1
|
Zhang G, Teng X, Zhang D, Tan W, Xu B, Wang S, Li X, Gao P, Chen F. Merging halogen atom transfer, ring-expansion and oxidation by electron-rich arenediazonium salts: modular assembly of cyclohexenone derivatives. Chem Commun (Camb) 2025; 61:3139-3142. [PMID: 39868595 DOI: 10.1039/d4cc06001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As fundamental structural scaffolds in numerous natural products and pharmaceutical molecules, the construction of cyclohexenone architectures has remained a pivotal focus in organic chemistry. However, established strategies to synthesize cyclohexenone derivatives via Dowd-Beckwith ring-expansion reaction invariably involve the use of transition metals and photoirradiation. Herein, we present a novel transition-metal- and photoirradiation-free pathway to access such structures from α-iodomethyl β-keto esters with electron-rich arenediazonium salts as inexpensive radical initiators and oxidants under mild reaction conditions. The unique aspect of this reactivity is the integration of halogen atom transfer, ring-expansion, and oxidation in one-pot. Further investigation reveals that this method is applicable for modifying complex biologically active molecules, such as epiandrosterone derivatives.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Xiaowen Teng
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China.
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China.
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
2
|
Indurmuddam RR, Huang PC, Hong BC, Chien SY. Visible-Light-Photocatalyzed Self-Cyclopropanation Reactions of Dibenzoylmethanes for the Synthesis of Cyclopropanes. Org Lett 2024; 26:5752-5757. [PMID: 38949643 DOI: 10.1021/acs.orglett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A new self-cyclopropanation of 1,3-diphenylpropane-1,3-dione, leading to tetrasubstituted cyclopropane containing three contiguous stereogenic centers with high stereoselectivity, has been achieved through violet-light-emitting diode-irradiated photocatalysis, featuring both cycloaddition and a distinctive rearrangement. Diverging from conventional cyclopropanation pathways, this reaction yields a tetrasubstituted cyclopropane through unprecedented rearrangement and cascade reactions.
Collapse
Affiliation(s)
| | - Pei-Chi Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan ROC
| |
Collapse
|
3
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
4
|
Hellwig PS, Bartz RH, Santos RRSA, Guedes JS, Silva MS, Lenardão EJ, Perin G. Telescoping Synthesis of 4-Organyl-5-(organylselanyl)thiazol-2-amines Promoted by Ultrasound. Chempluschem 2024; 89:e202300690. [PMID: 38426670 DOI: 10.1002/cplu.202300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
In this work, we describe the synthesis of new 4-organyl-5-(organylselanyl)thiazol-2-amine hybrids through a one-pot two-step protocol. The transition metal-free method involves the use of ultrasound as an alternative energy source and Oxone® as oxidant. To obtain the products, a telescoping approach was used, in which 4-organylthiazol-2-amines were firstly prepared under ultrasonic irradiation, followed by the addition of diorganyl diselenides and Oxone®. Thus, 16 compounds were prepared, with yields ranging from 61 % to 98 %, using 2-bromoacetophenone derivatives and diorganyl diselenides as easily available starting materials.
Collapse
Affiliation(s)
- Paola S Hellwig
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Rafaela R S A Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Jonatan S Guedes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Dapkekar AB, Satyanarayana G. Electrochemical selenofunctionalization of unactivated alkenes: access to β-hydroxy-selenides. Org Biomol Chem 2024; 22:1775-1781. [PMID: 38328950 DOI: 10.1039/d4ob00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work demonstrates the electrochemical construction of 2-methyl-1-aryloxy-3-(arylselanyl)propan-2-ol/2-hydroxy-2-methyl-3-(arylselanyl)propyl 2-(2-hydroxy-2-methyl-3-(arylselanyl)propoxy)benzoate starting from aryl allyl ethers/allyl benzoates and diaryl diselenides under additive-free electrochemical conditions. This environmentally friendly method was achieved through constant current electrolysis in an undivided cell setup under acid, oxidant, or catalyst-free conditions. Additionally, this technique enabled the synthesis of a variety of β-hydroxy selenides including late-stage functionalization of drug derivatives in good to exceptional yields across various substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Anil Balajirao Dapkekar
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
6
|
Raji Reddy C, Fatima S, Kolgave DH, Sridhar B. Radical-mediated sulfonylative/thiolative cyclization of biaryl enones to phenanthrone derivatives. Org Biomol Chem 2023; 21:7327-7338. [PMID: 37646289 DOI: 10.1039/d3ob01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An approach for the assembly of phenanthrone derivatives bearing all carbon quaternary centres has been developed through visible light-promoted tandem sulfonylation/intramolecular-arylation of biaryl enones with sulfonyl chlorides. A series of sulfonylated 10,10-dialkylphenanthrones were obtained in good yields. In addition, the approach has been extended to thiotrifluoromethyl (SCF3) and thiocyanato (SCN) radicals to obtain the corresponding phenanthrones under oxidative conditions. The synthetic utility was also illustrated by the scalability and further transformations of the product.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
7
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Tian SY, Ai JJ, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Photoinduced Construction of Thieno[3,4- c]quinolin-4(5 H)-ones/Selenopheno[3,4- c]quinolin-4(5 H)-ones Using Diphenyl Disulfide or Diphenyl Diselenide as Sulfur or Selenium Sources. J Org Chem 2023; 88:828-837. [PMID: 36577098 DOI: 10.1021/acs.joc.2c01999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A photocatalytic synthesis of thieno[3,4-c]quinolin-4(5H)-ones/selenopheno[3,4-c]quinolin-4(5H)-ones using diphenyl disulfide or diphenyl diselenide as sulfur or selenium sources was developed. Two C-S/Se bonds and one C-C bond were constructed simultaneously without transition metals and other additives.
Collapse
Affiliation(s)
- Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Zhang JQ, Shen C, Shuai S, Fang L, Hu D, Wang J, Zhou Y, Ni B, Ren H. Electrochemical Selenium-Catalyzed N,O-Difunctionalization of Ynamides: Access to Polysubstituted Oxazoles. Org Lett 2022; 24:9419-9424. [PMID: 36541615 DOI: 10.1021/acs.orglett.2c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A green and efficient approach for the difunctionalization of ynamides by merging the electrochemical and organoselenium-catalyzed processes is described. This strategy features mild reaction conditions, broad functional group tolerance and high atom-economy, and requires no external chemical oxidant. Hence, we provide a sustainable alternative for the synthesis of polysubstituted oxazoles.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chunjiao Shen
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Shihao Shuai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
10
|
Jang J, Kim DY. Electrochemical
N
‐Centered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of β‐Amino Cyclic Ketones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jihoon Jang
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Dae Young Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| |
Collapse
|
11
|
Hellwig PS, Barcellos AM, Cargnelutti R, Barcellos T, Perin G. Synthesis of Chalcogenylchromenes through Cyclization of Propargylic Aryl Ethers. J Org Chem 2022; 87:15050-15060. [PMID: 36302502 DOI: 10.1021/acs.joc.2c01490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe here for the first time the synthesis of 2-(chalcogenyl)-3H-benzo[f]chromenes and the new 3-(phenylselanyl)-2H-chromenes by the radical or electrophilic cyclization of propargylic aryl ethers in the presence of diorganyl diselenides or ditellurides using Oxone as a green oxidant and acetonitrile as solvent in a sealed tube at 100 °C. In this study, thirty-one chalcogenylchromenes with a broad substrate scope were prepared in moderate to excellent yields (50-98%), including compounds derived from natural products.
Collapse
Affiliation(s)
- Paola S Hellwig
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, 95070-560, Caxias do Sul, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
12
|
Lin K, Lan J, Zhu T. Electrosynthesis of β‐Acyloxy‐γ‐Selenyl Amine via Migratory Oxyselenation of N‐Acyl Allylamine. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Singha T, Rouf Samim Mondal A, Midya S, Prasad Hari D. The Dowd–Beckwith Reaction: History, Strategies, and Synthetic Potential. Chemistry 2022; 28:e202202025. [DOI: 10.1002/chem.202202025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Tushar Singha
- Department of Organic Chemistry Indian Institute of Scienece Bangalore 560012 India
| | | | - Suparnak Midya
- Department of Organic Chemistry Indian Institute of Scienece Bangalore 560012 India
| | - Durga Prasad Hari
- Department of Organic Chemistry Indian Institute of Scienece Bangalore 560012 India
| |
Collapse
|
14
|
Seastram AC, Hareram MD, Knight TMB, Morrill LC. Electrochemical alkene azidocyanation via 1,4-nitrile migration. Chem Commun (Camb) 2022; 58:8658-8661. [PMID: 35822449 DOI: 10.1039/d2cc02958h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method for the azidocyanation of alkenes via 1,4-nitrile migration has been developed. This organic oxidant free method is applicable across various alkene containing cyanohydrins, and provides access to a broad range of synthetically useful 1,2-azidonitriles (28 examples). This methodology was extended to an electrochemical alkene sulfonylcyanation procedure, as well as to access a trifunctionalized hexanenitrile from a malononitrile starting material. The orthogonal derivatization of the products was also demonstrated through chemoselective transformations.
Collapse
Affiliation(s)
- Alex C Seastram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Thomas M B Knight
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
15
|
Park J, Kim DY. Synthesis of selenated γ‐lactones via photoredox‐catalyzed selenylation and ring closure of alkenoic acids with diselenides. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiwoo Park
- Department of Chemistry Soonchunhyang University Asan Republic of Korea
- Department of ICT Environmental Health System Soonchunhyang University Asan South Korea
| | - Dae Young Kim
- Department of Chemistry Soonchunhyang University Asan Republic of Korea
- Department of ICT Environmental Health System Soonchunhyang University Asan South Korea
| |
Collapse
|
16
|
Wang J, Lu X, Tan X, Yan Y, Zhang P, Chao S, Liu L, Shang X, Chu Z. Electrophilic Selenocyanogen Cyclization of Alkynes; Synthesis of Benzofurylselenocyanates, Benzothienylselenocyanates and Indolylselenocyanates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xiao‐Xiao Lu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xin‐Qiang Tan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Yun‐Hui Yan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Pengbo Zhang
- School of Public Health Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Shu‐Jun Chao
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Lixia Liu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xuefang Shang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Zhi‐Li Chu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| |
Collapse
|
17
|
Jang J, Kim DY. Synthesis of trifluoromethylated 4H‐1‐benzopyran derivatives via photocatalytic trifluoromethylation/oxidation/conjugate addition, and cyclization sequences of vinyl phenols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jihoon Jang
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health System KOREA, REPUBLIC OF
| | - Dae Young Kim
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health Syntem Asan 336745 Chungnam KOREA, REPUBLIC OF
| |
Collapse
|
18
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
19
|
Kim KS, Maeng N, Kim DY. Synthesis of selenated γ-lactones via Oxone-promoted selenylation and cyclization of alkenoic acids with diselenides. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Org Chem Front 2022. [DOI: 10.1039/d2qo01035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and catalyst-free radical addition/1,2-aryl migration cascade process of ally alcohol driven by halogen bond was developed under visible light irradiation, featuring mild conditions, practical procedures, and broad substrate scope.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youkang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Danning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
21
|
Huang C, Hu J, Chen G, Wu M, Cao H, Liu X. Electrochemical oxidative cyclization of alkenes, boronic acids, and dichalcogenides to access chalcogenated boronic esters and 1,3-diols. Org Chem Front 2022. [DOI: 10.1039/d1qo01175h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sustainable, environmentally benign electrochemical oxidative three-component cyclization of allylic alcohols, boronic acids, and dichalcogenides under metal-free and oxidant-free conditions has been developed.
Collapse
Affiliation(s)
- Changfeng Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jijing Hu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Guangxian Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Minjian Wu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
22
|
Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated γ-lactones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Kim Y, Jang J, Kim DY. Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated γ‐Lactones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yebin Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Jihoon Jang
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Dae Young Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| |
Collapse
|
24
|
Sun L, Wang L, Alhumade H, Yi H, Cai H, Lei A. Electrochemical Radical Selenylation of Alkenes and Arenes via Se-Se Bond Activation. Org Lett 2021; 23:7724-7729. [PMID: 34581590 DOI: 10.1021/acs.orglett.1c02661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel electrochemical radical selenylation of alkenes and activated arenes without external oxidants is reported. The diselenide was fully transformed into Se-centered radicals through electrochemical Se-Se bond activation. Three-component radical carbonselenation was successfully realized using styrenes to trap the RSe radical. Besides, the direct coupling of RSe radicals with activated arenes was further developed. Using this atom-economic protocol, diversity of unsymmetric aryl-aryl, aryl-alkyl, and alkyl-alkyl selenoethers was obtained regioselectively, which has potential application in biological chemistry.
Collapse
Affiliation(s)
- Li Sun
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Liwei Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jdedah 21589, Saudi Arabia
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Aiwen Lei
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China.,Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Zhu Z, Chen X, Liu S, Zhang J, Shen X. Synthesis of 1‐Tri(di)fluoromethyl 1,4‐Diketones Enabled by Radical Brook Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhihong Zhu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Chen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Shanshan Liu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Jianjun Zhang
- State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment Zhejiang Research Institute of Chemical Industry Hangzhou 310023 China
| | - Xiao Shen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- Shenzhen Research Institute of Wuhan University Wuhan University Shenzhen 518057 China
| |
Collapse
|
26
|
Yi RN, Wu ZL, Ouyang WT, Wang WF, He WM. Green synthesis of 4-organylselanyl-1H-pyrazoles through electrochemical cross-dehydrogenative coupling of 1H-pyrazoles and diorganyl diselenides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Cheng X, Hasimujiang B, Xu Z, Cai H, Chen G, Mo G, Ruan Z. Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. J Org Chem 2021; 86:16045-16058. [PMID: 34328728 DOI: 10.1021/acs.joc.1c01267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A catalyst-free, environmentally friendly, and efficient electrochemical selenylation/cyclization of alkenes has been developed with moderate to excellent yields. This selenylated transformation proceeds smoothly and tolerates a wide range of synthetically useful groups to deliver diverse functionalized benzheterocycles, including iminoisobenzofuran, lactones, oxindoles, and quinolinones. Moreover, the present synthetic route could also be readily scaled up to gram quantity with convenient operation in an undivided cell.
Collapse
Affiliation(s)
- Xiaomei Cheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Balati Hasimujiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Haiping Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guihong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| |
Collapse
|
28
|
Bary G, Jamil MI, Arslan M, Ghani L, Ahmed W, Ahmad H, Zaman G, Ayub K, Sajid M, Ahmad R, Huang D, Liu F, Wang Y. Regio- and stereoselective functionalization of alkenes with emphasis on mechanistic insight and sustainability concerns. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Kang YC, Treacy SM, Rovis T. Iron-Catalyzed Photoinduced LMCT: a 1° C-H Abstraction Enables Skeletal Rearrangements and C(sp 3)-H Alkylation. ACS Catal 2021; 11:7442-7449. [PMID: 35669035 DOI: 10.1021/acscatal.1c02285] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we disclose an iron-catalyzed method to access skeletal rearrangement reactions akin to the Dowd-Beckwith ring expansion from unactivated C(sp3)-H bonds. Photoinduced ligand-to-metal charge transfer at the iron center generates a chlorine radical, which abstracts electron-rich C(sp3)-H bonds. The resulting unstable alkyl radicals can undergo rearrangement in the presence of suitable functionality. Addition to an electron deficient olefin, recombination with a photoreduced iron complex, and subsequent protodemetallation allows for redox-neutral alkylation of the resulting radical. Simple adjustments to the reaction conditions enable the selective synthesis of the directly alkylated or the rearranged-alkylated products. As a radical clock, these rearrangements also enable the measurement of rate constants of addition into various electron deficient olefins in the Giese reaction.
Collapse
Affiliation(s)
- Yi Cheng Kang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sean M. Treacy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Xing Y, Li C, Meng J, Zhang Z, Wang X, Wang Z, Ye Y, Sun K. Recent Advances in the Synthetic Use of Migration Reactions of Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Xing
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Chen Li
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jianping Meng
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Zhichuan Wang
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| |
Collapse
|
31
|
Gao W, Li B, Zong L, Yu L, Li X, Li Q, Zhang X, Zhang S, Xu K. Electrochemical Tandem Cyclization of Unsaturated Oximes with Diselenides: A General Approach to Seleno Isoxazolines Derivatives with Quaternary Carbon Center. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wenchao Gao
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Beibei Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Luyi Zong
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Lintao Yu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Xuyang Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Qiyang Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 China
- College of Life Science & Bioengineering Beijing University of Technology Beijing 100124 China
| |
Collapse
|
32
|
Hellwig PS, Guedes JS, Barcellos AM, Jacob RG, Silveira CC, Lenardão EJ, Perin G. Synthesis of benzo[ b]chalcogenophenes fused to selenophenes via intramolecular electrophilic cyclization of 1,3-diynes. Org Biomol Chem 2021; 19:596-604. [PMID: 33355583 DOI: 10.1039/d0ob02362k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe herein an alternative and transition-metal-free procedure for the access of benzo[b]chalcogenophenes fused to selenophenes via intramolecular cyclization of 1,3-diynes. This efficient protocol involves a double cyclization of 1,3-diynyl chalcogen derivatives promoted by the electrophilic species of organoselenium generated in situ by the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® in acetonitrile as solvent in an open-flask at 80 °C. In this study, 15 selenophenes with broad substrate scope were prepared in moderate to excellent yields (55-98%) with short reaction times (0.5-3.0 h).
Collapse
Affiliation(s)
- Paola S Hellwig
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Jonatan S Guedes
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Angelita M Barcellos
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Raquel G Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Claudio C Silveira
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP: 97105-900, Santa Maria - RS, Brazil
| | - Eder J Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
33
|
Saha D, Taily IM, Kumar R, Banerjee P. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chem Commun (Camb) 2021; 57:2464-2478. [PMID: 33616597 DOI: 10.1039/d1cc00116g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rearrangement reactions constitute a critical facet of synthetic organic chemistry and demonstrate an attractive way to take advantage of existing structures to access various important molecular frameworks. Electroorganic chemistry has emerged as an environmentally benign approach to carry out organic transformations by directly employing an electric current and avoids the use of stoichiometric chemical oxidants. The last few years have witnessed a resurgence of electroorganic chemistry that has promoted a renaissance of interest in the development of novel redox electroorganic transformations. This review manifests the evolution of electrosynthesis in the area of rearrangement chemistry and covers the achievements in the field of migration, ring expansion, and rearrangements along with the mechanisms involved.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
34
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
35
|
Kim Y, Kim DY. Electrochemical Oxidative Arylsulfonylation and 1,
2‐Alkyl
Shift Sequences of Alkenyl Cyclobutanols for the Synthesis of
β‐Sulfonated
Cyclopentanones. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yebin Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Dae Young Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| |
Collapse
|
36
|
Petti A, Natho P, Lam K, Parsons PJ. Regioselective Electrochemical Cyclobutanol Ring Expansion to 1‐Tetralones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alessia Petti
- School of Science University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Philipp Natho
- Department of Chemistry Imperial College London Molecular Sciences Research Hub W12 0BZ London United Kingdom
| | - Kevin Lam
- School of Science University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Philip J. Parsons
- Department of Chemistry Imperial College London Molecular Sciences Research Hub W12 0BZ London United Kingdom
| |
Collapse
|
37
|
Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. J Org Chem 2021; 86:1273-1280. [PMID: 33283502 DOI: 10.1021/acs.joc.0c02529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We herein described a selenylative cyclization reaction of enynes by the utilization of diselenides as radical sources. The visible-light irradiation of the reaction mixture enables the generation of the selenium atom radical to trigger the radical addition/cyclization/selenation sequences. Both terminal alkyne and internal alkyne derived 1,6-enynes were tested and suitable for the current synthetic protocol, delivering various kinds of selenium-containing cycles in good yields.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
38
|
Wang X, Zhang Y, Sun K, Meng J, Zhang B. Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Ma TC, Yao S, Qiao MM, Yuan F, Shi DQ, Xiao WJ. Photoredox-mediated N-centered radical addition/semipinacol rearrangement for the convenient synthesis of β-amino (spiro)cyclic ketones. Org Chem Front 2021. [DOI: 10.1039/d1qo00543j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A photoredox-mediated N-centered radical addition/semipinacol rearrangement cascade of cycloalkanol-substituted 1H-indenes or styrenes with N-arylsulfonyl protected 1-aminopyridinium salts for the efficient synthesis of β-amino (spiro)cyclic ketones is presented.
Collapse
Affiliation(s)
- Tian-Cong Ma
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Sheng Yao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Ming-Ming Qiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Fan Yuan
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - De-Qing Shi
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
40
|
Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. K 2S 2O 8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols. Org Chem Front 2021. [DOI: 10.1039/d1qo00148e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
K2S2O8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols is demonstrated for the first time, leading to a wide range of allyl sulfides in good to high yields.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Shuocheng Wan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xuehui Cao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yali Sun
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
41
|
Hellwig PS, Peglow TJ, Penteado F, Bagnoli L, Perin G, Lenardão EJ. Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules 2020; 25:E5907. [PMID: 33322179 PMCID: PMC7764687 DOI: 10.3390/molecules25245907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.
Collapse
Affiliation(s)
- Paola S. Hellwig
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Luana Bagnoli
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| |
Collapse
|
42
|
Wang X, Zhong Y, Mo Z, Wu S, Xu Y, Tang H, Pan Y. Synthesis of Seleno Oxindoles
via
Electrochemical Cyclization of
N
‐arylacrylamides with Diorganyl Diselenides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001192] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xin‐Yu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yuan‐Fang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Shi‐Hong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
43
|
Affiliation(s)
- Shi-Hui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
DeHovitz JS, Loh YY, Kautzky JA, Nagao K, Meichan AJ, Yamauchi M, MacMillan DWC, Hyster TK. Static to inducibly dynamic stereocontrol: The convergent use of racemic β-substituted ketones. Science 2020; 369:1113-1118. [PMID: 32855338 DOI: 10.1126/science.abc9909] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
The synthesis of stereochemically complex molecules in the pharmaceutical and agrochemical industries requires precise control over each distinct stereocenter, a feat that can be challenging and time consuming using traditional asymmetric synthesis. Although stereoconvergent processes have the potential to streamline and simplify synthetic routes, they are currently limited by a narrow scope of inducibly dynamic stereocenters that can be readily epimerized. Here, we report the use of photoredox catalysis to enable the racemization of traditionally static, unreactive stereocenters through the intermediacy of prochiral radical species. This technology was applied in conjunction with biocatalysts such as ketoreductases and aminotransferases to realize stereoconvergent syntheses of stereodefined γ-substituted alcohols and amines from β-substituted ketones.
Collapse
Affiliation(s)
- Jacob S DeHovitz
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Yong Yao Loh
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Jacob A Kautzky
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Kazunori Nagao
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Andrew J Meichan
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Motoshi Yamauchi
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | | | - Todd K Hyster
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
45
|
Zhang J, Wang H, Chen Y, Xie H, Ding C, Tan J, Xu K. Electrochemical synthesis of selenocyanated imidazo[1,5-a]quinolines under metal catalyst- and chemical oxidant-free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
47
|
Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. Electrochemical Synthesis of Spiro[4.5]trienones through Radical-Initiated Dearomative Spirocyclization. CHEMSUSCHEM 2020; 13:2053-2059. [PMID: 32012457 DOI: 10.1002/cssc.202000098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A novel and green route has been developed for the electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization of alkynes with diselenides. This metal-free and oxidant-free electrosynthesis reaction was performed in an undivided cell under mild conditions. A variety of selenation spiro[4.5]trienones products were prepared in moderate-to-good yields, showing a broad scope and functional group tolerance. Moreover, the developed continuous-flow system combined with electrosynthesis possesses the potential to achieve scaled-up reactions, overcoming the low efficiency of conventional electrochemical scaled-up reactions.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| |
Collapse
|
48
|
Natho P, Allen LA, Parsons PJ. Recent advances in the ring expansion of cyclobutanols, oxetanols, and azetidinols. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Mallick S, Baidya M, Mahanty K, Maiti D, De Sarkar S. Electrochemical Chalcogenation of
β,γ
‐Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901262] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samrat Mallick
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal India
| | - Mrinmay Baidya
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal India
| | - Kingshuk Mahanty
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal India
| | - Debabrata Maiti
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal India
| | - Suman De Sarkar
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal India
| |
Collapse
|
50
|
Park JW, Kim YH, Kim DY. Electrochemical oxidative iodination of imidazo[1,2-a]pyridines using NaI as iodine source. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1717539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jin Wha Park
- Department of Chemistry, Soonchunhyang University, Asan, Republic of Korea
| | - Yong Hwan Kim
- Department of Chemistry, Soonchunhyang University, Asan, Republic of Korea
| | - Dae Young Kim
- Department of Chemistry, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|