1
|
Wu J, Ye J, Cen J, Chen Y, Xu J. Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle. Mar Drugs 2024; 22:332. [PMID: 39195448 PMCID: PMC11355877 DOI: 10.3390/md22080332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Co-cultivation is a powerful emerging tool for awakening biosynthetic gene clusters (BGCs) that remain transcriptionally silent under artificial culture conditions. It has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. As a part of our project aiming at the discovery of structurally novel and biologically active natural products from mangrove endophytic fungi, an established co-culture of a strain of Phomopsis asparagi DHS-48 with another Phomopsis genus fungus DHS-11, both endophytes in mangrove Rhizophora mangle, proved to be very efficient to induce the production of new metabolites as well as to increase the yields of respective target metabolites. A detailed chemical investigation of the minor metabolites produced by the co-culture of these two titled fungal strains led to the isolation of six alkaloids (1-6), two sterols (7, 8), and six polyketides (9-14). In addition, all the compounds except 8 and 10, as well as three new metabolites phomopyrazine (1), phomosterol C (7), and phomopyrone E (9), were not present in discrete fungal cultures and only detected in the co-cultures. The structures were elucidated on the basis of spectroscopic analysis, and the absolute configurations were assumed by electronic circular dichroism (ECD) calculations. Subsequently, the cytotoxic, immunosuppressive, and acetylcholinesterase inhibitory properties of all the isolated metabolites were determined in vitro. Compound 8 exhibited moderate inhibitory activity against ConA-induced T and LPS-induced B murine splenic lymphocytes, with IC50 values of 35.75 ± 1.09 and 47.65 ± 1.21 µM, respectively.
Collapse
Affiliation(s)
- Jingwan Wu
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; (J.W.); (J.Y.)
| | - Jingjing Ye
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; (J.W.); (J.Y.)
| | - Juren Cen
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; (J.C.); (Y.C.)
| | - Yuanjie Chen
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; (J.C.); (Y.C.)
| | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; (J.W.); (J.Y.)
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; (J.C.); (Y.C.)
| |
Collapse
|
2
|
Wang G, Wu J, Li Z, Chen T, Liu Y, Wang B, Chen Y, She Z. Talaroacids A-D and Talaromarane A, Diterpenoids with Anti-Inflammatory Activities from Mangrove Endophytic Fungus Talaromyces sp. JNQQJ-4. Int J Mol Sci 2024; 25:6691. [PMID: 38928398 PMCID: PMC11204306 DOI: 10.3390/ijms25126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Five new diterpenes including four diterpenes with 1,2,3,4,4a,5,6,8a-octalin skeleton talaroacids A-D (1-4) and an isopimarane diterpenoid talaromarane A (5) were isolated from the mangrove endophytic fungus Talaromyces sp. JNQQJ-4. Their structures and absolute configurations were determined by analysis of high-resolution electrospray ionization mass spectroscopy (HRESIMS), 1D/2D Nuclear Magnetic Resonance (NMR) spectra, single-crystal X-ray diffraction, quantum chemical calculation, and electronic circular dichroism (ECD). Talaromarane A (5) contains a rare 2-oxabicyclo [3.2.1] octan moiety in isopimarane diterpenoids. In bioassays, compounds 1, 2, 4, and 5 displayed significant anti-inflammatory activities with the IC50 value from 4.59 to 21.60 μM.
Collapse
Affiliation(s)
- Guisheng Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Jianying Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Zhaokun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Tao Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Yufeng Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Yan Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| |
Collapse
|
3
|
Chen HW, Wu XY, Zhao ZY, Huang ZQ, Lei XS, Yang GX, Li J, Xiong J, Hu JF. Terricoxanthones A-E, unprecedented dihydropyran-containing dimeric xanthones from the endophytic fungus Neurospora terricola HDF-Br-2 associated with the vulnerable conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2024; 219:113963. [PMID: 38171409 DOI: 10.1016/j.phytochem.2023.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 μg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 μg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 μg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xi-Ying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zi-Qi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin-Sheng Lei
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
5
|
Kawamoto Y, Nishitani A, Yoshimura Y, Kobayashi T, Ito H. Total synthesis of highly oxygenated phomopsol B via acid-induced etherification to construct a bridged structure. Chem Commun (Camb) 2023; 60:95-97. [PMID: 38031454 DOI: 10.1039/d3cc05130g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The first total synthesis of phomopsol B has been achieved in a racemic form. The synthesis comprises a deacetylative cyclization to construct a bicyclic skeleton followed by primary alcohol-assisted dihydroxylation, ether cyclization to construct a dioxabicyclo [3.2.1] skeleton and γ-lactone formation based on oxidation by TEMPO.
Collapse
Affiliation(s)
- Yuichiro Kawamoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Ayaka Nishitani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Yukari Yoshimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Toyoharu Kobayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
6
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
7
|
Anti-Alzheimer's Natural Products Derived from Plant Endophytic Fungi. Molecules 2023; 28:molecules28052259. [PMID: 36903506 PMCID: PMC10005758 DOI: 10.3390/molecules28052259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's is the most common cause of dementia worldwide and seriously affects patients' daily tasks. Plant endophytic fungi are known for providing novel and unique secondary metabolites with diverse activities. This review focuses primarily on the published research regarding anti-Alzheimer's natural products derived from endophytic fungi between 2002 and 2022. Following a thorough review of the literature, 468 compounds with anti-Alzheimer's-related activities are reviewed and classified based on their structural skeletons, primarily including alkaloids, peptides, polyketides, terpenoids, and sterides. The classification, occurrences, and bioactivities of these natural products from endophytic fungi are summarized in detail. Our results provide a reference on endophytic fungi natural products that may assist in the development of new anti-Alzheimer's compounds.
Collapse
|
8
|
Mulyani Y, Sinaga SE, Supratman U. Phytochemistry and Biological Activities of Endophytic Fungi from the Meliaceae Family. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020778. [PMID: 36677833 PMCID: PMC9863112 DOI: 10.3390/molecules28020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Meliaceae plants are found worldwide in tropical or subtropical climates. They are important ethnobotanically as sources of traditional medicine, with 575 species and 51 genera. Previous research found that microorganisms are plant pioneers to produce secondary metabolites with diverse compound structures and bioactivities. Several plants of the Meliaceae family contain secondary metabolites isolated from endophytic fungi. Furthermore, related articles from 2002 to 2022 were collected from SciFinder, Google Scholar, and PubMed. About 276 compounds were isolated from endophytic fungi such as terpenoids, polyketides, lactones, pyrones, quinone, anthraquinones, xanthones, coumarines, isocoumarines, resorcylic acid lactones, cytochalasins, aromatics, ester, quinols, alkaloids, nitro compound, fatty acids, and sugars with bioactivities such as antioxidant, antibacterial, antifungal, anti-influenza, neuroprotective activities, anti-HIV, cytotoxic, allelopathic, anti-inflammatory, antifeedant effects, and BSLT toxicity. Meanwhile, secondary metabolites isolated from endophytic fungi were reported as one of the sources of active compounds for medicinal chemistry. This comprehensive review summarizes the ethnobotanical uses and secondary metabolites derived from Meliaceae endophytic fungi.
Collapse
Affiliation(s)
- Yeni Mulyani
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Unang Supratman
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-779-4391
| |
Collapse
|
9
|
Lin J, Huo RY, Hou L, Jiang S, Wang SL, Deng YL, Liu L. New polyketides from the basidiomycetous fungus Pholiota sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-9. [PMID: 36250229 DOI: 10.1080/10286020.2022.2132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Two new polyketides, pholiotones B and C (1 and 2), and four known compounds, trichodermatide D (3), vermistatin (4), dehydroaltenuene A (5) and terpestacin (6) were isolated from the crude extract of Pholiota sp. Their structures were identified by NMR and MS spectroscopic data. The absolute configurations of compounds 1 and 2 were elucidated by modified Mosher's method, electronic circular dichroism (ECD) calculations and 13C NMR calculations as well as DP4+ probability analyses. All the compounds were evaluated for their antifungal and cytotoxicity.
Collapse
Affiliation(s)
- Jie Lin
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Rui-Yun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Hou
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Shan Jiang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Shu-Lin Wang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yan-Ling Deng
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
10
|
The Neuroprotective Potential of Endophytic Fungi and Proposed Molecular Mechanism: A Current Update. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6214264. [PMID: 36217430 PMCID: PMC9547681 DOI: 10.1155/2022/6214264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Millions of people are affected by neuronal disorders that are emerging as a principal cause of death after cancer. Alzheimer's disease, ataxia, Parkinson's disease, multiple system atrophy, and autism comprise the most common ones, being accompanied by loss of cognitive power, impaired balance, and movement. In past decades, natural polyphenols obtained from different sources including bacteria, fungi, and plants have been utilized in the traditional system of medicine for the treatment of several ailments. Endophytes are one such natural producer of secondary metabolites, namely, polyphenols, which exhibit strong abilities to assist in the management of such affections, through modifying multiple therapeutic targets and weaken their complex physiology. Limited research has been conducted in detail on bioactive compounds present in the endophytic fungi and their neuroprotective effects. Therefore, this review aims to provide an update on scientific evidences related to the pharmacological and clinical potential along with proposed molecular mechanism of action of endophytes for neuronal protection.
Collapse
|
11
|
Huo RY, Zhang JX, Jia J, Bi HK, Liu L. Alternarialone A, a new curvularin-type metabolite from the mangrove-derived fungus Alternaria longipes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-7. [PMID: 36048769 DOI: 10.1080/10286020.2022.2117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Alternarialone A (1), one new curvularin derivative, and two known compounds (2 and 3) were isolated from the crude extract of the mangrove-derived fungus Alternaria longipes. Their structures were elucidated by comprehensive spectroscopic analyses, including MS and NMR spectroscopic data. The absolute configuration of 1 was assigned by 13C NMR calculations and a comparison of electronic circular dichroism (ECD) spectra. All compounds were evaluated for their antibacterial activities against Helicobacter pylori. Compounds 2 and 3 showed antibacterial activities against H. pylori G27 with MIC values of 8 and 16 µg/ml, respectively, while compound 3 also displayed antibacterial activity against H. pylori BHKS159 with the MIC value of 16 µg/ml.
Collapse
Affiliation(s)
- Rui-Yun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Jia
- Department of Modern Pathogen Biology, Jiangsu Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Hong-Kai Bi
- Department of Modern Pathogen Biology, Jiangsu Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
12
|
Zhai G, Chen S, Shen H, Guo H, Jiang M, Liu L. Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722. Mar Drugs 2022; 20:553. [PMID: 36135742 PMCID: PMC9504586 DOI: 10.3390/md20090553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A-C (1-3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7-13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM).
Collapse
Affiliation(s)
- Guifa Zhai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- School of Medicine, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
13
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Dos Santos R, Morais-Urano RP, Marçal RM, Silva GH, Santos MFC. Acetylcholinesterase and butyrylcholinesterase inhibition by nectriapyrone and tryptophol isolated from endophytic fungus Phomopsis sp. Nat Prod Res 2021; 36:4153-4158. [PMID: 34498969 DOI: 10.1080/14786419.2021.1960327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cholinesterase (ChE) inhibitors are currently the main drugs used to treat the cognitive symptoms of Alzheimer's disease (AD). Dual cholinesterase inhibitors, that is, compounds capable of inhibiting both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), are considered a new potential approach for the long-term treatment of patients with AD. We evaluated the ethyl acetate extract of Phomopsis sp., grown in liquid medium malt extract and potato dextrose (PDB), an endophyte isolated from the Brazilian medicinal plant Hancornia speciosa. The anticholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were evaluated. The extracts exhibited dual action against AChE and BuChE. The compounds isolated from these extracts, nectriapyrone (1) and tryptophol (2), showed inhibitory action on BuChE (IC50 = 29.05 and 34.15 μM respectively), being selective towards BuChE. The discovery of selective BuChE inhibitors is extremely important for the development of drugs that can be used in the treatment of patients diagnosed with AD.
Collapse
Affiliation(s)
- Rosiane Dos Santos
- Departamento de Engenharia Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | | | - Rosilene M Marçal
- Departamento de Engenharia Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Geraldo H Silva
- Instituto de Ciências Exatas, Universidade Federal de Viçosa, Rio Parnaíba, Brazil
| | - Mário F C Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| |
Collapse
|
15
|
Ortega HE, Torres-Mendoza D, Caballero E. Z, Cubilla-Rios L. Structurally Uncommon Secondary Metabolites Derived from Endophytic Fungi. J Fungi (Basel) 2021; 7:570. [PMID: 34356949 PMCID: PMC8308102 DOI: 10.3390/jof7070570] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Among microorganisms, endophytic fungi are the least studied, but they have attracted attention due to their high biological diversity and ability to produce novel and bioactive secondary metabolites to protect their host plant against biotic and abiotic stress. These compounds belong to different structural classes, such as alkaloids, peptides, terpenoids, polyketides, and steroids, which could present significant biological activities that are useful for pharmacological or medical applications. Recent reviews on endophytic fungi have mainly focused on the production of novel bioactive compounds. Here, we focus on compounds produced by endophytic fungi, reported with uncommon bioactive structures, establishing the neighbor net and diversity of endophytic fungi. The review includes compounds published from January 2015 to December 2020 that were catalogued as unprecedented, rare, uncommon, or possessing novel structural skeletons from more than 39 different genera, with Aspergillus and Penicillium being the most mentioned. They were reported as displaying cytotoxic, antitumor, antimicrobial, antiviral, or anti-inflammatory activity. The solid culture, using rice as a carbon source, was the most common medium utilized in the fermentation process when this type of compound was isolated.
Collapse
Affiliation(s)
- Humberto E. Ortega
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
| | - Daniel Torres-Mendoza
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
- Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama City 0824, Panama
| | - Zuleima Caballero E.
- Center of Cellular and Molecular Biology of Diseases, Institute for Scientific Research and Technology Services (INDICASAT-AIP), Clayton 0843-01103, Panama;
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
| |
Collapse
|
16
|
New Diterpenoids and Isocoumarin Derivatives from the Mangrove-Derived Fungus Hypoxylon sp. Mar Drugs 2021; 19:md19070362. [PMID: 34202523 PMCID: PMC8305793 DOI: 10.3390/md19070362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A–D (4–7), together, with seven known metabolites (3 and 8–13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4′ in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 μM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 μM, respectively.
Collapse
|
17
|
Chen C, Chen W, Tao H, Yang B, Zhou X, Luo X, Liu Y. Diversified Polyketides and Nitrogenous Compounds from the Mangrove Endophytic Fungus
Penicillium steckii
SCSIO
41025. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chun‐Mei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei‐Hao Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua‐Ming Tao
- School of Traditional Chinese Medicine Southern Medical University Guangzhou Guangdong 510515 China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
| | - Xue‐Feng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
| | - Xiao‐Wei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning Guangxi 530200 China
| | - Yong‐Hong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning Guangxi 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
New immunosuppressive secondary metabolites from the endophytic fungus Aspergillus sp. Fitoterapia 2021; 151:104882. [PMID: 33746061 DOI: 10.1016/j.fitote.2021.104882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Six new metabolites, including two diphenolic derivatives (1 and 2), one pseurotin (3), one butenolide derivative (4), one benzopyran (5) and one isochromane lactone (6), together with ten known compounds (7-16) were isolated from an endophytic fungus Aspergillus sp. Their planar structures and absolute configurations were established based on techniques of MS, NMR, IR, UV, [Rh2(OCOCF3)4] complex-induced ECD, quantum chemical electronic circular dichroism (ECD) calculations, and single crystal X-ray diffraction. Structurally, compound 2 represents the first example of diphenolic derivative possessing an unusual 1-oxaspiro[2.4]heptane core bearing a 5/3 bicyclic skeleton; compound 3 represents the first example of pseurotin type natural products that only one hydroxy group is substituted at side chain. In bioassay, compounds 3, 7 and 8 exhibited potential inhibitory effect on the proliferation of anti-CD3/anti-CD28 monoclonal antibodies (mAbs) induced murine T cells, with IC50 values of (7.81 ± 0.71), (8.25 ± 0.78) and (8.84 ± 0.81) μM, respectively.
Collapse
|
19
|
Li SY, Zhang X, Teng F, Li Y, Li JH. Rh(iii)-Catalyzed [3 + 2]/[4 + 2] annulation of acetophenone oxime ethers with 3-acetoxy-1,4-enynes involving C–H activation. Org Chem Front 2021. [DOI: 10.1039/d1qo00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel, synthetically simple, selective rhodium(iii)-catalyzed [3 + 2]/[4 + 2] annulation cascade reaction to construct complex azafluorenone frameworks has been developed.
Collapse
Affiliation(s)
- Sun-Yong Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
20
|
Abstract
Prunus is a large genus in the Rosaceae family of flowering plants, comprising over 340 species inhabiting variable landscapes in the world. Over 500 listed phytochemicals have been isolated from this single genus so far. The present study focused four Chinese Prunus species, viz., Prunus cerasifera, Prunus domestica, Prunus salicina, and Prunus spinosa, due to their uses, demand, nutritional value, medicinal importance, and diverse biological potential. The current review article highlights the details about the active phytochemicals and various pharmacological activities already reported. Almost 212 compounds, the majority of which are flavonoids, phenolic acids, anthocyanins, and their derivatives, which have been isolated from these four Prunus species fall in different categories and are helpful to evade chronic oxidative stress-mediated diseases. A huge variation exists in the total phytochemicals composition in different Prunus species, making these species to have different biological activities in multiple disease conditions, and even the same variety growing under different edaphic conditions may have different antioxidant capacities. It is suggested to perform extensive and indepth studies to find new phytochemicals from these four Chinese Prunus species which could boost the local industry to fulfill the increasing demands.
Collapse
|
21
|
Wu Q, Li SW, Xu H, Wang H, Hu P, Zhang H, Luo C, Chen KX, Nay B, Guo YW, Li XW. Complex Polypropionates from a South China Sea Photosynthetic Mollusk: Isolation and Biomimetic Synthesis Highlighting Novel Rearrangements. Angew Chem Int Ed Engl 2020; 59:12105-12112. [PMID: 32277730 DOI: 10.1002/anie.202003643] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 11/09/2022]
Abstract
Placobranchus ocellatus is well known to produce diverse and complex γ-pyrone polypropionates. In this study, the chemical investigation of P. ocellatus from the South China Sea led to the discovery and identification of ocellatusones A-D, a series of racemic non-γ-pyrone polyketides with novel skeletons, characterized by a bicyclo[3.2.1]octane (1, 2), a bicyclo[3.3.1]nonane (3) or a mesitylene-substituted dimethylfuran-3(2H)-one core (4). Extensive spectroscopic analysis, quantum chemical computation, chemical synthesis, and/or X-ray diffraction analysis were used to determine the structure and absolute configuration of the new compounds, including each enantiomer of racemic compounds 1-4 after chiral HPLC resolution. An array of new and diversity-generating rearrangements is proposed to explain the biosynthesis of these unusual compounds based on careful structural analysis and comparison with six known co-occurring γ-pyrones (5-10). Furthermore, the successful biomimetic semisynthesis of ocellatusone A (1) confirmed the proposed rearrangement through an unprecedented acid induced cascade reaction.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| |
Collapse
|
22
|
Wu Q, Li S, Xu H, Wang H, Hu P, Zhang H, Luo C, Chen K, Nay B, Guo Y, Li X. Complex Polypropionates from a South China Sea Photosynthetic Mollusk: Isolation and Biomimetic Synthesis Highlighting Novel Rearrangements. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Song‐Wei Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Nanjing University of Chinese Medicine 138 Xianlin Road Nanjing 210023 China
| | - Heng Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Pei Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Hao Zhang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Cheng Luo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Kai‐Xian Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Bastien Nay
- Laboratoire de Synthèse Organique Ecole Polytechnique, ENSTA CNRS, Institut Polytechnique de Paris 91128 Palaiseau Cedex France
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Xu‐Wen Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| |
Collapse
|
23
|
Chen Y, Zhang L, Zou G, Li C, Yang W, Liu H, She Z. Anti-inflammatory activities of alkaloids from the mangrove endophytic fungus Phomopsis sp. SYSUQYP-23. Bioorg Chem 2020; 97:103712. [DOI: 10.1016/j.bioorg.2020.103712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
|
24
|
Ma KL, Wei WJ, Li HY, Wang LD, Dong SH, Gao K. Phomotide A, a novel polyketide, from the endophytic fungus Phomopsis sp. CFS42. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Bioactive acetaminophen derivatives from Penicillum herquei JX4. Fitoterapia 2019; 139:104400. [DOI: 10.1016/j.fitote.2019.104400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
|