1
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Viana JVDS, Oliveira LRMD, Rodrigues LLV, Moura YBF, Pereira ABM, Alves PV, Silva HVR, Pereira AF. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Cryobiology 2024; 118:105169. [PMID: 39577602 DOI: 10.1016/j.cryobiol.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The success of somatic cell cryobanks is dependent on establishing reproducible cryopreservation methodologies. We supposed that associated extracellular cryoprotectants (sucrose and L-proline) with 2.5 or 10 % dimethyl sulfoxide (Me2SO) could guarantee better northern tiger cat cells quality rates after thawing when compared to Me2SO alone. Therefore, we evaluated the effects of sucrose or L-proline with 2.5 or 10 % Me2SO on the cryopreservation of northern tiger cat fibroblasts. Somatic cells were also cryopreserved with 2.5 % or 10 % Me2SO alone. All cells were analyzed for morphology, membrane integrity, proliferative activity, metabolism, apoptosis classification, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (ΔΨm). Regardless of the cryoprotective solution, cryopreservation did not affect morphology, membrane integrity after culture, proliferative activity, and metabolism (P > 0.05). However, immediately after thawing, 2.5 % Me2SO with L-proline and 10 % Me2SO promoted higher rates of membrane integrity when compared to the other cryopreserved groups (P < 0.05). Interestingly, cells cryopreserved with 10 % Me2SO maintained ROS levels similar to non-cryopreserved cells (P > 0.05). However, the percentage of viable cells evaluated by apoptosis classification was reduced when using 10 % Me2SO with L-proline compared to non-cryopreserved groups (P < 0.05). Additionally, ΔΨm was altered in all cryopreserved groups (P < 0.05). In summary, sucrose and L-proline were less effective in cryopreservation of northern tiger cat fibroblasts in the presence of 2.5 % or 10 % Me2SO. Also, 10 % Me2SO appears to be the most suitable cryoprotectant for the formation of cryobanks of this species.
Collapse
Affiliation(s)
- João Vitor da Silva Viana
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Xu R, Shi X, Huang H, Tan WS, Cai H. Development of a Me 2SO-free cryopreservation medium and its long-term cryoprotection on the CAR-NK cells. Cryobiology 2024; 114:104835. [PMID: 38070820 DOI: 10.1016/j.cryobiol.2023.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Cryopreservation is a crucial step in the supply process of off-the-shelf chimeric antigen receptor engineered natural killer (CAR-NK) cell products. Concerns have been raised over the clinical application of dimethyl sulfoxide (Me2SO) due to the potential for adverse reactions following infusion and limited cell-specific cytotoxic effects if misapplied. In this study, we developed a Me2SO-free cryopreservation medium specifically tailored for CAR-NK cells to address this limitation. The cryopreservation medium was formulated using human serum albumin (HSA) and glycerol as the base components. Following initial screening of seven clinically-compatible solutions, four with cryoprotective properties were identified. These were combined and optimized into a single formulation: IF-M. The viability, phenotype, and function of CAR-NK cells were evaluated after short-term and long-term cryopreservation to assess the effectiveness of IF-M, with Me2SO serving as the control group. The viability and recovery of CAR-NK cells in the IF-M group were significantly higher than those in the Me2SO group within 90 days of cryopreservation. Moreover, after 1 year of cryopreservation the cytotoxic capacity of CAR-NK cells cryopreserved with IF-M was comparable to that of fresh CAR-NK cells and significantly superior to that of CAR-NK cells cryopreserved in Me2SO. The CD107a expression intensity of CAR-NK cells in IF-M group was significantly higher than that of Me2SO group. No statistical differences were observed in other indicators under different cryopreservation times. These results underscore the robustness of IF-M as a suitable replacement for traditional Me2SO-based cryopreservation medium for the long-term cryopreservation and clinical application of off-the-shelf CAR-NK cells.
Collapse
Affiliation(s)
- Ruisheng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
4
|
Lee S, Joo Y, Lee EJ, Byeon Y, Kim JH, Pyo KH, Kim YS, Lim SM, Kilbride P, Iyer RK, Li M, French MC, Lee JY, Kang J, Byun H, Cho BC. Successful expansion and cryopreservation of human natural killer cell line NK-92 for clinical manufacturing. PLoS One 2024; 19:e0294857. [PMID: 38394177 PMCID: PMC10889882 DOI: 10.1371/journal.pone.0294857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 02/25/2024] Open
Abstract
Natural killer (NK) cells have recently shown renewed promise as therapeutic cells for use in treating hematologic cancer indications. Despite this promise, NK cell manufacturing workflows remain largely manual, open, and disconnected, and depend on feeders, as well as outdated unit operations or processes, often utilizing research-grade reagents. Successful scale-up of NK cells critically depends on the availability and performance of nutrient-rich expansion media and cryopreservation conditions that are conducive to high cell viability and recovery post-thaw. In this paper we used Cytiva hardware and media to expand the NK92 cell line in a model process that is suitable for GMP and clinical manufacturing of NK cells. We tested a range of cryopreservation factors including cooling rate, a range of DMSO-containing and DMSO-free cryoprotectants, ice nucleation, and cell density. Higher post-thaw recovery was seen in cryobags over cryovials cooled in identical conditions, and cooling rates of 1°C/min or 2°C/min optimal for cryopreservation in DMSO-containing and DMSO-free cryoprotectants respectively. Higher cell densities of 5x107 cells/ml gave higher post-thaw viability than those cryopreserved at either 1x106 or 5x106 cells/ml. This enabled us to automate, close and connect unit operations within the workflow while demonstrating superior expansion and cryopreservation of NK92 cells. Cellular outputs and performance were conducive to clinical dosing regimens, serving as a proof-of-concept for future clinical and commercial manufacturing.
Collapse
Affiliation(s)
- Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yunjoo Joo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Youngseon Byeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young Seob Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Peter Kilbride
- Global Life Sciences Solutions, Cambridge, United Kingdom
| | - Rohin K. Iyer
- Global Life Sciences Solutions USA LLC 100 Results Way, Marlborough, MA, United States of America
| | - Mingming Li
- Global Life Sciences Solutions Singapore Pte. Ltd., HarbourFront Center, Singapore, Singapore
| | - Mandy C. French
- Global Life Sciences Technologies (Shanghai) Co., Ltd., Shanghai Municipality, Shanghai, China
| | - Jung-Yub Lee
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Jeeheon Kang
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Hyesin Byun
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
6
|
Gonzalez-Martinez N, Gibson MI. Post-thaw application of ROCK-inhibitors increases cryopreserved T-cell yield. RSC Med Chem 2023; 14:2058-2067. [PMID: 37859712 PMCID: PMC10583820 DOI: 10.1039/d3md00378g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023] Open
Abstract
Emerging cell-based therapies such as CAR-T (Chimeric Antigen Receptor T) cells require cryopreservation to store and deliver intact and viable cells. Conventional cryopreservation formulations use DMSO to mitigate cold-induced damage, but do not address all the biochemical damage mechanisms induced by cold stress, such as programmed cell death (apoptosis). Rho-associated protein kinases (ROCK) are a key component of apoptosis, and their activation contributes to apoptotic blebbing. Here we demonstrate that the ROCK inhibitor fasudil hydrochloride, when supplemented into the thawing medium of T-cells increases the overall yield of healthy cells. Cell yield was highest using 5 or 10% DMSO cryopreservation solutions, with lower DMSO concentrations (2.5%) leading to significant physical damage to the cells. After optimisation, the post-thaw yield of T-cells increased by approximately 20% using this inhibitor, a significant increase in the context of a therapy. Flow cytometry analysis did not show a significant reduction in the relative percentage of cell populations undergoing apoptosis, but there was a small reduction in the 8 hours following thawing. Fasudil also led to a reduction in reactive oxygen species. Addition of fasudil into the cryopreservation solution, followed by dilution (rather than washing) upon thaw also gave a 20% increase in cell yield, demonstrating how this could be deployed in a cell-therapy context, without needing to change clinical thawing routines. Overall, this shows that modulation of post-thaw biochemical pathways which lead to apoptosis (or other degradative pathways) can be effectively targeted as a strategy to increase T-cell yield and function post-thaw.
Collapse
Affiliation(s)
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
7
|
Huang Z, Liu W, Ma T, Zhao H, He X, Liu B. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose. Biopreserv Biobank 2023; 21:417-426. [PMID: 36001824 DOI: 10.1089/bio.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | - Xiaowen He
- Origincell Technology Group Co., Shanghai, China
| | - Baolin Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Burkey AA, Ghousifam N, Hillsley AV, Brotherton ZW, Rezaeeyazdi M, Hatridge TA, Harris DT, Sprague WW, Sandoval BE, Rosales AM, Rylander MN, Lynd NA. Synthesis of Poly(allyl glycidyl ether)-Derived Polyampholytes and Their Application to the Cryopreservation of Living Cells. Biomacromolecules 2023; 24:1475-1482. [PMID: 36780271 DOI: 10.1021/acs.biomac.2c01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.
Collapse
Affiliation(s)
- Aaron A Burkey
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neda Ghousifam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander V Hillsley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary W Brotherton
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mahboobeh Rezaeeyazdi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Taylor A Hatridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dale T Harris
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - William W Sprague
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brittany E Sandoval
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Dynamics and Control of Materials, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Dynamics and Control of Materials, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Azam M, Ghufran H, Tasneem S, Mehmood A, Malik K, Yousaf MA, Tarar MN, Akram SJ, Riazuddin S. Priming of adipose-derived stem cells with curcumin prior to cryopreservation preserves their functional potency: Towards an 'Off-the-shelf' therapy for burns. Cryobiology 2023; 110:69-78. [PMID: 36470459 DOI: 10.1016/j.cryobiol.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Stem cells-based treatment for burn wounds require frozen cells as an off-the-shelf therapy; however, cryopreservation-induced oxidative stress resulted in post-thaw cell death or loss of cell functions, thus arrested their clinical practicality. Although antioxidant priming to stem cells increase their resistant to oxidative stress, but this strategy is still unexplored on cryopreserved cells. Herein, we investigated whether curcumin priming before cryopreservation could preserve the therapeutic potency of thawed stem cells. For this, unprimed and curcumin-primed adipose-derived stem cells (ASCs) were cryopreserved for one month. Post-thawing, cells were assessed for viability by trypan blue assay; metabolic activity by MTT assay; senescence by senescence-associated (SA)-β-galactosidase activity staining assay; migration by scratch healing assay and; mRNA expression by real-time PCR. Subsequently, the healing potential was examined by injecting cells around the wound periphery of acidic burn in rats. Post-healing, skin architecture was histologically examined. Results demonstrated that, curcumin-primed frozen cells (Cryo/Cur-ASCs) showed better post-thaw viability, metabolic activity, migration ability and lower percent of senescence comparative to unprimed frozen cells (Cryo/ASCs). Curcumin priming alleviated the oxidative damage by activating the ROS-reducing cellular antioxidant system as shown by the evident increase in GSH levels and upregulated mRNA expression of glutathione peroxidase (GPx), superoxide dismutases (SOD1, SOD2), and catalase (CAT). Further, invivo findings revealed that Cryo/Cur-ASCs-treated wounds exhibited earlier wound closure with an improved architecture comparative to Cryo/ASCs and depicted healing capacity almost similar to Fresh/ASCs. Our findings suggested that curcumin priming could be effective to alleviate the cryo-induced oxidative stress in post-thawed cells.
Collapse
Affiliation(s)
- Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | - Moazzam N Tarar
- Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| | | | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| |
Collapse
|
10
|
Bissoyi A, Tomás RMF, Gao Y, Guo Q, Gibson MI. Cryopreservation of Liver-Cell Spheroids with Macromolecular Cryoprotectants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2630-2638. [PMID: 36621888 PMCID: PMC9869333 DOI: 10.1021/acsami.2c18288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Spheroids are a powerful tool for basic research and to reduce or replace in vivo (animal) studies but are not routinely banked nor shared. Here, we report the successful cryopreservation of hepatocyte spheroids using macromolecular (polyampholyte) cryoprotectants supplemented into dimethyl sulfoxide (DMSO) solutions. We demonstrate that a polyampholyte significantly increases post-thaw recovery, minimizes membrane damage related to cryo-injury, and remains in the extracellular space making it simple to remove post-thaw. In a model toxicology challenge, the thawed spheroids matched the performance of fresh spheroids. F-actin staining showed that DMSO-only cryopreserved samples had reduced actin polymerization, which the polyampholyte rescued, potentially linked to intracellular ice formation. This work may facilitate access to off-the-shelf and ready-to-use frozen spheroids, without the need for in-house culturing. Readily accessible 3-D cell models may also reduce the number of in vivo experiments.
Collapse
Affiliation(s)
- Akalabya Bissoyi
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Yanan Gao
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiongyu Guo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I. Gibson
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
11
|
Ishibe T, Gonzalez-Martinez N, Georgiou PG, Murray KA, Gibson MI. Synthesis of Poly(2-(methylsulfinyl)ethyl methacrylate) via Oxidation of Poly(2-(methylthio)ethyl methacrylate): Evaluation of the Sulfoxide Side Chain on Cryopreservation. ACS POLYMERS AU 2022; 2:449-457. [PMID: 36536886 PMCID: PMC9756334 DOI: 10.1021/acspolymersau.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/17/2023]
Abstract
Conventional cryopreservation solutions rely on the addition of organic solvents such as DMSO or glycerol, but these do not give full recovery for all cell types, and innovative cryoprotectants may address damage pathways which these solvents do not protect against. Macromolecular cryoprotectants are emerging, but there is a need to understand their structure-property relationships and mechanisms of action. Here we synthesized and investigated the cryoprotective behavior of sulfoxide (i.e., "DMSO-like") side-chain polymers, which have been reported to be cryoprotective using poly(ethylene glycol)-based polymers. We also wanted to determine if the polarized sulfoxide bond (S+O- character) introduces cryoprotective effects, as this has been seen for mixed-charge cryoprotective polyampholytes, whose mechanism of action is not yet understood. Poly(2-(methylsulfinyl)ethyl methacrylate) was synthesized by RAFT polymerization of 2-(methylthio)ethyl methacrylate and subsequent oxidation to sulfoxide. A corresponding N-oxide polymer was also prepared and characterized: (poly(2-(dimethylamineoxide)ethyl methacrylate). Ice recrystallization inhibition assays and differential scanning calorimetry analysis show that the sulfoxide side chains do not modulate the frozen components during cryopreservation. In cytotoxicity assays, it was found that long-term (24 h) exposure of the polymers was not tolerated by cells, but shorter (30 min) incubation times, which are relevant for cryopreservation, were tolerated. It was also observed that overoxidation to the sulfone significantly increased the cytotoxicity, and hence, these materials require a precision oxidation step to be deployed. In suspension cell cryopreservation investigations, the polysulfoxides did not increase cell recovery 24 h post-thaw. These results show that unlike hydrophilic backboned polysulfides, which can aid cryopreservation, the installation of the sulfoxide group onto a polymer does not necessarily bring cryoprotective properties, highlighting the challenges of developing and discovering macromolecular cryoprotectants.
Collapse
Affiliation(s)
- Toru Ishibe
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | | | - Panagiotis G. Georgiou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Kathryn A. Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| |
Collapse
|
12
|
Wu X, Qiu Y, Chen C, Gao Y, Wang Y, Yao F, Zhang H, Li J. Polysaccharide-Derived Ice Recrystallization Inhibitors with a Modular Design: The Case of Dextran-Based Graft Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14097-14108. [PMID: 36342971 DOI: 10.1021/acs.langmuir.2c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ice recrystallization inhibitors inspired from antifreeze proteins (AFPs) are receiving increasing interest for cryobiology and other extreme environment applications. Here, we present a modular strategy to develop polysaccharide-derived biomimetics, and detailed studies were performed in the case of dextran. Poly(vinyl alcohol) (PVA) which has been termed as one of the most potent biomimetics of AFPs was grafted onto dextran via thiol-ene click chemistry (Dex-g-PVA). This demonstrated that Dex-g-PVA is effective in IRI and its activity increases with the degree of polymerization (DP) (sizes of ice crystals were 18.846 ± 1.759 and 9.700 ± 1.920 μm with DPs of 30 and 80, respectively) and fraction of PVA. By means of the dynamic ice shaping (DIS) assay, Dex-g-PVA is found to engage on the ice crystal surfaces, thus the ice affinity accounts for their IRI activity. In addition, Dex- g-PVA displayed enhanced IRI activity compared to that of equivalent PVA alone. We speculate that the hydrophilic nature of dextran would derive PVA in a stretch conformation that favors ice binding. The modular design can not only offer polysaccharides IRI activity but also favor the ice-binding behavior of PVA.
Collapse
|
13
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
14
|
Hu B, Li GK, Ai GM, Zhang M, Su SS, He X, Li XL, Wang KR. Macrocycle molecule-based cryoprotectants for ice recrystallization inhibition and cell cryopreservation. J Mater Chem B 2022; 10:6922-6927. [PMID: 35979758 DOI: 10.1039/d2tb01083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin-based cryoprotectants were developed. α-TMCD, which can be easily put into large-scale production, showed enhanced cell viabilities of 19.97 ± 0.78%, 13.93 ± 4.46% and 19.10 ± 0.95% against GES-1, hucMSCs and A549 cells. Moreover, the viable cells observed by light microscope imaging showed that the enhanced hucMSC cell number percentage of α-TMCD was 103.2%. An α-TMCD-DMSO-based CPA exhibited an enhanced cryoprotective effect by a mechanism of DMSO-enhanced cell penetrating effect and α-TMCD-DMSO synergistically enhanced IMA ability. α-TMCD exhibited potential for the discovery of macrocycle-molecule-based cryoprotectants.
Collapse
Affiliation(s)
- Bing Hu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Guo-Kai Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Shan-Shan Su
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Xu He
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
15
|
Tomás RMF, Bissoyi A, Congdon TR, Gibson MI. Assay-ready Cryopreserved Cell Monolayers Enabled by Macromolecular Cryoprotectants. Biomacromolecules 2022; 23:3948-3959. [PMID: 35972897 PMCID: PMC9472225 DOI: 10.1021/acs.biomac.2c00791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Cell monolayers underpin the discovery and screening
of new drugs
and allow for fundamental studies of cell biology and disease. However,
current cryopreservation technologies do not allow cells to be stored
frozen while attached to tissue culture plastic. Hence, cells must
be thawed from suspension, cultured for several days or weeks, and
finally transferred into multiwell plates for the desired application.
This inefficient process consumes significant time handling cells,
rather than conducting biomedical research or other value-adding activities.
Here, we demonstrate that a synthetic macromolecular cryoprotectant
enables the routine, reproducible, and robust cryopreservation of
biomedically important cell monolayers, within industry-standard tissue
culture multiwell plates. The cells are simply thawed with media and
placed in an incubator ready to use within 24 h. Post-thaw cell recovery
values were >80% across three cell lines with low well-to-well
variance.
The cryopreserved cells retained healthy morphology, membrane integrity,
proliferative capacity, and metabolic activity; showed marginal increases
in apoptotic cells; and responded well to a toxicological challenge
using doxorubicin. These discoveries confirm that the cells are “assay-ready”
24 h after thaw. Overall, we show that macromolecular cryoprotectants
can address a long-standing cryobiological challenge and offers the
potential to transform routine cell culture for biomedical discovery.
Collapse
Affiliation(s)
- Ruben M F Tomás
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Akalabya Bissoyi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
16
|
Pesenti T, Zhu C, Gonzalez-Martinez N, Tomás RMF, Gibson MI, Nicolas J. Degradable Polyampholytes from Radical Ring-Opening Copolymerization Enhance Cellular Cryopreservation. ACS Macro Lett 2022; 11:889-894. [PMID: 35766585 PMCID: PMC9301905 DOI: 10.1021/acsmacrolett.2c00298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macromolecular cryoprotectants based on polyampholytes are showing promise as supplemental cryoprotectants alongside conventional DMSO-based freezing. Here we exploit radical ring-opening (ter)polymerization to access ester-containing cryoprotective polyampholytes, which were shown to be degradable. Using a challenging cell monolayer cryopreservation model, the degradable polyampholytes were found to enhance post-thaw recovery when supplemented into DMSO. This demonstrates that degradable macromolecular cryoprotectants can be developed for application in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Théo Pesenti
- Université
Paris-Saclay, CNRS, Institut
Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Chen Zhu
- Université
Paris-Saclay, CNRS, Institut
Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Natalia Gonzalez-Martinez
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Ruben M. F. Tomás
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Julien Nicolas
- Université
Paris-Saclay, CNRS, Institut
Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
17
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
18
|
Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose. Biomacromolecules 2022; 23:467-477. [PMID: 34097399 PMCID: PMC7612374 DOI: 10.1021/acs.biomac.1c00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Indexed: 12/16/2022]
Abstract
From trauma wards to chemotherapy, red blood cells are essential in modern medicine. Current methods to bank red blood cells typically use glycerol (40 wt %) as a cryoprotective agent. Although highly effective, the deglycerolization process, post-thaw, is time-consuming and results in some loss of red blood cells during the washing procedures. Here, we demonstrate that a polyampholyte, a macromolecular cryoprotectant, synergistically enhances ovine red blood cell cryopreservation in a mixed cryoprotectant system. Screening of DMSO and trehalose mixtures identified optimized conditions, where cytotoxicity was minimized but cryoprotective benefit maximized. Supplementation with polyampholyte allowed 97% post-thaw recovery (3% hemolysis), even under extremely challenging slow-freezing and -thawing conditions. Post-thaw washing of the cryoprotectants was tolerated by the cells, which is crucial for any application, and the optimized mixture could be applied directly to cells, causing no hemolysis after 1 h of exposure. The procedure was also scaled to use blood bags, showing utility on a scale relevant for application. Flow cytometry and adenosine triphosphate assays confirmed the integrity of the blood cells post-thaw. Microscopy confirmed intact red blood cells were recovered but with some shrinkage, suggesting that optimization of post-thaw washing could further improve this method. These results show that macromolecular cryoprotectants can provide synergistic benefit, alongside small molecule cryoprotectants, for the storage of essential cell types, as well as potential practical benefits in terms of processing/handling.
Collapse
Affiliation(s)
- Alex Murray
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Kilbride
- Asymptote, Cytiva, Chivers Way, Cambridge CB24 9BZ, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
19
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
20
|
Wu X, Yao F, Zhang H, Li J. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review. Int J Biol Macromol 2021; 192:1276-1291. [PMID: 34634336 DOI: 10.1016/j.ijbiomac.2021.09.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
Cell-based therapy is a promising technology for intractable diseases and health care applications, in which cryopreservation has become an essential procedure to realize the production of therapeutic cells. Ice recrystallization is the major factor that affects the post-thaw viability of cells. As a typical series of biomacromolecules with ice recrystallization inhibition (IRI) activity, antifreeze proteins (AFPs) have been employed in cell cryopreservation. Meanwhile, synthesized materials with IRI activity have emerged in the name of biomimetics of AFPs to expand their availability and practicality. However, fabrication of AFPs mimetics is in a chaotic period. There remains little commonality among different AFPs mimetics, then it is difficult to set guidelines on their design. With no doubt, a comprehensive understanding on the antifreezing mechanism of AFPs in molecular level will enable us to rebuild the function of AFPs, and provide convenience to clarify the relationship between structure and function of these early stage biomimetics. In this review, we would discuss those previously reported biomimetics to summarize their structure characteristics concerning the IRI activity and attempt to develop a roadmap for guiding the design of novel AFPs mimetics.
Collapse
Affiliation(s)
- Xiaojun Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Park JK, Patel M, Piao Z, Park SJ, Jeong B. Size and Shape Control of Ice Crystals by Amphiphilic Block Copolymers and Their Implication in the Cryoprotection of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33969-33980. [PMID: 34275265 DOI: 10.1021/acsami.1c09933] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise control over the size and shape of ice crystals is a key factor to consider in designing antifreezing and cryoprotecting molecules for cryopreservation of cells. Here, we report that a poly(ethylene glycol)-poly(l-alanine) (PEG-PA) block copolymer exhibits excellent cryoprotecting properties for stem cells and antifreezing properties for water. As the molecular weight of PA increased from 500, 760, and 1750 Da (P1, P2, and P3) at the same PEG molecular weight of 5000 Da, the β-sheet content decreased and α-helix content increased. Comparing P2 (PEG-PA; 5000-760) and P4 (PEG-PA: 1000-750), β-sheets increased as the PEG block length decreased. The critical micelle concentration of the PEG-PA block copolymers was in a range of 0.5-3.0 mg/mL and was proportional to the hydrophobicity of the PEG-PA block copolymers. The P1, P2, and P3 self-assembled into spherical micelles, whereas P4 formed micelles with cylindrical morphology. The difference in the block copolymer structure affected ice recrystallization inhibition (IRI) activity and cryopreservation of cells. IRI activity was assayed via mean largest grain size (MLGS), and interactions between polymers and ice crystal surfaces were studied by dynamic ice-shaping studies. The MLGS decreased to 58 → 53 → 45 → 35 → 23% of that of PBS, as the polymer (PEG-PA 5000-500) concentration increased from 0.0 (PBS; control) → 1.0 → 5.0 → 10 → 30 → 50 mg/mL. The MLGS of PEG 5k solutions (negative control) decreased to 74 → 71 → 64 → 44 → 37% of that of PBS in the same concentration range. P3 and P4 with a longer hydrophobic PA block developed elongated ice crystals at above 30 mg/mL. The dynamic ice-shaping study exhibited that ice crystals became needle-shaped, as the hydrophobicity of the polymer increased as in P2-P4. The cell recovery in the P1 system after cryopreservation at -196 °C for 7 days was 87% of that of the dimethyl sulfoxide (DMSO) 10% system (positive control). The cell recovery was 48% for the P2 system and drastically decreased to less than 30% of that of the DMSO 10% system in the P3, P4, PEG 5k, PEG 1k, PVA 80H, and PVA 100H systems. Current studies suggest that IRI activity, round ice crystal shaping, and membrane stabilization activity of P1 cooperatively provide excellent cell recovery among the candidate systems. Recovered stem cells exhibited excellent proliferation and multilineage differentiation into osteocytes, chondrocytes, and adipocytes. To conclude, the PEG-PA (5000-500) block copolymer is suggested to be a promising antifreezing cryoprotectant for stem cells.
Collapse
Affiliation(s)
- Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
22
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|