can result in disseminated diseases with high morbidity and mortality rates due to the absence of available treatments for these infections. The sponge Ircinia felix was selected for the significant anti-HAdV activity displayed by its organic extracts. Its chemical analysis yielded three novel sesterterpene lactams, ircinialactams J-L, along with three known sesterterpene furans which structures were established by a deep spectrometric analysis. Ircinialactam J displayed significant antiviral activity against HAdV without significant cytotoxicity, showing an effectiveness 11 times greater than that of the standard treatment, cidofovir®. Comparison of the antiviral evaluation results of the isolated compounds allowed us to deduce some structure-activity relationships. Mechanistic assays suggest that ircinialactam J targets an early step of the HAdV replicative cycle before HAdV genome reaches the nucleus of the host cell. The first total synthesis of ircinialactam J was also accomplished to prove the structure and to provide access to analogues. Key steps are a regio- and stereoselective construction of the trisubstituted Z-olefin at Δ7 by iron-catalyzed carbometallation of a homopropargylic alcohol, a stereoselective methylation to generate the stereogenic center at C18, and the formation of the (Z)-Δ20 by stereoselective aldol condensation to introduce the tetronic acid unit. Ircinialactam J is a promising chemical lead to new potent antiviral drugs against HAdV infections.
Collapse
Affiliation(s)
- Ana Ruiz‐Molina
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y ParasitologíaInstituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
| | - Dawrin Pech‐Puch
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
- Departamento de Biología MarinaUniversidad Autónoma de Yucatán (UADY), Carretera Mérida-Xmatkuilkm. 15.5, A.P. 4–116 ItzimnáMéridaCP 97100Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida (ENES Mérida)Universidad Nacional Autónoma de México (UNAM)Carretera Mérida-Tetiz, km 4.5Tablaje, Catastral No. 6998, Ucú CP97357Mexico
| | - Ramón E. Millán
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Harold Villegas‐Hernández
- Departamento de Biología MarinaUniversidad Autónoma de Yucatán (UADY), Carretera Mérida-Xmatkuilkm. 15.5, A.P. 4–116 ItzimnáMéridaCP 97100Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida (ENES Mérida)Universidad Nacional Autónoma de México (UNAM)Carretera Mérida-Tetiz, km 4.5Tablaje, Catastral No. 6998, Ucú CP97357Mexico
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de Sevilla41009SevillaSpain
| | - José Pérez Sestelo
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Javier Sánchez‐Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y ParasitologíaInstituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
- CIBERINFEC, ISCIII - CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| |
Collapse
|
2
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
3
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
4
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
5
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
6
|
Semenov VA, Krivdin LB. Computational NMR of natural products. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Anti-Proliferative Potential of Secondary Metabolites from the Marine Sponge Theonella sp.: Moving from Correlation toward Causation. Metabolites 2021; 11:metabo11080532. [PMID: 34436473 PMCID: PMC8400523 DOI: 10.3390/metabo11080532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
Marine sponges have been recognized as a rich source of potential anti-proliferative metabolites. Currently, there are two sponge-derived anti-cancer agents (a macrolide and a nucleoside) isolated from the Porifera phylum, suggesting the great potential of this sponge as a rich source for anti-neoplastic agents. To search for more bioactive metabolites from this phylum, we examined the EtOAc extract of Theonella sp. sponge. We isolated seven compounds (1–7), including four 4-methylene sterols (1–4), two nucleosides (5 and 6), and one macrolide (7). Among them, theonellasterol L (1) was identified for the first time, while 5′-O-acetyl-2′-deoxyuridine (5) and 5′-O-acetylthymidine (6) were the first identified deoxyuridine and thymidine derivatives from the sponge Theonella sp. These structures were elucidated based on their spectroscopic data. The anti-proliferation activity of compounds 1–7 against the MCF-7, MDA-MB-231, T-47D, HCT-116, DLD-1, K562, and Molt 4 cancer cell lines was determined. The results indicated that the 14-/15-oxygenated moiety played an important role in the antiproliferative activity and the macrolide derivatives dominated the anti-proliferative effect of the sponge Theonella sp. The in silico analysis, using a chemical global positioning system for natural products (ChemGPS-NP), indicated an anti-proliferative mode of actions (MOA) suggesting the potential applications of the isolated active metabolites as anti-proliferative agents.
Collapse
|
8
|
Zhou YF, Hu K, Wang F, Tang JW, Zhang L, Sun HD, Cai XH, Puno PT. 3-Hydroxy-4-methyldecanoic Acid-Containing Cyclotetradepsipeptides from an Endolichenic Beauveria sp. JOURNAL OF NATURAL PRODUCTS 2021; 84:1244-1253. [PMID: 33754723 DOI: 10.1021/acs.jnatprod.0c01305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation of an endolichenic Beauveria sp. led to the discovery of seven new cyclotetradepsipeptides, beauveamides A-G (2-8), along with the known beauverolide Ka (1). All incorporate a 3-hydroxy-4-methyldecanoic acid (HMDA) moiety in their structures. Their configuration was determined through Marfey's, J-based configuration analysis, and NMR computational methods, representing the first time that the stereostructures of HMDA-moiety-containing cyclotetradepsipeptides have been established. Compounds 1 and 2 exhibited protecting effects on HEI-OC1 cells at 10 μM, while 1, 4, and 5 could stimulate glucose uptake in cultured rat L6 myoblasts at 50 μM. Compound 1 showed dose-dependent activity in both L6 myoblasts and myotubes.
Collapse
Affiliation(s)
- Yuan-Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, People's Republic of China
| |
Collapse
|
9
|
Elissawy AM, Soleiman Dehkordi E, Mehdinezhad N, Ashour ML, Mohammadi Pour P. Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules 2021; 11:258. [PMID: 33578987 PMCID: PMC7916819 DOI: 10.3390/biom11020258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, is an important strive, due to lack of knowledge on traditional experiential and ethnopharmacology investigations. In this report, a comprehensive survey of demospongian bioactive alkaloids in the range 1987-2020 had been performed with a special emphasis on the potent cytotoxic activity. Different resources and databases had been investigated, including Scifinder (database for the chemical literature) CAS (Chemical Abstract Service) search, web of science, Marin Lit (marine natural products research) database. More than 230 representatives of different classes of alkaloids had been reviewed and classified, different genera belonging to the phylum porifera had been shown to be a prolific source of alkaloidal molecules, including Agelas sp., Suberea sp., Mycale sp., Haliclona sp., Epipolasis sp., Monanchora sp., Crambe sp., Reniera sp., and Xestospongia sp., among others. The sufficient production of alkaloids derived from sponges is a prosperous approach that requires more attention in future studies to consider the constraints regarding the supply of drugs, attained from marine organisms.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Ebrahim Soleiman Dehkordi
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord 88157-13471, Iran;
| | - Negin Mehdinezhad
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| |
Collapse
|
10
|
Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed Pharmacother 2020; 134:111091. [PMID: 33341044 DOI: 10.1016/j.biopha.2020.111091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
The marine environment is an enormous source of marine-derived natural products (MNPs), and future investigation into anticancer drug discovery. Current progress in anticancer drugs offers a rise in isolation and clinical validation of numerous innovative developments and advances in anticancer therapy. However, only a limited number of FDA-approved marine-derived anticancer drugs are available due to several challenges and limitations highlighted here. The use of chitosan in developing marine-derived drugs is promising in the nanotech sector projected for a prolific anticancer drug delivery system (DDS). The cGAS-STING-mediated immune signaling pathway is crucial, which has not been significantly investigated in anticancer therapy and needs further attention. Additionally, a small range of anticancer mediators is currently involved in regulating various JAK/STAT signaling pathways, such as immunity, cell death, and tumor formation. This review addressed critical features associated with MNPs, origin, and development of anticancer drugs. Moreover, recent advances in the nanotech delivery of anticancer drugs and understanding into cancer immunity are detailed for improved human health.
Collapse
|
11
|
Krivdin LB. Computational 1 H NMR: Part 3. Biochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:15-30. [PMID: 31286566 DOI: 10.1002/mrc.4895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This is the third and the last part of three closely interrelated reviews dealing with computation of 1 H nuclear magnetic resonance chemical shifts and 1 H-1 H spin-spin coupling constants. Present review deals with the computation of these parameters in biologically active natural products, carbohydrates, and other molecules of biological origin focusing on stereochemical applications of computational 1 H nuclear magnetic resonance to these objects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
- Department of Chemistry, Angarsk State Technical University, Angarsk, Russia
| |
Collapse
|
12
|
Hanif N, Murni A, Tanaka C, Tanaka J. Marine Natural Products from Indonesian Waters. Mar Drugs 2019; 17:md17060364. [PMID: 31248122 PMCID: PMC6627775 DOI: 10.3390/md17060364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Natural products are primal and have been a driver in the evolution of organic chemistry and ultimately in science. The chemical structures obtained from marine organisms are diverse, reflecting biodiversity of genes, species and ecosystems. Biodiversity is an extraordinary feature of life and provides benefits to humanity while promoting the importance of environment conservation. This review covers the literature on marine natural products (MNPs) discovered in Indonesian waters published from January 1970 to December 2017, and includes 732 original MNPs, 4 structures isolated for the first time but known to be synthetic entities, 34 structural revisions, 9 artifacts, and 4 proposed MNPs. Indonesian MNPs were found in 270 papers from 94 species, 106 genera, 64 families, 32 orders, 14 classes, 10 phyla, and 5 kingdoms. The emphasis is placed on the structures of organic molecules (original and revised), relevant biological activities, structure elucidation, chemical ecology aspects, biosynthesis, and bioorganic studies. Through the synthesis of past and future data, huge and partly undescribed biodiversity of marine tropical invertebrates and their importance for crucial societal benefits should greatly be appreciated.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia.
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor 16128, Indonesia.
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
13
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
14
|
Tarazona G, Fernández R, Cruz PG, Pérez M, Rodríguez J, Jiménez C, Cuevas C. Combining JBCA and Marfey's methodology to determine the absolute configuration of threonines: the case of gunungamide A, a new cyclic depsipeptide containing chloropyrrole from the sponge Discodermia sp. Org Chem Front 2019. [DOI: 10.1039/c8qo00961a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
JBCA and Marfey's allowed us to distinguish threonines diasteroisomers.
Collapse
Affiliation(s)
- Guillermo Tarazona
- Natural Products Department
- PharmaMar S.A
- Pol. Ind. La Mina Norte
- 28770 Colmenar Viejo (Madrid)
- Spain
| | - Rogelio Fernández
- Natural Products Department
- PharmaMar S.A
- Pol. Ind. La Mina Norte
- 28770 Colmenar Viejo (Madrid)
- Spain
| | - Patricia G. Cruz
- Natural Products Department
- PharmaMar S.A
- Pol. Ind. La Mina Norte
- 28770 Colmenar Viejo (Madrid)
- Spain
| | - Marta Pérez
- Natural Products Department
- PharmaMar S.A
- Pol. Ind. La Mina Norte
- 28770 Colmenar Viejo (Madrid)
- Spain
| | - Jaime Rodríguez
- Departamento de Química. Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña. A Coruña E-15071
- Spain
| | - Carlos Jiménez
- Departamento de Química. Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña. A Coruña E-15071
- Spain
| | - Carmen Cuevas
- Natural Products Department
- PharmaMar S.A
- Pol. Ind. La Mina Norte
- 28770 Colmenar Viejo (Madrid)
- Spain
| |
Collapse
|
15
|
Li J, Tang H, Kurtán T, Mándi A, Zhuang CL, Su L, Zheng GL, Zhang W. Swinhoeisterols from the South China Sea Sponge Theonella swinhoei. JOURNAL OF NATURAL PRODUCTS 2018; 81:1645-1650. [PMID: 29989811 DOI: 10.1021/acs.jnatprod.8b00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Swinhoeisterols C-F (1-4), four new steroids having a rearranged 6/6/5/7 ring system, were isolated from the Xisha sponge Theonella swinhoei, together with the known analogue swinhoeisterol A (5). Their structures were determined based on spectroscopic analysis, TDDFT-ECD and optical rotation calculations, and biogenetic correlations. In an in vitro assay, compound 1 showed an inhibitory effect on (h)p300 with an IC50 value of 8.8 μM, whereas compounds 2-4 were not active.
Collapse
Affiliation(s)
- Jiao Li
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Hua Tang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Chun-Lin Zhuang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Li Su
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Gui-Liang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery , Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , 1665 Kong-Jiang Road , Shanghai 200092 , People's Republic of China
| | - Wen Zhang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| |
Collapse
|
16
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hitorin A from Chloranthus japonicus.
Collapse
|