1
|
Evans ST, Tizzard GJ, Field RA, Miller GJ. Towards the synthesis of a 2-deoxy-2-fluoro-d-mannose building block and characterisation of an unusual 2-S-phenyl anomeric pyridinium triflate salt via 1 → 2 S-migration. Carbohydr Res 2024; 545:109275. [PMID: 39341003 DOI: 10.1016/j.carres.2024.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Regio- and stereo-selective synthetic routes to 2-deoxy-2-fluoro-d-mannose building blocks are often experimentally challenging when using Selectfluor with the corresponding glycal. We targeted a late-stage method to introduce fluorine in a stereospecific manner using inversion via a triflate. Accordingly, synthesis of a conventionally protected 2-deoxy-2-fluoro-d-mannose β-thioglycoside donor, directly applicable to oligosaccharide synthesis, was attempted using C2-triflate inversion of the corresponding d-glucoside with TBAF. Unexpectedly, an anomeric pyridinium salt was isolated when attempting to form the C2-triflate using Tf2O in pyridine. Indicatively, this proceeds via a 1 → 2 S-migration delivering a 1,2-trans product with α-d-manno configuration and the anomeric pyridinium in a pseudo-equatorial position. The structure of this unexpected intermediate was confirmed in the solid-state using X-ray crystallography. Omission of the pyridine solvent led to dimer formation. Switching the aglycone to an O-para-methoxyphenyl enabled smooth C2 inversion to the desired 2-deoxy-2-fluoro d-mannose system, suitably equipped for further anomeric manipulation.
Collapse
Affiliation(s)
- Sean T Evans
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry and Chemical Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gavin J Miller
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Porter J, Roberts J, Miller GJ. Benzoylation of Tetrols: A Comparison of Regioselectivity Patterns for O- and S-Glycosides of d-Galactose. J Org Chem 2024; 89:14090-14097. [PMID: 39265180 PMCID: PMC11460728 DOI: 10.1021/acs.joc.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Efficient protecting group strategies are important for glycan synthesis and represent a unique synthetic challenge in differentiating sugar ring hydroxyl groups. Direct methods to enable regioselective protecting group installation are thus desirable. Herein, we explore a one-step regioselective benzoylation to deliver 2,3,6-protected d-galactose building blocks from tetrols across a variety of α- and β-, O- and S-glycoside substrates. We focus on benzoyl chloride as the esterifying reagent and a reaction temperature of -40 °C to screen the regioselectivity outcome for twenty-two different glycosides, based on isolated yields. Using this methodology, we demonstrate the capability for α-linked aryl and alkyl glycosides (O- and S- d-galactosides, d-galactosamines, and l-fucose), delivering consistent isolated yields (>65%) for 2,3,6-benzoylated products. We extend to explore β-linked systems, where the observed regioselectivity is not paralleled. We posit that both steric and electronic factors from the anomeric substituent contribute to modulating the reactivity competition between 2-OH and 4-OH, enabling the formation of regioisomeric mixtures. However, a certain balance of these factors within the aglycon can deliver 2,3,6-regioselectivity, notably for β-O-Et and β-O-CH2CF3 glycosides. The methodology contributes toward understanding the peculiarities of regioselective carbohydrate-protecting group installation, exploring the importance of the anomeric substituent upon ring hydroxyl group reactivity.
Collapse
Affiliation(s)
- Jack Porter
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Jacob Roberts
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| |
Collapse
|
3
|
Hulen C. The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics (Basel) 2023; 12:1649. [PMID: 38136683 PMCID: PMC10740432 DOI: 10.3390/antibiotics12121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alginates play an important role in the resistance of mucoid strains of Pseudomonas aeruginosa to antibiotics, as well as their persistence by escaping the immune defense system. GDP-mannose dehydrogenase (GMD) is the key enzyme in alginate biosynthesis by catalyzing the irreversible double oxidation of GDP-mannose to GDP-mannuronate. GDP-mannose dehydrogenase purified from mucoid strains exhibits strong negative cooperativity for its substrate, the GDP-mannose, with a KM of 13 µM for the site of strong affinity and 3 mM for this weak of a binding. The presence of a nucleotide strongly associated with the enzyme was detected, confirming the fact that the substrate oxidation reaction takes place in two distinct steps, with the substrate blocked on the enzyme in a half-oxidation state in the form of a hemiacetal. As the GMD polypeptide has only one site for substrate binding, our results tend to confirm the fact that the enzyme functions in a dimer form. The GDP-mannose dehydrogenase inhibition strategy that we developed a few years ago, based on the synthesis of substrate analogs, has shown its effectiveness. The addition of an alkynyl radical on carbon 6 of the mannose grafted to an amino-sulfonyl-guanosine allows, at a concentration of 0.5 mM, to inhibit GMD by 90%. As we had previously shown the effectiveness of these analogs on the sensitivity of mucoid strains of Pseudomonas aeruginosa to aminoglycosides, this revives the interest in the synthesis of new inhibitors of GDP-mannose dehydrogenase.
Collapse
Affiliation(s)
- Christian Hulen
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, 55 Rue Saint Germain, 27000 Evreux, France
| |
Collapse
|
4
|
Dolan JP, Ahmadipour S, Wahart AJC, Cheallaigh AN, Sari S, Eurtivong C, Lima MA, Skidmore MA, Volcho KP, Reynisson J, Field RA, Miller GJ. Virtual screening, identification and in vitro validation of small molecule GDP-mannose dehydrogenase inhibitors. RSC Chem Biol 2023; 4:865-870. [PMID: 37920392 PMCID: PMC10619135 DOI: 10.1039/d3cb00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/26/2023] [Indexed: 11/04/2023] Open
Abstract
Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium Pseudomonas aeruginosa synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production. Using virtual screening, a library of 1447 compounds within the Known Drug Space parameters were evaluated against the GMD active site using the Glide, FRED and GOLD algorithms. Compound hit evaluation with recombinant GMD refined the panel of 40 potential hits to 6 compounds which reduced NADH production in a time-dependent manner; of which, an usnic acid derivative demonstrated inhibition six-fold stronger than a previously established sugar nucleotide inhibitor, with an IC50 value of 17 μM. Further analysis by covalent docking and mass spectrometry confirm a single site of GMD alkylation.
Collapse
Affiliation(s)
- Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry 06100 Ankara Turkey
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road Ratchathewi Bangkok 10400 Thailand
| | - Marcelo A Lima
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Mark A Skidmore
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Konstantin P Volcho
- N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Jóhannes Reynisson
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- Hornbeam Building, School of Pharmacy & Bioengineering, Keele University Keele Staffordshire ST5 5BG UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| |
Collapse
|
5
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
6
|
Porter J, Parisi D, Miller T, Cheallaigh AN, Miller GJ. Chemical synthesis of amphiphilic glycoconjugates: Access to amino, fluorinated and sulfhydryl oleyl glucosides. Carbohydr Res 2023; 530:108854. [PMID: 37329646 DOI: 10.1016/j.carres.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors. We demonstrate capability for this methodology, extending it to synthesise the first examples of pyranose-component fluorination and sulfhydryl modifications within glucosides and glucosamines of oleyl alcohol. These compounds provide an exciting series of tools to explore processes and materials that utilise oleyl glycosides, including as probes for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Jack Porter
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Daniele Parisi
- Croda Europe Ltd., Oak Road, Clough Road, Hull, HU6 7PH, UK
| | - Timothy Miller
- Croda Europe Ltd., Oak Road, Clough Road, Hull, HU6 7PH, UK
| | - Aisling Ní Cheallaigh
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
7
|
Ahmadipour S, Winsbury R, Köhler D, Pergolizzi G, Nepogodiev SA, Chessa S, Dedola S, Wang M, Voglmeir J, Field RA. β-1,2-Oligomannan phosphorylase-mediated synthesis of potential oligosaccharide vaccine candidates. Carbohydr Res 2023; 528:108807. [PMID: 37094534 DOI: 10.1016/j.carres.2023.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
β-(1,2)-Mannan antigens incorporated into vaccines candidates for immunization studies, showed that antibodies raised against β-(1,2)-mannotriose antigens can protect against disseminated candidiasis. Until recently, β-(1,2)- mannans could only be obtained by isolation from microbial cultures, or by lengthy synthetic strategies involving protecting group manipulation. The discovery of two β-(1,2)-mannoside phosphorylases, Teth514_1788 and Teth514_1789, allowed efficient access to these compounds. In this work, Teth514_1788 was utilised to generate β-(1,2)-mannan antigens, tri- and tetra-saccharides, decorated with a conjugation tether at the reducing end, suitable to be incorporated on a carrier en-route to novel vaccine candidates, illustrated here by conjugation of the trisaccharide to BSA.
Collapse
Affiliation(s)
- Sanaz Ahmadipour
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Rebecca Winsbury
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dominic Köhler
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Simone Dedola
- Iceni Glycoscience Ltd, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Meng Wang
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Josef Voglmeir
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Robert A Field
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7TJ, UK; Iceni Glycoscience Ltd, Norwich Research Park, Norwich, NR4 7GJ, UK.
| |
Collapse
|
8
|
Porter J, Lima MA, Pongener I, Miller GJ. Synthesis of 4-thio-d-glucopyranose and interconversion to 4-thio-d-glucofuranose. Carbohydr Res 2023; 524:108759. [PMID: 36746019 DOI: 10.1016/j.carres.2023.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Sulfur containing glycosides offer an exciting prospect for inclusion within noncanonical glycan sequences, particularly as enabling probes for chemical glycobiology and for carbohydrate-based therapeutic development. In this context, we required access to 4-thio-d-glucopyranose and sought its chemical synthesis. Unable to isolate this material in homogenous form, we observed instead a thermodynamic preference for interconversion of the pyranose to 4-thio-d-glucofuranose. Accordingly, we present an improved method to access both bis(4-thio-d-glucopyranoside)-4,4'-disulfide and 4-thio-d-glucofuranose from a single precursor, demonstrating that the latter compound can be accessed from the former using a dithiothreitol controlled reduction of the disulfide. The dithiothreitol-mediated interconversion between pyranose (monomer and disulfide) and furanose forms for this thiosugar is monitored by 1H NMR spectroscopy over a 24-h period. Access to these materials will support accessing sulfur-containing mimetics of glucose and derivatives therefrom, such as sugar nucleotides.
Collapse
Affiliation(s)
- Jack Porter
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Marcelo A Lima
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Imlirenla Pongener
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Gavin J Miller
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
9
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
10
|
Trinderup HH, Juul-Madsen L, Press L, Madsen M, Jensen HH. α-Selective Glucosylation Can Be Achieved with 6- O- para-Nitrobenzoyl Protection. J Org Chem 2022; 87:13763-13789. [PMID: 36206491 DOI: 10.1021/acs.joc.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A systematic study of the effect of various 6-O-acyl groups on anomeric selectivity in glucosylations with thioglycoside donors was conducted. All eight different esters were found to induce moderate-to-high α-selectivity in glucosylation with l-menthol with the best being 6-O-p-nitrobenzoyl. The effect appears to be general across various glucosyl acceptors, glucosyl donor types, and modes of activation. No evidence was found in favor of distal participation.
Collapse
Affiliation(s)
- Helle H Trinderup
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Line Juul-Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Laura Press
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Michael Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Zheng M, Zheng M, Lupoli TJ. Expanding the Substrate Scope of a Bacterial Nucleotidyltransferase via Allosteric Mutations. ACS Infect Dis 2022; 8:2035-2044. [PMID: 36106727 DOI: 10.1021/acsinfecdis.2c00402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacterial glycoconjugates, such as cell surface polysaccharides and glycoproteins, play important roles in cellular interactions and survival. Enzymes called nucleotidyltransferases use sugar-1-phosphates and nucleoside triphosphates (NTPs) to produce nucleoside diphosphate sugars (NDP-sugars), which serve as building blocks for most glycoconjugates. Research spanning several decades has shown that some bacterial nucleotidyltransferases have broad substrate tolerance and can be exploited to produce a variety of NDP-sugars in vitro. While these enzymes are known to be allosterically regulated by NDP-sugars and their fragments, much work has focused on the effect of active site mutations alone. Here, we show that rational mutations in the allosteric site of the nucleotidyltransferase RmlA lead to expanded substrate tolerance and improvements in catalytic activity that can be explained by subtle changes in quaternary structure and interactions with ligands. These observations will help inform future studies on the directed biosynthesis of diverse bacterial NDP-sugars and downstream glycoconjugates.
Collapse
Affiliation(s)
- Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
12
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
13
|
Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022; 17:355-364. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleoside analogues represent a cornerstone of achievement in drug discovery, rising to prominence particularly in the fields of antiviral and anticancer discovery over the last 60 years. Traditionally accessed using chemical synthesis, a paradigm shift to include the use of biocatalytic synthesis is now apparent. AREAS COVERED Herein, the authors discuss the recent advances using this technology to access nucleoside analogues. Two key aspects are covered, the first surrounding methodology concepts, effectively using enzymes to access diverse nucleoside analogue space and also for producing key building blocks. The second focuses on the use of biocatalytic cascades for de novo syntheses of nucleoside analogue drugs. Finally, recent advances in technologies for effecting enzymatic nucleoside synthesis are considered, chiefly immobilization and flow. EXPERT OPINION Enzymatic synthesis of nucleoside analogues is maturing but has yet to usurp chemical synthesis as a first-hand synthesis technology, with scalability and substrate modification primary issues. Moving forward, tandem approaches that harness expertise across molecular microbiology and chemical synthesis will be vital to unlocking the potential of next generation nucleoside analogue drug discovery.
Collapse
Affiliation(s)
- Sebastian C Cosgrove
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
14
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
15
|
|
16
|
Ahmadipour S, Wahart AJC, Dolan JP, Beswick L, Hawes CS, Field RA, Miller GJ. Synthesis of C6-modified mannose 1-phosphates and evaluation of derived sugar nucleotides against GDP-mannose dehydrogenase. Beilstein J Org Chem 2022; 18:1379-1384. [PMID: 36247981 PMCID: PMC9531554 DOI: 10.3762/bjoc.18.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sufferers of cystic fibrosis are at significant risk of contracting chronic bacterial lung infections. The dominant pathogen in these cases is mucoid Pseudomonas aeruginosa. Such infections are characterised by overproduction of the exopolysaccharide alginate. We present herein the design and chemoenzymatic synthesis of sugar nucleotide tools to probe a critical enzyme within alginate biosynthesis, GDP-mannose dehydrogenase (GMD). We first synthesise C6-modified glycosyl 1-phosphates, incorporating 6-amino, 6-chloro and 6-sulfhydryl groups, followed by their evaluation as substrates for enzymatic pyrophosphorylative coupling. The development of this methodology enables access to GDP 6-chloro-6-deoxy-ᴅ-mannose and its evaluation against GMD.
Collapse
Affiliation(s)
- Sanaz Ahmadipour
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.,Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.,Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.,Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Chris S Hawes
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.,Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
17
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
18
|
Gauttam R, Desiderato CK, Radoš D, Link H, Seibold GM, Eikmanns BJ. Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Front Bioeng Biotechnol 2021; 9:748510. [PMID: 34631687 PMCID: PMC8495162 DOI: 10.3389/fbioe.2021.748510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is an acetylated amino sugar nucleotide that naturally serves as precursor in bacterial cell wall synthesis and is involved in prokaryotic and eukaryotic glycosylation reactions. UDP-GlcNAc finds application in various fields including the production of oligosaccharides and glycoproteins with therapeutic benefits. At present, nucleotide sugars are produced either chemically or in vitro by enzyme cascades. However, chemical synthesis is complex and non-economical, and in vitro synthesis requires costly substrates and often purified enzymes. A promising alternative is the microbial production of nucleotide sugars from cheap substrates. In this study, we aimed to engineer the non-pathogenic, Gram-positive soil bacterium Corynebacterium glutamicum as a host for UDP-GlcNAc production. The native glmS, glmU, and glmM genes and glmM of Escherichia coli, encoding the enzymes for UDP-GlcNAc synthesis from fructose-6-phosphate, were over-expressed in different combinations and from different plasmids in C. glutamicum GRS43, which lacks the glucosamine-6-phosphate deaminase gene (nagB) for glucosamine degradation. Over-expression of glmS, glmU and glmM, encoding glucosamine-6-phosphate synthase, the bifunctional glucosamine-1-phosphate acetyltransferase/N-acetyl glucosamine-1-phosphate uridyltransferase and phosphoglucosamine mutase, respectively, was confirmed using activity assays or immunoblot analysis. While the reference strain C. glutamicum GlcNCg1 with an empty plasmid in the exponential growth phase contained intracellularly only about 0.25 mM UDP-GlcNAc, the best engineered strain GlcNCg4 accumulated about 14 mM UDP-GlcNAc. The extracellular UDP-GlcNAc concentrations in the exponential growth phase did not exceed 2 mg/L. In the stationary phase, about 60 mg UDP-GlcNAc/L was observed extracellularly with strain GlcNCg4, indicating the potential of C. glutamicum to produce and to release the activated sugar into the culture medium. To our knowledge, the observed UDP-GlcNAc levels are the highest obtained with microbial hosts, emphasizing the potential of C. glutamicum as a suitable platform for activated sugar production.
Collapse
Affiliation(s)
- Rahul Gauttam
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | - Dušica Radoš
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
19
|
Upadhyaya K, Bagul RS, Crich D. Influence of Configuration at the 4- and 6-Positions on the Conformation and Anomeric Reactivity and Selectivity of 7-Deoxyheptopyranosyl Donors: Discovery of a Highly Equatorially Selective l- glycero-d- gluco-Heptopyranosyl Donor. J Org Chem 2021; 86:12199-12225. [PMID: 34343001 DOI: 10.1021/acs.joc.1c01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The preparation of four per-O-benzyl-d- or l-glycero-d-galacto and d- or l-glycero-d-gluco heptopyranosyl sulfoxides and the influence of their side-chain conformations on reactivity and stereoselectivity in glycosylation reactions are described. The side-chain conformation in these donors is determined by the relative configuration of its point of attachment to the pyranoside ring and the two flanking centers in agreement with a recent model. In the d- and l-glycero-d-galacto glycosyl donors, the d-glycero-d-galacto isomer with the more electron-withdrawing trans,gauche conformation of its side chain was the more equatorially selective isomer. In the d- and l-glycero-d-gluco glycosyl donors, the l-glycero-d-gluco isomer with the least disarming gauche,gauche side-chain conformation was the most equatorially selective donor. Variable temperature NMR studies, while supporting the formation of intermediate glycosyl triflates at -80 °C in all cases, were inconclusive owing to a change in the decomposition mechanism with the change in configuration. It is suggested that the equatorial selectivity of the l-glycero-d-gluco isomer arises from H-bonding between the glycosyl acceptor and O6 of the donor, which is poised to deliver the acceptor antiperiplanar to the glycosyl triflate, resulting in a high degree of SN2 character in the displacement reaction.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Rahul S Bagul
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Dimitriou E, Miller GJ. Chemical synthesis of C6-tetrazole ᴅ-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate. Beilstein J Org Chem 2021; 17:1527-1532. [PMID: 34290835 PMCID: PMC8275867 DOI: 10.3762/bjoc.17.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Alginate is a biocompatible and industrially relevant polysaccharide that derives many of its important properties from the charged carboxylate groups within its polyuronic acid backbone. The design and inclusion of isosteric replacements for these carboxylates would underpin provision of new oligo-/polysaccharide materials with alternate physicochemical properties. Presented herein is our synthesis of mannuronic acid building blocks, appropriately modified at the carboxylate C6 position with a bioisosteric tetrazole. Thioglycosides containing a protected C6-tetrazole are accessed from a C6-nitrile, through dipolar cycloaddition using NaN3 with n-Bu2SnO. We also demonstrate access to orthogonally C4-protected donors, suitable for iterative oligosaccharide synthesis. The development of these building blocks is showcased to access anomeric 3-aminopropyl- and 1-phosphate free sugars containing this non-native motif.
Collapse
Affiliation(s)
- Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U. K
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U. K
| |
Collapse
|
21
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Beswick L, Dimitriou E, Ahmadipour S, Zafar A, Rejzek M, Reynisson J, Field RA, Miller GJ. Inhibition of the GDP-d-Mannose Dehydrogenase from Pseudomonas aeruginosa Using Targeted Sugar Nucleotide Probes. ACS Chem Biol 2020; 15:3086-3092. [PMID: 33237714 DOI: 10.1021/acschembio.0c00426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sufferers of cystic fibrosis are at extremely high risk for contracting chronic lung infections. Over their lifetime, one bacterial strain in particular, Pseudomonas aeruginosa, becomes the dominant pathogen. Bacterial strains incur loss-of-function mutations in the mucA gene that lead to a mucoid conversion, resulting in copious secretion of the exopolysaccharide alginate. Strategies that stop the production of alginate in mucoid Pseudomonas aeruginosa infections are therefore of paramount importance. To aid in this, a series of sugar nucleotide tools to probe an enzyme critical to alginate biosynthesis, guanosine diphosphate mannose dehydrogenase (GMD), have been developed. GMD catalyzes the irreversible formation of the alginate building block, guanosine diphosphate mannuronic acid. Using a chemoenzymatic strategy, we accessed a series of modified sugar nucleotides, identifying a C6-amide derivative of guanosine diphosphate mannose as a micromolar inhibitor of GMD. This discovery provides a framework for wider inhibition strategies against GMD to be developed.
Collapse
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, 1142 Auckland, New Zealand
| | - Martin Rejzek
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Jóhannes Reynisson
- Hornbeam Building, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
23
|
Beswick L, Ahmadipour S, Hofman GJ, Wootton H, Dimitriou E, Reynisson J, Field RA, Linclau B, Miller GJ. Exploring anomeric glycosylation of phosphoric acid: Optimisation and scope for non-native substrates. Carbohydr Res 2020; 488:107896. [PMID: 31887633 DOI: 10.1016/j.carres.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gert-Jan Hofman
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Hannah Wootton
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- Hornbeam Building, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom.
| |
Collapse
|
24
|
Beswick L, Ahmadipour S, Dolan JP, Rejzek M, Field RA, Miller GJ. Chemical and enzymatic synthesis of the alginate sugar nucleotide building block: GDP-d-mannuronic acid. Carbohydr Res 2019; 485:107819. [PMID: 31557683 DOI: 10.1016/j.carres.2019.107819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Martin Rejzek
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Robert A Field
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
25
|
Escopy S, Singh Y, Demchenko AV. Triflic acid-mediated synthesis of thioglycosides. Org Biomol Chem 2019; 17:8379-8383. [PMID: 31490529 DOI: 10.1039/c9ob01610d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient synthesis of thioglycosides from per-acetates in the presence of triflic acid is described. The developed protocol features high reaction rates and product yields. Some reactive sugar series give high efficiency in the presence of sub-stoichiometric trifluoromethanesulfonic acid (TfOH) in contrast to other known protocols that require multiple equivalents of Lewis acids to reach high conversion rates.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| |
Collapse
|
26
|
6R/S-deutero-α-d-mannopyranoside 1-phosphate. MOLBANK 2019. [DOI: 10.3390/m1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
6R/S-deutero-α-d-mannopyranoside 1-phosphate was synthesised from a C6 aldehydic mannose thioglycoside donor in four steps. Using NaBD4 as the reductant, isotopic enrichment at C6 was achieved and the resultant C6-deuterated material was converted through to the glycosyl 1-phosphate using a protection/glycosylation/deprotection sequence. The product was fully characterised by 1H, 13C, 31P and 2D NMR, alongside MS analysis.
Collapse
|