1
|
Yang J, Wang S, Han Y, Dong Q, Ma W, Zhou H. Synergistic photocatalysis enables aerobic oxo-hydrazination of α-diazoacetates with azobenzenes. Chem Commun (Camb) 2025; 61:1188-1191. [PMID: 39693102 DOI: 10.1039/d4cc05668j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A photocatalytic oxo-hydrazination of α-diazoacetates with azobenzenes has been developed. With air as an oxygen source, the reaction proceeded smoothly and afforded previously unknown N,N'-diarylhydrazino-containing oxoacetates. Mechanistically, the reaction is enabled by cooperation of photoredox catalysis, energy transfer photocatalysis and direct photoexcitation.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shengyu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qi Dong
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Wantong Ma
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Fang SC, Cai SQ, Li PP, Yang Z, Zhao JF, Xiao HX, Zhou YT, Sun XR, He SY, Liu F, Liang W, Pan B, Du F. The Cascade Reaction Chemistry of Diazo Compounds with Intentionally Designed Alkene to Access Esterified Heterocycles. Org Lett 2025. [PMID: 39748131 DOI: 10.1021/acs.orglett.4c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Exploration of the cascade reactivity of diazo compounds with alkenes is a challenging and largely unmet goal. Herein, we disclose a light-mediated de novo synthesis of esterified heterocycles under mild conditions. The reaction displays a broad functional group tolerance, including a wide variety of alkenes, diazo compounds, and some bioactive molecules. Importantly, the synthetic appeal was demonstrated for synthesizing indoleamine 2,3-dioxygenase inhibitor analogue, the deethylated derivative of natural product leucomidine C, and the anti-inflammatory agent AN669.
Collapse
Affiliation(s)
- Shi-Cui Fang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shao-Qun Cai
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jun-Fei Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui-Xin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Tong Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xin-Ran Sun
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shi-Ya He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fang Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Meher KB, Laha D, Dharpure PD, Bhat RG. Visible-Light-Induced Copper-Catalyzed Radical Reactions of Diazo Arylidene Succinimides to Access the Pyromellitic Diimide (PMDI) Core. Org Lett 2024; 26:10241-10247. [PMID: 39575468 DOI: 10.1021/acs.orglett.4c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The synthesis of pyromellitic diimides (PMDIs) through visible-light-promoted copper-catalyzed reaction of diazo arylidene succinimides has been accomplished without the use of external oxidants. This transformation involves a carbon radical from diazo arylidene succinimides with a copper catalyst or photocatalyst via the proton-coupled electron transfer (PCET) process. This approach successfully challenges a long-standing paradigm in the synthesis of PMDIs. Notably, copper complex (CuNCS) formed in situ proved to be playing a pivotal role to drive the reaction via photoinitiation. Additionally, we synthesized a PMDI molecule known for its prominent aggregation-induced emission (AIE) property. For the very first time, we have synthesized unsymmetrical PMDIs by employing the developed protocol.
Collapse
Affiliation(s)
- Kajal B Meher
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
4
|
Yi M, Wu X, Yang L, Yuan Y, Lu Y, Zhang Z. Visible Light Induced B-H Bond Insertion Reaction with Diazo Compounds. J Org Chem 2024; 89:12583-12590. [PMID: 39158102 DOI: 10.1021/acs.joc.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.
Collapse
Affiliation(s)
- Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
6
|
Arora S, Singh T, Singh A. Photocatalytic C2-trifluoroethylation and perfluoroalkylation of 3-substituted indoles using fluoroalkyl halides. Org Biomol Chem 2024; 22:4278-4282. [PMID: 38747327 DOI: 10.1039/d4ob00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A photocatalytic reactivity platform for the C2-trifluoroethylation and perfluoroalkylation of 3-substituted indoles has been developed. A range of fluoroalkyl halides have been employed as radical precursors under mild, transition-metal-free conditions to access new (per)fluorinated chemical space featuring the indole substructure. This general protocol is also applicable to indole-containing peptides.
Collapse
Affiliation(s)
- Shivani Arora
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
- Department of Sustainable Energy Engineering, Kotak School of Sustainability, Indian Institute of Technology Kanpur, UP-208016, India
- Chandrakanta Kesavan Center for Energy Policy and Climate Solutions, Indian Institute of Technology Kanpur, UP-208016, India
| |
Collapse
|
7
|
Davas D, Gopalakrishnan DK, Kumar S, Anmol, Karmakar T, Vaitla J. Visible Light-Promoted Regioselective Benzannulation of Vinyl Sulfoxonium Ylides with Ynoates. JACS AU 2024; 4:1073-1080. [PMID: 38559716 PMCID: PMC10976606 DOI: 10.1021/jacsau.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report a highly regioselective [4 + 2]-annulation of vinyl sulfoxonium ylides with ynoates under light-mediated conditions. The reaction proceeds through the new dienyl sulfoxonium ylide, which undergoes photolysis under blue light irradiation to give highly substituted naphthalene scaffolds. The method presented here operates at room temperature and does not require the addition of an external photosensitizer. The in situ-generated dienyl sulfoxonium ylide absorbs light and acts as a photosensitizer for the formation of arenes. The synthetic potential of these benzannulations was further illustrated by various synthetic transformations and a scale-up reaction. Moreover, control experiments and quantum chemical calculations reveal the mechanistic details of the developed reaction.
Collapse
Affiliation(s)
- Daksh
Singh Davas
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | | | - Sandeep Kumar
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Anmol
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Tarak Karmakar
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Janakiram Vaitla
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
8
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
9
|
Xie Y, Bao YP, Zhuo XY, Xuan J. Photocatalytic Synthesis of Indanone, Pyrone, and Pyridinone Derivatives with Diazo Compounds as Radical Precursors. Org Lett 2024; 26:1393-1398. [PMID: 38346022 DOI: 10.1021/acs.orglett.3c04331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We disclose herein a photocatalytic radical cascade cyclization of diazoalkanes for the divergent synthesis of important carbocycles and heterocycles. Under the optimal reaction conditions, various indanone, pyrone, and pyridinone derivatives can be obtained in moderate to good yields. Mechanistic experiments support the formation of carbon-centered radicals from diazoalkanes through the proton-coupled electron transfer process. Scale-up reaction using continuous flow technology and useful downstream application of the formed heterocycles further render the strategy attractive and valuable.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiao-Yan Zhuo
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
10
|
Bandyopadhyay A, Biswas P, Kundu SK, Sarkar R. Electrochemistry-enabled residue-specific modification of peptides and proteins. Org Biomol Chem 2024; 22:1085-1101. [PMID: 38231504 DOI: 10.1039/d3ob01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.
Collapse
Affiliation(s)
- Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
| | - Pranay Biswas
- Department of Physics, Dinabandhu Mahavidyalaya, 24 Parganas (N), 743235, West Bengal, India
| | - Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| |
Collapse
|
11
|
Orłowska K, Łuczak K, Krajewski P, Santiago JV, Rybicka-Jasińska K, Gryko D. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem Commun (Camb) 2023. [PMID: 37997166 DOI: 10.1039/d3cc05174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Structurally diversified diazoalkanes can be activated under red light irradiation relying on direct photolysis, photosensitization or photoredox catalysis.
Collapse
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - João V Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| |
Collapse
|
12
|
Pramanik S, Mondal PP, Maity S. Organo-photoredox-Catalyzed Selective Mono- and Bis-C-H Alkylation of Electron-Rich (Hetero)Arenes. J Org Chem 2023; 88:15256-15269. [PMID: 37823605 DOI: 10.1021/acs.joc.3c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Herein, we disclose a simple strategy for the C-H alkylation of electron-rich (hetero)arenes with alkyl bromides employing visible-light-mediated organo-photocatalytic SET processes. The generality of this method has been evidenced by the inclusion of a variety of alkyl radicals (α-alkyl-carbonyl, benzyl, cyanomethyl) as well as diverse biologically active electron-rich arenes and (hetero)arenes under mild conditions. The extent of alkylation with alkyl bromides was found to be controlled by introducing Zn(OAc)2 as a bromide scavenger, ensuring the blocking of potential bromo-arene byproduct formation under photoredox conditions. In addition, a sequential C-H alkylation strategy for selective bis-alkylation has also been developed via chronological incorporation of different alkyl radical precursors in one pot quite efficiently.
Collapse
Affiliation(s)
- Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Partha Pratim Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
13
|
Yuan Y, Liu J, Feng RR, Zhang W, Gai F. Photophysics of Two Indole-Based Cyan Fluorophores. J Phys Chem B 2023; 127:4508-4513. [PMID: 37171997 DOI: 10.1021/acs.jpcb.3c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For the purpose of searching for new biological fluorophore, we assess the photophysical properties of two indole derivatives, 4-cyano-7-azaindole (4CN7AI) and 1-methyl-4-cyano-7-azaindole (1M4CN7AI), in a series of solvents. We find that (1) the absorption spectra of both derivatives are insensitive to solvents and are red-shifted from that of indole, having a maximum absorption wavelength of ca. 318 nm and a broad profile that extends beyond 370 nm; (2) both derivatives emit in the blue to green spectral range with a large Stokes shift, for example, in H2O, the maximum emission wavelength of 4CN7AI (1M4CN7AI) is at ca. 455 nm (470 nm); (3) 4CN7AI has a higher fluorescence quantum yield (QY) and a longer fluorescence lifetime (τF) in aprotic solvents than in protic solvents, for example, QY (τF) = 0.72 ± 0.04 (7.6 ± 0.8 ns) in tetrahydrofuran and QY (τF) = 0.29 ± 0.03 (6.2 ± 0.6 ns) in H2O; (4) in all of the solvents used except H2O, the fluorescence QY (τF) of 1M4CN7AI is equal to or higher (longer) than 0.69 ± 0.03 (11.2 ± 0.7 ns). Taken together, these results suggest that the corresponding non-natural amino acids, 4-cyano-7-azatryptophan and 1-methyl-4-cyano-7-azatryptophan, could be useful as biological fluorophores.
Collapse
Affiliation(s)
- Yu Yuan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingsong Liu
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
15
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
16
|
Cai BG, Bao YP, Pei C, Li Q, Li L, Koenigs RM, Xuan J. Photochemical synthesis of 1,2,4-triazoles via addition reaction of triplet intermediates to diazoalkanes and azomethine ylide intermediates. Chem Sci 2022; 13:13141-13146. [PMID: 36425480 PMCID: PMC9667952 DOI: 10.1039/d2sc04720a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/22/2022] [Indexed: 09/19/2023] Open
Abstract
The reactivity of diazoalkanes most commonly proceeds through the formation of carbene intermediates or dipolar cycloaddition reactions. The reaction of diazoalkanes with intermediates with unpaired electrons, however, is much less elaborated. Herein, we report on the photochemical reaction of acceptor-only diazoalkanes with azodicarboxylates. Photoexcitation of the latter results in the formation of a triplet species, which undergoes an addition reaction with diazoalkanes and formation of an azomethine ylide followed by dipolar cycloaddition reaction with organic nitriles to give a 1,2,4-triazole. The application of this transformation was elaborated in a broad and general substrate scope (48 examples), including scale-up via flow chemistry and downstream transformations. Experimental and computational studies were performed to elucidate the reaction mechanism and to rationalize the reaction outcome.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education Hefei Anhui 230601 China
| |
Collapse
|
17
|
Gall BK, Smith AK, Ferreira EM. Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Red-Shifted Chromium Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202212187. [PMID: 36063422 PMCID: PMC9828771 DOI: 10.1002/anie.202212187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/12/2023]
Abstract
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base-free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
Collapse
Affiliation(s)
- Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | - Avery K. Smith
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | | |
Collapse
|
18
|
Zhang Z, Chen Y, He L, Xie L, Chen Z. Regioselective Synthesis of Indole-Fused Seven-Membered N-Heterocycles via Photoredox-Catalyzed Intramolecular Cyclization. J Org Chem 2022; 87:14394-14406. [PMID: 36206145 DOI: 10.1021/acs.joc.2c01829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we describe the construction of indole-fused seven-membered N- and O-heterocycles from indolyl α-diazocarbonyls via photoredox-catalyzed intramolecular cyclization. The photoredox process features operational simplicity, mild conditions, and as low as 0.1 mol % catalyst loading. The tricyclic heterocycles are obtained in yields of 24 to 67% with excellent regioselectivity. The practicality of this protocol is further demonstrated by gram-scale reactions carried out in both batch and continuous flow.
Collapse
Affiliation(s)
- Ziqin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yifeng Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Linrong He
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lihua Xie
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhitao Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
19
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
20
|
Liu Y, Zhu K, Zhao J, Li P. Photocatalytic Regioselective Difunctionalization of Alkenes with Diazo Compounds and tert-Butyl Nitrite: Access to γ-Oximino Esters. Org Lett 2022; 24:6834-6838. [PMID: 36073998 DOI: 10.1021/acs.orglett.2c02749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light photocatalytic regioselective difunctionalization of alkenes with diazo compounds and tert-butyl nitrite has been developed. The protocol provides an efficient approach to γ-oximino esters under mild conditions. Significantly, this transformation not only shows the good compatibility of nucleophilic diazo compounds and electrophilic tert-butyl nitrite but also displays diazo compounds generating alkyl radicals that preferred addition to alkenes over nitroso radicals.
Collapse
Affiliation(s)
- Yantao Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Keyong Zhu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
21
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
22
|
Karmakar U, Hwang HS, Lee Y, Cho EJ. Photocatalytic para-Selective C-H Functionalization of Anilines with Diazomalonates. Org Lett 2022; 24:6137-6141. [PMID: 35973228 DOI: 10.1021/acs.orglett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-induced para-selective C-H functionalization of anilines over N-H insertion was developed using diazomalonates with the help of an Ir(III) photocatalyst. The para-selective radical-radical cross coupling proceeded via C-centered radical intermediates generated from both anilines and diazomalonates. The photochemistry of anilines could be extended to other N-heterocycles, such as indole and carbazole. The reaction pathway for the selective C-C coupling was validated by electrochemical and photophysical experiments as well as computational studies.
Collapse
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yunjeong Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
Ye HB, Zhou XY, Li L, He XK, Xuan J. Photochemical Synthesis of Succinic Ester-Containing Phenanthridines from Diazo Compounds as 1,4-Dicarbonyl Precursors. Org Lett 2022; 24:6018-6023. [PMID: 35947775 DOI: 10.1021/acs.orglett.2c02313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We disclosed herein a straightforward photochemical method for the construction of phenanthridines containing a synthetically useful succinate unit. The reaction occurred under visible-light irradiation with cheap eosin Y Na as photoredox catalyst and a diazo compound as the succinate precursor. Under the optimal reaction conditions, a wide range of phenanthridines were obtained in moderate to good yields. Note that the succinate units in the final heterocycles could be easily transformed into many valuable structures, such as γ-butyrolactone, dihydrofuran-2(3H)-one, and tetrahydrofuran. Mechanistic experiments were performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Hai-Bing Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xu-Yu Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
24
|
Zhu S, Li F, Empel C, Jana S, Pei C, Koenigs RM. Furan synthesis via triplet sensitization of acceptor/acceptor diazoalkanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Fang Li
- RWTH Aachen University GERMANY
| | | | - Sripati Jana
- Indian Institute of Technology Kharagpur Department of Chemistry INDIA
| | | | | |
Collapse
|
25
|
Liu GX, Liang HC, Fu X, Tang J, Hu WH, Qiu H. Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of γ-Amino Acid Derivatives. Org Lett 2022; 24:4908-4913. [PMID: 35793070 DOI: 10.1021/acs.orglett.2c01751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A photoredox-catalyzed reaction of secondary amines, aldehydes, diazo compounds, and Hantzsch ester is reported, affording biologically active γ-amino acid derivatives in high yields. This one-pot process tolerates a broad range of functional groups and various drug molecules and biologically active compounds. Remarkably, a gram-scale reaction and diverse transformations of γ-amino acid derivatives were successfully performed, and the utility of the products is demonstrated in the synthesis of therapeutic agent pregabalin.
Collapse
Affiliation(s)
- Geng-Xin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao-Cheng Liang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Hao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Li F, Zhu S, Koenigs RM. Photocatalytic 1,2-oxo-alkylation reaction of styrenes with diazoacetates. Chem Commun (Camb) 2022; 58:7526-7529. [PMID: 35703319 DOI: 10.1039/d2cc02414d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on the photocatalytic 1,2-difunctionalization reaction of styrenes with acceptor-only diazoalkanes. In the presence of DABCO and tBuOOH, the carbene reactivity of diazoalkanes can be suppressed and a 1,2 oxo-alkylation reaction can be achieved (32 examples, up to 94% yield) without the formation of cyclopropane by-products via the formation of radical intermediates from ethyl diazoacetate.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Siqi Zhu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
27
|
Chen BH, Du YD, Shu W. Organophotocatalytic Regioselective C-H Alkylation of Electron-Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200773. [PMID: 35286774 DOI: 10.1002/anie.202200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/27/2022]
Abstract
Direct alkylation of the C-H bond arenes in a selective manner is a long-standing challenge. Herein, a metal-free photocatalytic regioselective C-H alkylation method for electron-rich arenes with both activated and unactivated alkenes was developed. The reaction tolerates a wide range of aromatic rings with diverse substitution patterns, as well as terminal and internal alkenes, providing a general and straightforward metal-free method for C-C bond formation from inert C-H bonds. Moreover, alkynes are also compatible to give the C-H vinylation of electron-rich arenes.
Collapse
Affiliation(s)
- Bi-Hong Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
28
|
Gao X, Chang R, Rao J, Hao D, Zhang Z, Zhou CY, Guo Z. Halogen-Bonding-Promoted C-H Malonylation of Indoles under Visible-Light Irradiation. J Org Chem 2022; 87:8198-8202. [PMID: 35612828 DOI: 10.1021/acs.joc.2c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a halogen-bonding-based electron donor-acceptor (EDA) complex-promoted photoreaction for the synthesis of C2-malonylated indoles. The protocol provides access to a broad range of functionalized indoles in good yields through the coupling reaction of indoles with diethyl bromomalonate under visible-light irradiation without the need for any transition-metal catalyst or photocatalyst.
Collapse
Affiliation(s)
- Xuebo Gao
- College of Materials Science and Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Junxin Rao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Danyang Hao
- College of Materials Science and Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Zhuxia Zhang
- College of Materials Science and Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science and Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| |
Collapse
|
29
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
30
|
Li BS, Guo HX, Sun W, Sun M. Rh(III)-Catalyzed three-component C H functionalization reaction with vinylene carbonate: Late-stage C H esterification of indole derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Efremova MM, Rostovskii NV. The VIth International Symposium “The Chemistry of Diazo Compounds and Related Systems” (DIAZO 2021). RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Chen B, Du Y, Shu W. Organophotocatalytic Regioselective C−H Alkylation of Electron‐Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bi‐Hong Chen
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yi‐Dan Du
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
33
|
Chen ZL, Empel C, Wang K, Wu PP, Cai BG, Li L, Koenigs RM, Xuan J. Enabling Cyclopropanation Reactions of Imidazole Heterocycles via Chemoselective Photochemical Carbene Transfer Reactions of NHC-Boranes. Org Lett 2022; 24:2232-2237. [PMID: 35274531 DOI: 10.1021/acs.orglett.2c00609] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein we report a site-selective cyclopropanation of N-heterocyclic carbene (NHC)-borane complexes via photochemical carbene transfer reactions. By subtle changes to the reaction conditions, this approach can be further extended toward the difunctionalization of NHC-boranes via cyclopropanation and the B-H insertion reaction. Further investigations in photochemical continuous-flow applications and synthetic transformations proved the utility of the method. Theoretical calculations and control experiments were performed to explain the observed selectivity.
Collapse
Affiliation(s)
- Ze-Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Kun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Pan-Pan Wu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
34
|
Li F, Pei C, Koenigs RM. Photokatalytische gem‐Difluorolefinierungsreaktionen durch eine formale C−C‐Kupplungs/Defluorierungsreaktion mit Diazoacetaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Li
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
35
|
Su YL, Liu GX, De Angelis L, He R, Al-Sayyed A, Schanze KS, Hu WH, Qiu H, Doyle MP. Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S. Schanze
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Wen-Hao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
36
|
Lei Y, Xu J. Efficient synthesis of ethyl 2-(oxazolin-2-yl)alkanoates via ethoxycarbonylketene-induced electrophilic ring expansion of aziridines. Beilstein J Org Chem 2022; 18:70-76. [PMID: 35047083 PMCID: PMC8744460 DOI: 10.3762/bjoc.18.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Alkyl 2-diazo-3-oxoalkanoates generate alkoxycarbonylketenes, which undergo an electrophilic ring expansion with aziridines to afford alkyl 2-(oxazolin-2-yl)alkanoates in good to excellent yields under microwave heating. The method is a convenient and clean reaction without any activators and catalysts and can be also applied in the synthesis of 2-(oxazolin-2-yl)alkanamides and 1-(oxazolin-2-yl)alkylphosphonates.
Collapse
Affiliation(s)
- Yelong Lei
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
37
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd‐Catalyzed Alkyl Heck Reaction of Diazo Compounds and
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Rd Richardson TX 75080 USA
| |
Collapse
|
38
|
Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Visible Light Induced Brønsted Acid Assisted Pd-Catalyzed Alkyl Heck Reaction of Diazo Compounds and N-Tosylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202110924. [PMID: 34706124 PMCID: PMC8712420 DOI: 10.1002/anie.202110924] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Indexed: 01/05/2023]
Abstract
A mild visible light-induced palladium-catalyzed alkyl Heck reaction of diazo compounds and N-tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid-assisted generation of hybrid palladium C(sp3 )-centered radical intermediate, which allowed for new selective C-H functionalization protocol.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Nikita Kvasovs
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Anastasiia Dubrovina
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75080, USA
| |
Collapse
|
39
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
41
|
Bang EJ, Ra J, Choi HY, Ko HM. Synthesis of Benzazepinoindole Derivatives via a One‐Pot Process of TiCl
4
‐Catalyzed Indole Alkylation/Pictet‐Spengler Cyclization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eun Ji Bang
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Jongmin Ra
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Hoe Young Choi
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Haye Min Ko
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
- Wonkwang Institute of Materials Science and Technology Wonkwang University (Republic of Korea) 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| |
Collapse
|
42
|
Leveille AN, Echemendía R, Mattson AE, Burtoloso ACB. Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Org Lett 2021; 23:9446-9450. [PMID: 34854689 DOI: 10.1021/acs.orglett.1c03627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of organocatalytic enantioselective C-H insertion reactions of indoles and sulfoxonium ylides is reported. Under the influence of phosphoric acid catalysis, levels of enantiocontrol in the range of 20-93% ee and moderate yields (up to 50%) were achieved for 29 examples in formal C-H insertion reactions of free indoles and α-carbonyl sulfoxonium ylides. No nitrogen protection on the indole is necessary.
Collapse
Affiliation(s)
- Alexandria N Leveille
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Anita E Mattson
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
43
|
Yang DY, Liu L, Gu JY, He YH, Guan Z. Photoredox Catalyzed Radical Cascade Aroylation (Sulfonylation)/Cyclization Enables Access to Fused Indolo-pyridones. J Org Chem 2021; 86:18042-18055. [PMID: 34871003 DOI: 10.1021/acs.joc.1c02335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A visible-light-initiated radical cascade reaction toward the synthesis of structurally diverse fused Indolo-pyridones is described. The reaction involves the addition of aroyl or sulfonyl radicals to N-alkyl-acryloyl-1H-indole-3-carboxamides, cyclization, and oxidative aromatization. This telescoped method circumvents lengthy prefunctionalization steps of radical precursors, which is further underpinned by the superior compatibility with a series of C-centered radicals, allowing the rapid and facile construction of numerous valuable architectures.
Collapse
Affiliation(s)
- De-Yong Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Yi Gu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
45
|
Li F, Pei C, Koenigs RM. Photocatalytic gem-Difluoroolefination Reactions by a Formal C-C Coupling/Defluorination Reaction with Diazoacetates. Angew Chem Int Ed Engl 2021; 61:e202111892. [PMID: 34716734 PMCID: PMC9300101 DOI: 10.1002/anie.202111892] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The photolysis of diazoalkanes to conduct singlet carbene transfer reactions of colored diazoalkanes has recently attracted significant interest in organic synthesis. Herein, we describe a photocatalytic approach that allows the access of triplet carbene intermediates via energy transfer to conduct highly efficient gem‐difluoroolefination reactions with α‐trifluoromethyl styrenes. The use of a tertiary amines proved pivotal to unlock this unusual reaction pathway and to prevent undesired cyclopropanation pathways. The amine further facilitates the ultimate abstraction of fluoride to yield gem‐difluoroolefins (43 examples, up to 88 % yield), which is supported by experimental and theoretical mechanistic studies. We explored this synthesis method with a broad substrate scope, ranging from simple olefins and heterocyclic olefins towards the decoration of pharmaceutically relevant building blocks.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| |
Collapse
|
46
|
Huang X, Chen X, Xie H, Tan Z, Jiang H, Zeng W. Visible-Light-Catalyzed in Situ Denitrogenative Sulfonylation of Sulfonylhydrazones. Org Lett 2021; 23:6784-6788. [PMID: 34406020 DOI: 10.1021/acs.orglett.1c02369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A photocatalyzed in situ denitrogenative sulfonylation of N-arylsulfonyl hydrazones has been developed. This transformation provides a low-carbon strategy to assemble arylalkyl sulfones in a stepwise denitrogenation/sulfonylation manner.
Collapse
Affiliation(s)
- Xiang Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xing Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zheng Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
47
|
Abstract
Herein, we report on the tris(pentafluorophenyl)borane-catalyzed reaction of carbazole heterocycles with aryldiazoacetates. We could demonstrate that selective N-H functionalization occurs in the case of an unprotected carbazole, other N-heterocycles, and secondary amines in good yields. In contract, the protected carbazole undergoes C-H functionalization at the C-3 position in a good yield. The application of both approaches was studied in 41 examples with up to a 97% yield.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
48
|
Alavi S, Lin JB, Grover HK. Copper-Catalyzed Annulation of Indolyl α-Diazocarbonyl Compounds Leads to Structurally Rearranged Carbazoles. Org Lett 2021; 23:5559-5564. [PMID: 34197126 DOI: 10.1021/acs.orglett.1c01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indolyl α-diazocarbonyl compounds have proven to be effective starting materials for the construction of various 2,3-ring fused indole frameworks. Activation of the diazo functional group under metal catalysis generates a spiro-cyclic indolenine-type intermediate which rearranges to provide two distinct carbazoles upon oxidation. The current study investigates the effects of the catalyst as well as the substituents on the migratory group involved in controlling the selectivity of the rearrangement.
Collapse
Affiliation(s)
- Sima Alavi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Jian-Bin Lin
- C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Huck K Grover
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
49
|
Dhara AK, Maity S, Dhar BB. Visible-Light-Mediated Synthesis of Substituted Phenazine and Phenoxazinone Using Eosin Y as a Photoredox Catalyst. Org Lett 2021; 23:3269-3273. [PMID: 33880922 DOI: 10.1021/acs.orglett.1c00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes an efficient, sustainable, one-step procedure for synthesizing substituted phenazines and phenoxazinones from commercially available ortho-substituted aromatic amines with very good yield (≥80%) in water. The procedure uses eosin Y (EY) as a photoredox catalyst at room temperature (RT). The highly reactive o-quinone-diimine or o-quinone-imine intermediate was characterized by the HR-MS technique.
Collapse
Affiliation(s)
- Ashish Kumar Dhara
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Sayantan Maity
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Basab Bijayi Dhar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| |
Collapse
|
50
|
Chowdhury R, Mendoza A. N-Hydroxyphthalimidyl diazoacetate (NHPI-DA): a modular methylene linchpin for the C-H alkylation of indoles. Chem Commun (Camb) 2021; 57:4532-4535. [PMID: 33956022 PMCID: PMC8101283 DOI: 10.1039/d1cc01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Despite the extensive studies on the reactions between conventional diazocompounds and indoles, these are still limited by the independent synthesis of the carbene precursors, the specific catalysts, and the required multi-step manipulation of the products. In this work, we explore redox-active carbenes in the expedited and divergent synthesis of functionalized indoles. NHPI-DA displays unusual efficiency and selectivity to yield insertion products that can be swiftly elaborated into boron and carbon substituents that are particularly problematic in carbene-mediated reactions.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|