1
|
Chintapula U, Karim SU, Iyer PR, Asokan-Sheeja H, Neupane B, Nazneen F, Dong H, Bai F, Nguyen KT. A novel nanocomposite drug delivery system for SARS-CoV-2 infections. NANOSCALE ADVANCES 2024; 6:3747-3758. [PMID: 39050946 PMCID: PMC11265598 DOI: 10.1039/d4na00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024]
Abstract
To develop an inhalable drug delivery system, we synthesized poly (lactic-co-glycolic acid) nanoparticles with Remdesivir (RDV NPs) as an antiviral agent against SARS-CoV-2 replication and formulated Remdesivir-loaded nanocomposites (RDV NCs) via coating of RDV NPs with novel supramolecular cell-penetrating peptide nanofibers (NFs) to enhance cellular uptake and intracellular drug delivery. RDV NPs and RDV NCs were characterized using variou techniques, including Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and fluorescent microscopy. The cytotoxicity of RDV NCs was assessed in Vero E6 cells and primary human lung epithelial cells, with no significant cytotoxicity observed up to 1000 μg mL-1 and 48 h. RDV NCs were spherically shaped with a size range of 200-300 nm and a zeta potential of ∼+31 mV as well as indicating the presence of coated nanofibers. Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR), immunofluorescence and plaque assays of SARS-CoV-2 infected Vero E6 treated with RDV NCs showed significantly higher antiviral activities compared to those of free drug and uncoated RDV NPs. RDV NCs exhibited high antiviral activity against SARS-CoV-2, and the nanocomposite platform has the potential to be developed into an inhalable drug delivery system for other viral infections in the lungs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | | | - Haritha Asokan-Sheeja
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Farzana Nazneen
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| |
Collapse
|
2
|
Huang X, Hu Q, Li J, Yao W, Wang C, Feng Y, Song W. Sputtering-Deposited Ultra-Thin Ag-Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NO x Response. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1574. [PMID: 38612088 PMCID: PMC11012588 DOI: 10.3390/ma17071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The multifunctional development in the field of face masks and the growing demand for scalable manufacturing have become increasingly prominent. In this study, we utilized high-vacuum magnetron sputtering technology to deposit a 5 nm ultra-thin Ag-Cu film on non-woven fabric and fabricated ultra-thin Ag-Cu film face masks. The antibacterial rates against Escherichia coli and Staphylococcus aureus were 99.996% and 99.978%, respectively, while the antiviral activity against influenza A virus H1N1 was 99.02%. Furthermore, the mask's ability to monitor respiratory system diseases was achieved through color change (from brownish-yellow to grey-white). The low cost and scalability potential of ultra-thin silver-copper film masks offer new possibilities for practical applications of multifunctional masks.
Collapse
Affiliation(s)
- Xuemei Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
| | - Jia Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
| | - Wenqing Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Chun Wang
- Ningbo Customs Technology Center, Ningbo 315012, China; (C.W.); (Y.F.)
| | - Yun Feng
- Ningbo Customs Technology Center, Ningbo 315012, China; (C.W.); (Y.F.)
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (X.H.); (Q.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Vicenzi EP, Whittaker S, Weaver JL, Staymates ME, Radney JG, Zangmeister CD. Microscopy of Woven and Nonwoven Face Covering Materials: Implications for Particle Filtration. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:27-40. [PMID: 38252594 DOI: 10.1093/micmic/ozad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
A suite of natural, synthetic, and mixed synthetic-natural woven fabrics, along with nonwoven filtration layers from a surgical mask and an N95 respirator, was examined using visible light microscopy, scanning electron microscopy, and micro-X-ray computed tomography (µXCT) to determine the fiber diameter distribution, fabric thickness, and the volume of solid space of the fabrics. Nonwoven materials exhibit a positively skewed distribution of fiber diameters with a mean value of ≈3 μm, whereas woven fabrics exhibit a normal distribution of diameters with mean values roughly five times larger (>15 μm). The mean thickness of the N95 filtration material is 1093 μm and is greater than that of the woven fabrics that span from 420 to 650 μm. A new procedure for measuring the thickness of flannel fabrics is proposed that accounts for raised fibers. µXCT allowed for a quantitative nondestructive approach to measure fabric porosity as well as the surface area/volume. Cotton flannel showed the largest mean isotropy of any fabric, though fiber order within the weave is poorly represented in the surface electron images. Surface fabric isotropy and surface area/volume ratios are proposed as useful microstructural quantities to consider for future particle filtration modeling efforts of woven materials.
Collapse
Affiliation(s)
- Edward P Vicenzi
- Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746, USA
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Scott Whittaker
- National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20013-7012, USA
| | - Jamie L Weaver
- Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746, USA
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Matthew E Staymates
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - James G Radney
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Christopher D Zangmeister
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Kawungezi P, Migisha R, Zavuga R, Simbwa BN, Zalwango JF, Ninsiima M, Kiggundu T, Agaba B, Kyamwine I, Kadobera D, Kwesiga B, Bulage L, Majwala RK, Ario AR. Investigation of COVID-19 outbreak at a refugee transit centre, Kisoro District, Uganda, June-July 2022. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002428. [PMID: 38446829 PMCID: PMC10917256 DOI: 10.1371/journal.pgph.0002428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Due to conflict in the Democratic Republic of Congo (DRC), approximately 34,000 persons arrived at Nyakabande Transit Centre (NTC) between March and June 2022. On June 12, 2022, Kisoro District reported >330 cases of COVID-19 among NTC residents. We investigated the outbreak to assess its magnitude, identify risk factors, and recommend control measures. We defined a confirmed case as a positive SARS-CoV-2 antigen test in an NTC resident during March 1-June 30, 2022. We generated a line list through medical record reviews and interviews with residents and health workers. We assessed the setting to understand possible infection mechanisms. In a case-control study, we compared exposures between cases (persons staying ≥5 days at NTC between June 26 and July 16, 2022, with a negative COVID-19 test at NTC entry and a positive test at exit) and unmatched controls (persons with a negative COVID-19 test at both entry and exit who stayed ≥5 days at NTC during the same period). We used multivariable logistic regression to identify factors associated with contracting COVID-19. Among 380 case-persons, 206 (54.2%) were male, with a mean age of 19.3 years (SD = 12.6); none died. The attack rate was higher among exiting persons (3.8%) than entering persons (0.6%) (p<0.01). Among 42 cases and 127 controls, close contact with symptomatic persons (aOR = 9.6; 95%CI = 3.1-30) increased the odds of infection; using a facemask (aOR = 0.06; 95% CI = 0.02-0.17) was protective. We observed overcrowding in shelters, poor ventilation, and most refugees not wearing face masks. The COVID-19 outbreak at NTC was facilitated by overcrowding and suboptimal use of facemasks. Enforcing facemask use and expanding shelter space could reduce the risk of future outbreaks. The collaborative efforts resulted in successful health sensitization and expanding the distribution of facemasks and shelter space. Promoting facemask use through refugee-led efforts is a viable strategy.
Collapse
Affiliation(s)
- Peter Kawungezi
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Richard Migisha
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Robert Zavuga
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Brenda Nakafeero Simbwa
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Jane Frances Zalwango
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Mackline Ninsiima
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Thomas Kiggundu
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Brian Agaba
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Irene Kyamwine
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Daniel Kadobera
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Benon Kwesiga
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Lilian Bulage
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Robert Kaos Majwala
- Ministry of Health, Kampala, Uganda
- Department of Global Health Security, Baylor Uganda, Kampala, Uganda
| | - Alex Riolexus Ario
- Uganda National Institute of Public Health, Uganda Public Health Fellowship Program, Kampala, Uganda
- Ministry of Health, Kampala, Uganda
| |
Collapse
|
5
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Hossain M, Karmakar K, Sarkar P, Chattaraj T, Rao KDM. Self-Sanitization in a Silk Nanofibrous Network for Biodegradable PM 0.3 Filters with In Situ Joule Heating. ACS OMEGA 2024; 9:9137-9146. [PMID: 38434843 PMCID: PMC10905722 DOI: 10.1021/acsomega.3c08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
In the contemporary way of life, face masks are crucial in managing disease transmission and battling air pollution. However, two key challenges, self-sanitization and biodegradation of face masks, need immediate attention, prompting the development of innovative solutions for the future. In this study, we present a novel approach that combines controlled acid hydrolysis and mechanical chopping to synthesize a silk nanofibrous network (SNN) seamlessly integrated with a wearable stainless steel mesh, resulting in the fabrication of self-sanitizable face masks. The distinct architecture of face masks showcases remarkable filtration efficiencies of 91.4, 95.4, and 98.3% for PM0.3, PM0.5, and PM1.0, respectively, while maintaining a comfortable level of breathability (ΔP = 92 Pa). Additionally, the face mask shows that a remarkable thermal resistance of 472 °C cm2 W-1 generates heat spontaneously at low voltage, deactivating Escherichia coli bacteria on the SNN, enabling self-sanitization. The SNN exhibited complete disintegration within the environment in just 10 days, highlighting the remarkable biodegradability of the face mask. The unique advantage of self-sanitization and biodegradation in a face mask filter is simultaneously achieved for the first time, which will open avenues to accomplish environmentally benign next-generation face masks.
Collapse
Affiliation(s)
| | | | - Prakash Sarkar
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| | - Tiyasi Chattaraj
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| | - K. D. M. Rao
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Hou G, Wang Q, Li N, Zhao Y, Wang Z, Shi S, Liu D, Zhang Y, Hu P, Zhao L, Cao Z. Face mask as an indicator and shield of human exposure to traditional and novel organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108389. [PMID: 38118213 DOI: 10.1016/j.envint.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Herein, the trapping effectiveness of N95, filter KN95, medical surgical masks (MSMs), and disposable medical masks (DMMs) against 19 airborne traditional and novel organophosphate esters (OPEs) was evaluated. Laboratory simulations (n = 24 for each type of mask) showed that time-dependent accumulation of ∑19OPEs on the four types of masks ranged between 30.1 and 86.6 ng in 24 h, with the highest and lowest median amounts trapped by the N95 masks (53.3 ng) and DMMs (43.2 ng), respectively. The trapping efficiency of the four types of masks for ∑19OPEs decreased over time from 84 % to 39 % in 24 h, with N95 masks showing the highest median efficiency (70 %). Further, field investigations were conducted in five types of microenvironments (train, hospital, bus, supermarket, and canteen), and an analysis of 200 samples showed that ∑19OPEs were accumulated in the masks with a variable amount from 3.7 to 117 ng/mask. Consistent with the laboratory simulations, the N95 masks (29.0 ng/mask) exhibited the highest hourly median amount of trapped OPEs, followed by the KN95 masks (24.5 ng/mask), MSMSs (17.4 ng/mask), and DMMs (15.8 ng/mask). Triethyl phosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), and cresyl diphenyl phosphate (CDP) as well as 4-isopropylphenyl diphenyl phosphate (4IPPDPP) and 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP) were the most commonly detected traditional and novel OPEs. Based on the amount of OPEs trapped on the masks, we estimated the concentration of ∑19OPEs in the train microenvironment to be the highest (222 ng/m3), which is approximately 2-5 times higher than that in the other microenvironments. The results of this study prove that masks can effectively protect humans from exposure to OPEs and act as low-cost indicators of indoor contamination.
Collapse
Affiliation(s)
- Guodong Hou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qiyue Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Na Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Donghai Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yacai Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
8
|
Karmacharya M, Kumar S, Choi YJ, Cho YK. Platelet Membrane-Enclosed Bioorthogonal Catalysis for Combating Dental Caries. Adv Healthc Mater 2024; 13:e2302121. [PMID: 37847511 DOI: 10.1002/adhm.202302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Platelets have shown promise as a means to combat bacterial infections, fostering the development of innovative therapeutic approaches. However, several challenges persist, including cargo loading issues, limited efficacy against biofilms, and concerns regarding the impact of payloads on the platelet carriers. Here, human platelet membrane vesicles (h-PMVs) encapsulating supramolecular metal catalysts (SMCs) as "nanofactories" to convert prodrugs into antimicrobial compounds within close proximity to bacteria are introduced. Having established the feasibility and effectiveness of the SMCs within h-PMVs, referred to as the PLT-reactor, to activate pro-antibiotic drugs (pro-ciprofloxacin and pro-moxifloxacin) using model organisms (Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923), the investigation is subsequently extended to oral biofilms, with a particular emphasis on Streptococcus mutans 3065. This "bind and kill" strategy demonstrates the potent antimicrobial specificity of the PLT-reactor through localized antibiotic production. h-PMVs play a pivotal role by enabling precise targeting of pathogenic biofilms on natural teeth while minimizing potential hemolytic effects. The finding indicates that platelet membrane-cloaked surfaces exhibit robust, multifaceted, and pathogen-specific binding affinity with excellent biocompatibility, making them a promising alternative to antibody-based therapies for infectious diseases.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University, College of Dentistry, Seoul, 03722, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
9
|
Collings K, Boisdon C, Sham TT, Skinley K, Oh HK, Prince T, Ahmed A, Pennington SH, Brownridge PJ, Edwards T, Biagini GA, Eyers CE, Lamb A, Myers P, Maher S. Attaching protein-adsorbing silica particles to the surface of cotton substrates for bioaerosol capture including SARS-CoV-2. Nat Commun 2023; 14:5033. [PMID: 37596260 PMCID: PMC10439164 DOI: 10.1038/s41467-023-40696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The novel coronavirus pandemic (COVID-19) has necessitated a global increase in the use of face masks to limit the airborne spread of the virus. The global demand for personal protective equipment has at times led to shortages of face masks for the public, therefore makeshift masks have become commonplace. The severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has a spherical particle size of ~97 nm. However, the airborne transmission of this virus requires the expulsion of droplets, typically ~0.6-500 µm in diameter (by coughing, sneezing, breathing, and talking). In this paper, we propose a face covering that has been designed to effectively capture SARS-CoV-2 whilst providing uncompromised comfort and breathability for the wearer. Herein, we describe a material approach that uses amorphous silica microspheres attached to cotton fibres to capture bioaerosols, including SARS CoV-2. This has been demonstrated for the capture of aerosolised proteins (cytochrome c, myoglobin, ubiquitin, bovine serum albumin) and aerosolised inactivated SARS CoV-2, showing average filtration efficiencies of ~93% with minimal impact on breathability.
Collapse
Affiliation(s)
- Kieran Collings
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Kevin Skinley
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Hyun-Kyung Oh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adham Ahmed
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amanda Lamb
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Applied Health Insights Ltd, Cheshire, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Emam MH, Elezaby RS, Swidan SA, Loutfy SA, Hathout RM. Cerium Oxide Nanoparticles/Polyacrylonitrile Nanofibers as Impervious Barrier against Viral Infections. Pharmaceutics 2023; 15:1494. [PMID: 37242737 PMCID: PMC10224416 DOI: 10.3390/pharmaceutics15051494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Using face masks is one of the protective measures to reduce the transmission rate of coronavirus. Its massive spread necessitates developing safe and effective antiviral masks (filters) applying nanotechnology. METHODS Novel electrospun composites were fabricated by incorporating cerium oxide nanoparticles (CeO2 NPs) into polyacrylonitrile (PAN) electrospun nanofibers that can be used in the future in face masks. The effects of the polymer concentration, applied voltage, and feeding rate during the electrospinning were studied. The electrospun nanofibers were characterized using SEM, XRD, FTIR, and tensile strength testing. The cytotoxic effect of the nanofibers was evaluated in the Vero cell line using the MTT colorimetric assay, and the antiviral activity of the proposed nanofibers was evaluated against the human adenovirus type 5 (ADV-5) respiratory virus. RESULTS The optimum formulation was fabricated with a PAN concentration of 8%, w/v loaded with 0.25%, w/v CeO2 NPs with a feeding rate of 26 KV and an applied voltage of 0.5 mL/h. They showed a particle size of 15.8 ± 1.91 nm and a zeta potential of -14 ± 0.141 mV. SEM imaging demonstrated the nanoscale features of the nanofibers even after incorporating CeO2 NPs. The cellular viability study showed the safety of the PAN nanofibers. Incorporating CeO2 NPs into these fibers further increased their cellular viability. Moreover, the assembled filter could prevent viral entry into the host cells as well as prevent their replication inside the cells via adsorption and virucidal antiviral mechanisms. CONCLUSIONS The developed cerium oxide nanoparticles/polyacrylonitrile nanofibers can be considered a promising antiviral filter that can be used to halt virus spread.
Collapse
Affiliation(s)
- Merna H. Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Samah A. Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
11
|
Qian X, Xiong S, Rao Y, Low ZX, Zhong Z, Wang Y. Atomic layer deposition of ZnO on polypropylene nonwovens for photocatalytic antibacterial facemasks. NANOTECHNOLOGY 2023; 34:255701. [PMID: 36958026 DOI: 10.1088/1361-6528/acc6d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Addressing respiratory infectious diseases remains one of the main priorities due to the increased risk of exposure caused by population growth, increasing international travel and commerce, and most recently, the COVID-19 outbreak. In the war against respiratory diseases, facemasks are powerful tools to obstruct the penetration of microorganisms, thereby protecting the wearer from infections. Nonetheless, the intercepted microorganisms on the surface of facemasks may proliferate and lead to secondary infection. To solve this problem, atomic layer deposition is introduced to deposit uniform and mechanically robust ZnO layers on polypropylene (PP) nonwoven fabrics, a widely used raw material in fabricating facemasks. The loading of ZnO demonstrates no adverse effects on the separation performance of facemasks, and the filtration efficiency of the facemasks towards different types of nanoparticles remains higher than 98.9%. Moreover, the modified PP nonwoven fabrics are granted with excellent antibacterial activity and photocatalytic sterilization ability, which can inactivate both germ-negative and germ-positive bacteria (E. coliandS. aureus) effectively with and without light illumination. Therefore, the modified PP nonwoven fabrics are potential candidates to be used as the outer layer on facemasks and endow them with photocatalytic antibacterial activity.
Collapse
Affiliation(s)
- Xiaofeng Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Sen Xiong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Yuanyuan Rao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Liu X, Hu B. Mask device as a new wearable sampler for breath analysis: what can we expect in the future? Anal Bioanal Chem 2023:10.1007/s00216-023-04673-z. [PMID: 37017724 PMCID: PMC10074379 DOI: 10.1007/s00216-023-04673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Human exhaled breath is becoming an attractive clinical source as it is foreseen to enable noninvasive diagnosis of many diseases. Because mask devices can be used for efficiently filtering exhaled substances, mask-wearing has been required in the past few years in daily life since the unprecedented COVID-19 pandemic. In recent years, there is a new development of mask devices as new wearable breath samplers for collecting exhaled substances for disease diagnosis and biomarker discovery. This paper attempts to identify new trends in mask samplers for breath analysis. The couplings of mask samplers with different (bio)analytical approaches, including mass spectrometry (MS), polymerase chain reaction (PCR), sensor, and others for breath analysis, are summarized. The developments and applications of mask samplers in disease diagnosis and human health are reviewed. The limitations and future trends of mask samplers are also discussed.
Collapse
Affiliation(s)
- Ximeng Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Panchal N, Vinu R. Resource recovery from discarded COVID-19 PPE kit through catalytic fast pyrolysis. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2023; 170:105870. [PMID: 36686287 PMCID: PMC9846882 DOI: 10.1016/j.jaap.2023.105870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
During the COVID-19 pandemic, the world saw an exponential surge in the production of Personal Protective Equipment (PPE) kits, which eventually got discarded in the biomedical waste stream. In this study, thirteen different polymer samples from the PPE kit were collected and characterized using Fourier transform infrared spectrometer, thermogravimetric analysis, and analytical pyrolysis-gas chromatograph/mass spectrometry. The characterization data showed that about 94 % by mass of components were made of only three polymers, viz. polypropylene (PP, 75.6 wt %), polyethylene terephthalate (PET, 12.5 wt %), and polycarbonate (PC, 6 wt %). The analytical pyrolysis of the PPE coverall suit (PP) yielded mainly alkenes containing 2,4-dimethyl-1-heptene as the major compound with 17 wt % yield at 600 °C. The pyrolysates from face shield (PET) were rich in benzoic acid (5.8 wt %) and acetophenone (4.8 wt %), while those from safety goggles (PC) were rich in phenol (17.6 wt %) and p-cresol (12.4 wt %) at 600 °C. HZSM-5 and HY zeolites were used for the catalytic upgradation of pyrolysates especially from PP, PET and PC. The temperature and feed-to-catalyst ratio were optimized by performing catalytic fast pyrolysis experiments at 500 °C, 600 °C and 700 °C with different feed-to-catalyst ratios 1:2, 1:4, and 1:6 (w/w). The yield of aromatic hydrocarbons, viz., BTEX (benzene, toluene, ethylbenzene, xylenes) and naphthalene, was maximum (∼25.7 wt %) from PP coverall when HY catalyst was used at 600 °C and 1:6 (w/w) loading. In the case of PET face shield, the total yield of BTEX, naphthalene and biphenyl was maximum (27.9 wt %) at 600 °C and 1:4 (w/w) of HZSM-5, while in the case of PC goggles, it was maximum (18.6 wt %) at 700 °C and 1:4 (w/w) of HY. This study shows that the entire PPE kit can be valorized via catalytic fast pyrolysis to generate petrochemical products and platform molecules like monoaromatic hydrocarbons at high selectivities.
Collapse
Affiliation(s)
- Nikhilkumar Panchal
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Abouhajar F, Chaudhuri R, Valiulis SN, Stuart DD, Malinick AS, Xue M, Cheng Q. Label-Free Analysis of Binding and Inhibition of SARS-Cov-19 Spike Proteins to ACE2 Receptor with ACE2-Derived Peptides by Surface Plasmon Resonance. ACS APPLIED BIO MATERIALS 2023; 6:182-190. [PMID: 36550079 PMCID: PMC9797021 DOI: 10.1021/acsabm.2c00832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 has been shown to enter and infect human cells via interactions between spike protein (S glycoprotein) and angiotensin-converting enzyme 2 (ACE2). As such, it may be possible to suppress the infection of the virus via the blocking of this binding interaction through the use of specific peptides that can mimic the human ACE 2 peptidase domain (PD) α 1-helix. Herein, we report the use of competitive assays along with surface plasmon resonance (SPR) to investigate the effect of peptide sequence and length on spike protein inhibition. The characterization of these binding interactions helps us understand the mechanisms behind peptide-based viral blockage and develop SPR methodologies to quickly screen disease inhibitors. This work not only helps further our understanding of the important biological interactions involved in viral inhibition but will also aid in future studies that focus on the development of therapeutics and drug options. Two peptides of different sequence lengths, [30-42] and [22-44], based on the α 1-helix of ACE2 PD were selected for this fundamental investigation. In addition to characterizing their inhibitory behavior, we also identified the critical amino acid residues of the RBD/ACE2-derived peptides by combining experimental results and molecular docking modeling. While both investigated peptides were found to effectively block the RBD residues known to bind to ACE2 PD, our investigation showed that the shorter peptide was able to reach a maximal inhibition at lower concentrations. These inhibition results matched with molecular docking models and indicated that peptide length and composition are key in the development of an effective peptide for inhibiting biophysical interactions. The work presented here emphasizes the importance of inhibition screening and modeling, as longer peptides are not always more effective.
Collapse
Affiliation(s)
- Fatimah Abouhajar
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rohit Chaudhuri
- Department of Chemistry, University of California, Riverside, CA 92521
| | | | - Daniel D. Stuart
- Department of Chemistry, University of California, Riverside, CA 92521
| | | | - Min Xue
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521
| |
Collapse
|
15
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
16
|
Sun J, Bai Y, Yu EY, Ding G, Zhang H, Duan M, Huang P, Zhang M, Jin H, Kwok RT, Li Y, Shan GG, Tang BZ, Wang H. Self-cleaning wearable masks for respiratory infectious pathogen inactivation by type I and type II AIE photosensitizer. Biomaterials 2022; 291:121898. [PMID: 36379162 PMCID: PMC9647237 DOI: 10.1016/j.biomaterials.2022.121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Although face masks as personal protective equipment (PPE) are recommended to control respiratory diseases with the on-going COVID-19 pandemic, improper handling and disinfection increase the risk of cross-contamination and compromise the effectiveness of PPE. Here, we prepared a self-cleaning mask based on a highly efficient aggregation-induced emission photosensitizer (TTCP-PF6) that can destroy pathogens by generating Type I and Type II reactive oxygen species (ROS). The respiratory pathogens, including influenza A virus H1N1 strain and Streptococcus pneumoniae (S. pneumoniae) can be inactivated within 10 min of ultra-low power (20 W/m2) white light or simulated sunlight irradiation. This TTCP-PF6-based self-cleaning strategy can also be used against other airborne pathogens, providing a strategy for dealing with different microbes.
Collapse
Affiliation(s)
- Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Guanyu Ding
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Duan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ryan Tk Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Karakoç A, Miettinen A, Sözümert E, Evans L, Yiğitler H, Bostanci B, Taciroğlu E, Jäntti R. Microstructural evaluation and recommendations for face masks in community use to reduce the transmission of respiratory infectious diseases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107154. [PMID: 36182670 PMCID: PMC9519173 DOI: 10.1016/j.cmpb.2022.107154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Recommendations for the use of face masks to prevent and protect against the aerosols (≤5µm) and respiratory droplet particles (≥5µm), which can carry and transmit respiratory infections including severe acute respiratory syndrome coronavirus (SARS-CoV-2), have been in effect since the early stages of the coronavirus disease 2019 (COVID-19). The particle filtration efficiency (PFE) and air permeability are the most crucial factors affecting the level of pathogen transmission and breathability, i.e. wearer comfort, which should be investigated in detail. METHODS In this context, this article presents a novel assessment framework for face masks combining X-ray microtomography and computational fluid dynamics simulations. In consideration to their widespread public use, two types of face masks were assessed: (I) two layer non-woven face masks and (II) the surgical masks (made out of a melt-blown fabric layer covered with two non-woven fabric layers). RESULTS The results demonstrate that the surgical masks provide PFEs over 75% for particles with diameter over 0.1µm while two layer face masks are found out to have insufficient PFEs, even for the particles with diameter over 2µm (corresponding PFE is computed as 47.2%). Thus, existence of both the non-woven fabric layers for mechanical filtration and insertion of melt-blown fabric layer(s) for electrostatic filtration in the face masks were found to be highly critical to prevent the airborne pathogen transmission. CONCLUSIONS The present framework would assist in computational assessment of commonly used face mask types based on their microstructural characteristics including fiber diameter, orientation distributions and fiber network density. Therefore, it would be also possible to provide new yet feasible design routes for face masks to ensure reliable personal protection and optimal breathability.
Collapse
Affiliation(s)
- Alp Karakoç
- Aalto University, Department of Communications and Networking, Espoo, Finland.
| | - Arttu Miettinen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | | | - Llion Evans
- College of Engineering, Swansea University, UK
| | - Hüseyin Yiğitler
- Aalto University, Department of Communications and Networking, Espoo, Finland
| | - Başak Bostanci
- Institute Medicana Hospital Istanbul, Ophthalmology Department, İstanbul, Turkey
| | - Ertuğrul Taciroğlu
- University of California Los Angeles, Dept. of Civil & Environmental Engineering, USA
| | - Riku Jäntti
- Aalto University, Department of Communications and Networking, Espoo, Finland
| |
Collapse
|
18
|
Ganesapillai M, Mondal B, Sarkar I, Sinha A, Ray SS, Kwon YN, Nakamura K, Govardhan K. The face behind the Covid-19 mask - A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102837. [PMID: 35879973 PMCID: PMC9299984 DOI: 10.1016/j.eti.2022.102837] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 05/07/2023]
Abstract
The threat of epidemic outbreaks like SARS-CoV-2 is growing owing to the exponential growth of the global population and the continual increase in human mobility. Personal protection against viral infections was enforced using ambient air filters, face masks, and other respiratory protective equipment. Available facemasks feature considerable variation in efficacy, materials usage and characteristic properties. Despite their widespread use and importance, face masks pose major potential threats due to the uncontrolled manufacture and disposal techniques. Improper solid waste management enables viral propagation and increases the volume of associated biomedical waste at an alarming rate. Polymers used in single-use face masks include a spectrum of chemical constituents: plasticisers and flame retardants leading to health-related issues over time. Despite ample research in this field, the efficacy of personal protective equipment and its impact post-disposal is yet to be explored satisfactorily. The following review assimilates information on the different forms of personal protective equipment currently in use. Proper waste management techniques pertaining to such special wastes have also been discussed. The study features a holistic overview of innovations made in face masks and their corresponding impact on human health and environment. Strategies with SDG3 and SDG12, outlining safe and proper disposal of solid waste, have also been discussed. Furthermore, employing the CFD paradigm, a 3D model of a face mask was created based on fluid flow during breathing techniques. Lastly, the review concludes with possible future advancements and promising research avenues in personal protective equipment.
Collapse
Affiliation(s)
- Mahesh Ganesapillai
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bidisha Mondal
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ishita Sarkar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aritro Sinha
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saikat Sinha Ray
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Young-Nam Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Kazuho Nakamura
- Faculty of Engineering, Division of Material Science and Chemical Engineering, Yokohama National University, Tokiwadai, Yokohama, Kanagawa 240-8501, Japan
| | - K Govardhan
- Department of Micro and Nano-Electronics, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Tiwari AK, Gupta MK, Pandey G, Pandey S, Pandey PC. Amine-Functionalized Silver Nanoparticles: A Potential Antiviral-Coating Material with Trap and Kill Efficiency to Combat Viral Dissemination (COVID-19). BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022:1-15. [PMID: 37363135 PMCID: PMC9581455 DOI: 10.1007/s44174-022-00044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of COVID-19 has drastically affected the daily lifestyles of people globally where specific Coronavirus-2 transmits primarily by respiratory droplets. Structurally, the SARS-CoV-2 virus is made up of four types of proteins in which S-protein is indispensable among them, as it causes rapid replication in the host body. Therefore, the glycine and alanine composed of HR1 of S-protein is the ideal target for antiviral action. Different forms of surface-active PPEs can efficiently prevent this transmission in this circumstance. However, the virus can survive on the conventional PPEs for a long time. Hence, the nanotechnological approaches based on engineered nanomaterials coating on medical equipments can potentially prevent the dissemination of infections in public. Silver nanoparticles with tuneable physicochemical properties and versatile chemical functionalization provide an excellent platform to combat the disease. The coating of amine-functionalized silver nanoparticle (especially amine linked to aliphatic chain and trialkoxysilane) in its nanostructured form enables cloths trap and kill efficient. PPEs are a primary and reliable preventive measure, although they are not 100% effective against viral infections. So, developing and commercializing surface-active PPEs with trap and kill efficacy is highly needed to cope with current and future viral infections. This review article discusses the COVID-19 morphology, antiviral mechanism of Ag-NPs against SARS-CoV-2 virus, surface factors that influence viral persistence on fomites, the necessity of antiviral PPEs, and the potential application of amine-functionalized silver nanoparticles as a coating material for the development of trap and kill-efficient face masks and PPE kits.
Collapse
Affiliation(s)
- Atul Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Munesh Kumar Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Govind Pandey
- Department of Paediatrics, King George Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Shivangi Pandey
- Motilal Nehru Medical Collage, Allahabad, Uttar Pradesh 211001 India
| | - Prem C. Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
20
|
Dat NM, Huong LM, Tinh NT, Linh NTT, Hai ND, Viet ND, Thinh DB, Cong CQ, Dat NT, Phong MT, Hieu NH. Surface modification of poly(propylene) fabric with graphene oxide‐based silver nanoparticles for antibacterial applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nguyen Minh Dat
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Le Minh Huong
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Ninh Thi Tinh
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Nguyen Thi Thuy Linh
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Nguyen Duy Hai
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Nguyen Duc Viet
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Doan Ba Thinh
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Che Quang Cong
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Nguyen Tien Dat
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
- University of Science (HCMUS) Ho Chi Minh Vietnam
| | - Mai Thanh Phong
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| | - Nguyen Huu Hieu
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh Vietnam
| |
Collapse
|
21
|
Understanding and combating COVID-19 using the biology and chemistry of SARS-CoV-2. Bioprocess Biosyst Eng 2022; 45:1753-1769. [PMID: 36125525 PMCID: PMC9486761 DOI: 10.1007/s00449-022-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 can range from asymptomatic to severe, which could lead to fatality. Like other pathogenic viruses, the infection of SARS-CoV-2 relies on binding its spike glycoprotein to the host receptor angiotensin-converting enzyme 2 (ACE 2). Molecular studies suggested that there is a high affinity between the spike glycoprotein and ACE 2 that might arise due to their hydrophobic interaction. This property is mainly responsible for making this virus highly infectious. Apart from this, the transmissibility of the virus, prolonged viability in certain circumstances, and rapid mutations also contributed to the current pandemic situation. Nanotechnology provides potential alternative solutions to combat COVID-19 with the development of i. nanomaterial-based COVID-19 detection technology, ii. nanomaterial-based disinfectants, iii. nanoparticle-based vaccines, and iv. nanoparticle-based drug delivery. Hence, this review provides diverse insight into understanding COVID-19.
Collapse
|
22
|
Ruetalo N, Berger S, Niessner J, Schindler M. Inactivation of aerosolized SARS-CoV-2 by 254 nm UV-C irradiation. INDOOR AIR 2022; 32:e13115. [PMID: 36168221 PMCID: PMC9538331 DOI: 10.1111/ina.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Surface residing SARS-CoV-2 is efficiently inactivated by UV-C irradiation. This raises the question whether UV-C-based technologies are also suitable to decontaminate SARS-CoV-2- containing aerosols and which doses are needed to achieve inactivation. Here, we designed a test bench to generate aerosolized SARS-CoV-2 and exposed the aerosols to a defined UV-C dose. Our results demonstrate that the exposure of aerosolized SARS-CoV-2 with a low average dose in the order of 0.42-0.51 mJ/cm2 UV-C at 254 nm resulted in more than 99.9% reduction in viral titers. Altogether, UV-C-based decontamination of aerosols seems highly effective to achieve a significant reduction in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Simon Berger
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Jennifer Niessner
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
23
|
Stanislas TT, Bilba K, de Oliveira Santos RP, Onésippe-Potiron C, Savastano Junior H, Arsène MA. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. CELLULOSE (LONDON, ENGLAND) 2022; 29:8001-8024. [PMID: 35990792 PMCID: PMC9383689 DOI: 10.1007/s10570-022-04792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 05/14/2023]
Abstract
The controversy surrounding the transmission of COVID-19 in 2020 has revealed the need to better understand the airborne transmission route of respiratory viruses to establish appropriate strategies to limit their transmission. The effectiveness in protecting against COVID-19 has led to a high demand for face masks. This includes the single-use of non-degradable masks and Filtering Facepiece Respirators by a large proportion of the public, leading to environmental concerns related to waste management. Thus, nanocellulose-based membranes are a promising environmental solution for aerosol filtration due to their biodegradability, renewability, biocompatibility, high specific surface area, non-toxicity, ease of functionalization and worldwide availability. Although the technology for producing high-performance aerosol filter membranes from cellulose-based materials is still in its initial stage, several promising results show the prospects of the use of this kind of materials. This review focuses on the overview of nanocellulose-based filter media, including its processing, desirable characteristics and recent developments regarding filtration, functionalization, biodegradability, and mechanical behavior. The porosity control, surface wettability and surface functional groups resulting from the silylation treatment to improve the filtration capacity of the nanocellulose-based membrane is discussed. Future research trends in this area are planned to develop the air filter media by reinforcing the filter membrane structure of CNF with CNCs. In addition, the integration of sol-gel technology into the production of an air filter can tailor the pore size of the membrane for a viable physical screening solution in future studies. Graphical abstract
Collapse
Affiliation(s)
- Tido Tiwa Stanislas
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
- Mechanic and Adapted Materials Laboratory, ENSET, University of Douala, P.O. BOX 1872, Douala, Cameroon
| | - Ketty Bilba
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Rachel Passos de Oliveira Santos
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Cristel Onésippe-Potiron
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Holmer Savastano Junior
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Marie-Ange Arsène
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| |
Collapse
|
24
|
Zhang H, Cao Y, Zhen Q, Hu JJ, Cui JQ, Qian XM. Facile Preparation of PET/PA6 Bicomponent Microfilament Fabrics with Tunable Porosity for Comfortable Medical Protective Clothing. ACS APPLIED BIO MATERIALS 2022; 5:3509-3518. [PMID: 35793521 DOI: 10.1021/acsabm.2c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C6-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.
Collapse
Affiliation(s)
- Heng Zhang
- School of Textile, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Yang Cao
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| | - Qi Zhen
- School of Clothing, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Jun-Jie Hu
- Shanghai Earntz Nonwoven Co., Ltd., No. 88, Jiangong Road, Jinshan District, 201501 Shanghai, China
| | - Jing-Qiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,Henan Tuoren Medical Device Co., Ltd., Tuoren Industrial Zone, Changyuan County, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Xiao-Ming Qian
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| |
Collapse
|
25
|
Khan J, E N, Mariatti M, Vilay V, Todo M. A comprehensive review on facemask manufacturing, testing, and its environmental impacts. JOURNAL OF INDUSTRIAL TEXTILES 2022; 52:15280837221111175. [PMID: 36249720 PMCID: PMC9548449 DOI: 10.1177/15280837221111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The coronavirus pandemic (COVID-19) is currently the biggest threat to human lives due to its rapid transmission rate causing severe damage to human health and economy. The transmission of viral diseases can be minimized at its early stages with proper planning and preventive practices. The use of facemask has proved to be most effective measure to curb the spread of virus along with social distancing and good hygiene practices. This necessitates more research on facemask technology to increase its filtration efficiencies and proper disposal, which can be accelerated with knowledge of the current manufacturing process and recent research in this field. This review article provides an overview of the importance of facemask, fundamentals of nonwoven fabrics, and its manufacturing process. It also covers topics related to recent research reported for improved facemask efficiencies and testing methods to evaluate the performance of facemask. The plastic waste associated with the facemask and measures to minimize its effect are also briefly described. A systematic understanding is given in order to trigger future research in this field to ensure that we are well equipped for any future pandemic.
Collapse
Affiliation(s)
- Junaid Khan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, Malaysia
| | - Netnapa E
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, Malaysia
| | - M Mariatti
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Penang, Malaysia
| | - V Vilay
- Department of Mechanical Engineering, Faculty of Engineering, Sokpaluang Campus, National University of Laos, Vientiane, Laos
| | - M Todo
- Renewable Energy Center, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Kiremitler NB, Kemerli MZ, Kayaci N, Karagoz S, Pekdemir S, Sarp G, Sanduvac S, Onses MS, Yilmaz E. Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS APPLIED NANO MATERIALS 2022; 5:6029-6054. [PMID: 37552745 PMCID: PMC8905929 DOI: 10.1021/acsanm.2c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 06/17/2023]
Abstract
Scientists, doctors, engineers, and even entire societies have become aware of the seriousness of the COVID-19 infection and are taking action quickly, using all the tools from protection to treatment against coronavirus SARS-CoV-2. Especially in this sense, scientific approaches and materials using nanotechnology are frequently preferred. In this review, we focus on how nanoscience and nanotechnology approaches can be used for protective equipment, diagnostic and treatment methods, medicine, and vaccine applications to stop the coronavirus SARS-CoV-2 and prevent its spread. SARS-CoV-2, which itself can be considered as a core-shell nanoparticle, can interact with various materials around it and remain bound for variable periods of time while maintaining its bioactivity. These applications are especially critical for the controlled use of disinfection systems. One of the most important processes in the fight against coronavirus is the rapid diagnosis of the virus in humans and the initiation of isolation and treatment processes. The development of nanotechnology-based test and diagnostic kits is another important research thrust. Nanotechnological therapeutics based on antiviral drug design and nanoarchitecture vaccines have been vital. Nanotechnology plays critical roles in the production of protective film surfaces for self-cleaning and antiviral masks, gloves, and laboratory clothes. An overview of literature studies highlighting nanotechnology and nanomaterial-based approaches to combat SARS-CoV-2 is presented.
Collapse
Affiliation(s)
- Nuri Burak Kiremitler
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Munteha Zeynep Kemerli
- Drug Application and Research Center,
Erciyes University, 38039 Kayseri,
Turkey
- Department of Health Services, Halil Bayraktar
Vocational College, Erciyes University, 38039 Kayseri,
Turkey
| | - Nilgun Kayaci
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sultan Karagoz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Textile Engineering, Faculty of
Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sami Pekdemir
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Airframes and Powerplants, Erciyes
University, 38039 Kayseri, Turkey
| | - Gokhan Sarp
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Senem Sanduvac
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Bünyan Vocational College, Kayseri
University, 38280 Kayseri, Turkey
| | - Mustafa Serdar Onses
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
- Technology Research & Application
Center (TAUM), Erciyes University, 38039 Kayseri,
Turkey
- ChemicaMed Chemical Inc., Erciyes
University Technology Development Zone, 38039 Kayseri,
Turkey
| |
Collapse
|
27
|
Chen Z, Zhang W, Yang H, Min K, Jiang J, Lu D, Huang X, Qu G, Liu Q, Jiang G. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:649-674. [PMID: 35388819 DOI: 10.1039/d1em00509j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).
Collapse
Affiliation(s)
- Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Kumar V, Nguyen HTT, Mittal A, Lai KK. The production and distribution of face masks to other countries: a strategic approach of Taiwan during COVID-19 outbreak. JOURNAL OF GLOBAL OPERATIONS AND STRATEGIC SOURCING 2022. [DOI: 10.1108/jgoss-11-2021-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
COVID-19 pandemic has exposed that even the best of the developed nations have surrendered to the devastations imposed on the global supply chains. The purpose of this study is to explore how COVID-19 has exaggerated the supply chain of production and distribution of Taiwan-based face masks and also investigate the conscientious factors and subfactors for it.
Design/methodology/approach
In this study, an analytical hierarchy processes (AHP)-based approach has been used to assign the criterion weights and to prioritize the responsible factors. Initially, based on 26 decision-makers, successful factors were categorized into five main categories, and then main categories and their subcategories factors were prioritized through individual and group decision-maker’s contexts by using the AHP approach.
Findings
The results of this AHP model suggest that “Safety” is the most important and top-ranked factor, followed by production, price, work environment and distribution. The key informers in this study are stakeholders which consist of managers, volunteers, associations and non-governmental organizations. The results showed that good behavior of the employees under the “Safety” category is the top positioned responsible factor for successful production and distribution of face masks to the other countries with the highest global percentage of 15.7% and using sanitizers to protect health is the second most successful factor with the global percentage of 11.7%.
Research limitations/implications
The limitations faced in this study were limited to only Taiwan-based mask manufacturing companies, and it was dependent on the decisions of the limited company’s decision-makers.
Originality/value
The novelty of this study is that the empirical analysis of this study has been based on a successful Taiwan masks manufacturing company and evaluates the responsible factors for the production and distribution of Taiwan masks to other countries during COVID-19.
Collapse
|
29
|
Choudhury M, Bindra HS, Singh K, Singh AK, Nayak R. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mousam Choudhury
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | | | - Karishma Singh
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Alok Kumar Singh
- School of Biotechnology Sher‐e‐Kashmir University of Agricultural Science and Technology of Jammu Jammu and Kashmir India
| | - Ranu Nayak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
30
|
Xiong SW, Zou Q, Wang ZG, Qin J, Liu Y, Wei NJ, Jiang MY, Gai JG. Temperature-adjustable F-carbon nanofiber/carbon fiber nanocomposite fibrous masks with excellent comfortability and anti-pathogen functionality. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 432:134160. [PMID: 34931115 PMCID: PMC8673729 DOI: 10.1016/j.cej.2021.134160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 12/10/2021] [Indexed: 06/03/2023]
Abstract
Wearing surgical masks remains the most effective protective measure against COVID-19 before mass vaccination, but insufficient comfortability and low antibacterial/antiviral activities accelerate the replacement frequency of surgical masks, resulting in large amounts of medical waste. To solve this problem, we report new nanofiber membrane masks with outstanding comfortability and anti-pathogen functionality prepared using fluorinated carbon nanofibers/carbon fiber (F-CNFs/CF). This was used to replace commercial polypropylene (PP) nonwovens as the core layer of face masks. The through-plane and in-plane thermal conductivity of commercial PP nonwovens were only 0.12 and 0.20 W/m K, but the F-CNFs/CF nanofiber membranes reached 0.62 and 5.23 W/m K, which represent enhancements of 380% and 2523%, respectively. The surface temperature of the PP surgical masks was 23.9 ℃ when the wearing time was 15 min, while the F-CNFs/CF nanocomposite fibrous masks reached 27.3 ℃, displaying stronger heat dissipation. Moreover, the F-CNFs/CF nanofiber membranes displayed excellent electrical conductivity and produced a high-temperature layer that killed viruses and bacteria in the masks. The surface temperature of the F-CNFs/CF nanocomposite fibrous masks reached 69.2 ℃ after being connected to a portable power source for 60 s. Their antibacterial rates were 97.9% and 98.6% against E. coli and S. aureus, respectively, after being connected to a portable power source for 30 min.
Collapse
Affiliation(s)
- Si-Wei Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Qian Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Ze-Gang Wang
- Shandong Chen-Zhong Machinery Co., Ltd, Zibo, Shandong 256400, China
| | - Jun Qin
- Shandong Sun Paper Industry Joint Stock, No. 1 Youyi Road, Yanzhou District, Jining City, Shandong Province, China
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Nan-Jun Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng-Ying Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
31
|
Phuna ZX, Panda BP, Hawala Shivashekaregowda NK, Madhavan P. Nanoprotection from SARS-COV-2: would nanotechnology help in Personal Protection Equipment (PPE) to control the transmission of COVID-19? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-30. [PMID: 35253535 DOI: 10.1080/09603123.2022.2046710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has caused a worldwide outbreak. The severe acute respiratory syndrome coronavirus 2 virus can be transmitted human-to-human through droplets and close contact where personal protective equipment (PPE) is imperative to protect the individuals. The advancement of nanotechnology with significant nanosized properties can confer a higher form of protection. Incorporation of nanotechnology into facemasks can exhibit antiviral properties. Nanocoating on surfaces can achieve self-disinfecting purposes and be applied in highly populated places. Moreover, nano-based hand sanitizers can confer better sterilizing efficacies with low skin irritation as compared to alcohol-based hand sanitizers. The present review discusses the incorporation of nanotechnology into nano-based materials and coatings in facemasks, self-surface disinfectants and hand sanitizers, in the hope to contribute to the current understanding of PPE to combat COVID-19.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bibhu Prasad Panda
- Department of Pharmaceutical Technology, Schoolof Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
32
|
Hu B. Recent Advances in Facemask Devices for In Vivo Sampling of Human Exhaled Breath Aerosols and Inhalable Environmental Exposures. Trends Analyt Chem 2022; 151:116600. [PMID: 35310778 PMCID: PMC8917876 DOI: 10.1016/j.trac.2022.116600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the COVID-19 pandemic, the unprecedented use of facemasks has been requiring for wearing in daily life. By wearing facemask, human exhaled breath aerosols and inhaled environmental exposures can be efficiently filtered and thus various filtration residues can be deposited in facemask. Therefore, facemask could be a simple, wearable, in vivo, onsite and noninvasive sampler for collecting exhaled and inhalable compositions, and gain new insights into human health and environmental exposure. In this review, the recent advances in developments and applications of in vivo facemask sampling of human exhaled bacteria, viruses, proteins, and metabolites, and inhalable facemask contaminants and air pollutants, are reviewed. New features of facemask sampling are highlighted. The perspectives and challenges on further development and potential applications of facemask devices are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
33
|
Bains D, Singh G, Singh N. Sustainable Synthesis of Ionic Liquid-Functionalized Zinc Oxide Nanosheets (IL@ZnO): Evaluation of Antibacterial Potential Activity for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:1239-1251. [PMID: 35175036 DOI: 10.1021/acsabm.1c01258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc oxide (ZnO)-derived materials exhibit unique antibacterial, antifungal, and photochemical activities and are widely used in antibacterial formulations. In this work, ZnO nanosheets were prepared by green and cost-effective synthesis via a hydrothermal method, and the prepared ZnO nanosheets were further functionalized with an eco-friendly ionic liquid (IL). Thus, a sustainable approach was established to synthesize ZnO nanosheets. The functionalization of ZnO with the synthesized IL was fully characterized by advanced spectroscopic and microscopic techniques. The prepared ionic liquid-functionalized ZnO (IL@ZnO) showed self-organized layered-sheet arrangements caused by the intercalation of the IL onto the surface of ZnO nanosheets as revealed by scanning electron microscopy (SEM). The design of the IL comprised a carboxylic acid moiety for functionalization onto the surface of ZnO, whereas the hydrophobicity was tuned through the incorporation of a long alkyl chain. The developed IL@ZnO material was also tested against both Gram-positive and Gram-negative pathogenic bacteria for potential antibacterial activity by colony-forming unit (CFU) and minimum inhibitory concentration tests. The results revealed that the IL@ZnO exhibits significant antibacterial activity against tested strains. In particular, potent activity was observed against the Gram-positive skin-specific Staphylococcus aureus bacteria strain. The mechanism of bactericidal activity against bacteria was also explored along with the cytotoxicity toward mammalian cells, which reveals that the IL@ZnO is nontoxic in nature. To utilize the developed material owing to its bactericidal activity for practical applications, the IL@ZnO was fabricated onto the surface of cotton fabric, and its surface morphology was examined by SEM; the activity of IL@ZnO-treated cotton fabric was evaluated by the zone of inhibition assay. Additionally, the IL@ZnO-treated cotton fabric exhibited remarkable stability along with significant hydrophobicity and breathability and thus can be utilized as a biomaterial for biomedical applications, especially in medical masks, for reducing the risk of transmission of infectious diseases.
Collapse
Affiliation(s)
- Deepak Bains
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
34
|
Naragund VS, Panda PK. Electrospun nanofiber-based respiratory face masks-a review. EMERGENT MATERIALS 2022; 5:261-278. [PMID: 35098033 PMCID: PMC8788396 DOI: 10.1007/s42247-022-00350-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic of 2019 forced widespread use of face coverings as a mandatory step towards reducing infection by the virus. The face mask acts as a barrier for transmission of infected aerosols among its user and surrounding people. This has propelled pace of research and development of face masks around the world. This short review is an effort to present advances in materials and designs used for face masks. Details available in scientific literature and company brochures have been accessed and the use of nanomaterials and designs for the new generation of face masks have been discussed. Special attention was given to the face masks based on electrospun nanofiber-based membrane materials due to their nano-sized pores, light weight, and high filtration efficiency; therefore, they are commercially viable and popular among various products available in the market. Incorporation of metal organic framework (MOFs) and graphene have opened avenues to more advanced/multi-functional, reusable, and high capacity adsorption filtration membranes. Rapid prototyping/3-dimensional (3-D) printing techniques have been applied to shorten the time of manufacture of face masks. This review is expected to be very helpful for engineers, scientists, and entrepreneurs working on development of novel face masks required in plenty during this pandemic period.
Collapse
Affiliation(s)
- Veereshgouda S. Naragund
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - P. K. Panda
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
35
|
Zhen Q, Zhang H, Sun H, Zhang Y. Tailoring the softness performance of polyethylene/polypropylene micro‐nanofibrous fabrics for skin contacts. J Appl Polym Sci 2022. [DOI: 10.1002/app.51530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qi Zhen
- School of Clothing Zhongyuan University of Technology Zhengzhou China
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Heng Zhang
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Huan‐Wei Sun
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Yi‐Feng Zhang
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| |
Collapse
|
36
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
37
|
Lee K, Jung YW, Park H, Kim D, Kim J. Sequential Multiscale Simulation of a Filtering Facepiece for Prediction of Filtration Efficiency and Resistance in Varied Particulate Scenarios. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57908-57920. [PMID: 34802233 DOI: 10.1021/acsami.1c16850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study explores a novel approach of multiscale modeling and simulation to characterize the filtration behavior of a facepiece in varied particulate conditions. Sequential multiscale modeling was performed for filter media, filtering facepiece, and testing setup. The developed virtual models were validated for their morphological characteristics and filtration performance by comparing with the data from the physical experiments. Then, a virtual test was conducted in consideration of a time scale, simulating diverse particulate environments with different levels of particle size distribution, particle concentration, and face velocity. An environment with small particles and high mass concentration resulted in a rapid buildup of resistance, reducing the service life. Large particles were accumulated mostly at the entrance of the filter layer, resulting in a lower penetration and slower buildup of resistance. This study is significant in that the adopted virtual approach enables the prediction of filtration behavior and service life, applying diverse environmental conditions without involving the costs of extra setups for the physical experiments. This study demonstrates a novel and economic research method that can be effectively applied to the research and development of filters.
Collapse
Affiliation(s)
- Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Yeon-Woo Jung
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Hanjou Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Dongmi Kim
- Digital Material Laboratory, Trinity Engineering, Seoul 07997, Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, Rocha-Zavaleta L, Manzo-Merino J, Almaguer-Flores A, Ramos-Vilchis C, Rodil SE. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater 2021; 17. [PMID: 34673548 DOI: 10.1088/1748-605x/ac3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.
Collapse
Affiliation(s)
- J M Bello-Lopez
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - P Silva-Bermudez
- Unidad de ingeniería de Téjidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - G Prado
- Laboratorio de Biotecnología; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - A Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - Gabriela Ibáñez-Cervantes
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - Mónica Alethia Cureño-Díaz
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - L Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar sn, Ciudad Universitaria, 04510 CDMX, México
| | - J Manzo-Merino
- Cátedras CONACyT-Instituto Nacional de Cancerología, CDMX, México
| | - A Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, 04510 CDMX, México
| | - C Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| |
Collapse
|
39
|
Optimization and predictive modelling for the diameter of nylon-6,6 nanofibers via electrospinning for coronavirus face masks. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [PMCID: PMC8434686 DOI: 10.1016/j.jscs.2021.101348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, the only widely available tool for controlling the SARS-CoV-2 pandemic is nonpharmacological interventions (NPIs). Coronavirus aerosols are around 0.3–2 µm in diameter (0.9 m in mass). The present study used artificial intelligence such as gene expression programming (GEP) and genetic algorithms (GA) were used to predict and optimize the diameter of Nylon-6,6 nanofibers via electrospinning for protection against coronavirus. It is suggested that using the controlled experimental conditions such as concentration of nylon-6,6 (16% wt/v), applied voltage (26 kV), working distance (18 cm) and injection rate (0.2 mL/h) have resulted the diameter of nylon-6,6 nanofibers about 55.8 nm. Coronavirus face masks could use the obtained diameter and electrostatic interaction between viral particles and naofibers as active layers.
Collapse
|
40
|
Cai SH, Di D, Yuan ZC, Chen W, Hu B. Paper-in-Facemask Device for Direct Mass Spectrometry Analysis of Human Respiratory Aerosols and Environmental Exposures via Wearable Continuous-Flow Adsorptive Sampling: A Proof-of-Concept Study. Anal Chem 2021; 93:13743-13748. [PMID: 34609849 DOI: 10.1021/acs.analchem.1c03406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to investigate the wearer's health and behavior. Here, we developed a simple paper-in-facemask sampling method for adsorbing a wearer's respiratory aerosol and environmental exposures by fixing paper strips at the outside and inside surfaces of facemasks, and the paper strips were then analyzed by paper spray mass spectrometry (PSMS) for directly detecting adsorbed analytes without any sample pretreatment. The applicability of this device was demonstrated by directly analyzing exhaled aerosolized saliva, breath metabolites, and inhalable environmental exposures. The technical aspects, including sampling time, sampling position, paper property, and spray solvent, were investigated. The sampling process was revealed to involve a continuous-flow adsorptive mechanism. These findings motivated us to extend this work and build a wearable sampling device that is capable of simultaneously monitoring both exhaled and inhaled biomarkers in situ to investigate human health and environmental exposure. This work highlights that facemasks are promising platforms for aerosol collection and direct MS analysis, which is expected to be a promising method for monitoring human health, diseases, and behaviors.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Weini Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
41
|
Stackhouse CA, Yan S, Wang L, Kisslinger K, Tappero R, Head AR, Tallman KR, Takeuchi ES, Bock DC, Takeuchi KJ, Marschilok AC. Characterization of Materials Used as Face Coverings for Respiratory Protection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47996-48008. [PMID: 34582689 DOI: 10.1021/acsami.1c11200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.
Collapse
Affiliation(s)
- Chavis A Stackhouse
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Killian R Tallman
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
42
|
Yan S, Stackhouse CA, Waluyo I, Hunt A, Kisslinger K, Head AR, Bock DC, Takeuchi ES, Takeuchi KJ, Wang L, Marschilok AC. Reusing Face Covering Masks: Probing the Impact of Heat Treatment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:13545-13558. [PMID: 35855909 DOI: 10.1021/acssuschemeng.1c04530/suppl_file/sc1c04530_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS).
Collapse
Affiliation(s)
- Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chavis A Stackhouse
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David C Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
43
|
Yan S, Stackhouse CA, Waluyo I, Hunt A, Kisslinger K, Head AR, Bock DC, Takeuchi ES, Takeuchi KJ, Wang L, Marschilok AC. Reusing Face Covering Masks: Probing the Impact of Heat Treatment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:13545-13558. [PMID: 35855909 PMCID: PMC9284677 DOI: 10.1021/acssuschemeng.1c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS).
Collapse
Affiliation(s)
- Shan Yan
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Chavis A. Stackhouse
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Iradwikanari Waluyo
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Ashley R. Head
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - David C. Bock
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Esther S. Takeuchi
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Kenneth J. Takeuchi
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lei Wang
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Amy C. Marschilok
- Institute
for Electrochemically Stored Energy, Stony
Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
44
|
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, Xiao H. Functionalized Masks: Powerful Materials against COVID-19 and Future Pandemics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102453. [PMID: 34319644 PMCID: PMC8420174 DOI: 10.1002/smll.202102453] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of COVID-19 revealed the vulnerability of commercially available face masks. Without having antibacterial/antiviral activities, the current masks act only as filtering materials of the aerosols containing microorganisms. Meanwhile, in surgical masks, the viral and bacterial filtration highly depends on the electrostatic charges of masks. These electrostatic charges disappear after 8 h, which leads to a significant decline in filtration efficiency. Therefore, to enhance the masks' protection performance, fabrication of innovative masks with more advanced functions is in urgent demand. This review summarizes the various functionalizing agents which can endow four important functions in the masks including i) boosting the antimicrobial and self-disinfectant characteristics via incorporating metal nanoparticles or photosensitizers, ii) increasing the self-cleaning by inserting superhydrophobic materials such as graphenes and alkyl silanes, iii) creating photo/electrothermal properties by forming graphene and metal thin films within the masks, and iv) incorporating triboelectric nanogenerators among the friction layers of masks to stabilize the electrostatic charges and facilitating the recharging of masks. The strategies for creating these properties toward the functionalized masks are discussed in detail. The effectiveness and limitation of each method in generating the desired properties are well-explained along with addressing the prospects for the future development of masks.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chao Deng
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yajie Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yuqian Liu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yang Huang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chengcheng Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New BrunswickFrederictonNew BrunswickE3B 5A3Canada
| |
Collapse
|
45
|
Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021; 9:4620-4642. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively. However, their projection with potential sustainable prospects still requires considerable attention and efforts. With this aim, the presented review highlights various severe life-threatening viral infections and the role of multi-functional anti-viral nanostructures with manipulative properties investigated as an efficient precative shielding agent against viral infection progression. The salient features of such various nanostructures, antiviral mechanisms, and high impact multi-dimensional roles are systematically discussed in this review. Additionally, the challenges associated with the projection of alternative approaches also support the demand and significance of this selected scientific topic. The outcomes of this review will certainly be useful to motivate scholars of various expertise who are planning future research in the field of investigating sustainable and affordable high-performance nano-systems of desired antiviral performance to manage not only COVID-19 infection but other targeted viral infections as well.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
| | - Shalu Yadav
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Verma
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shabi Thankaraj Salammal
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Akram Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|