1
|
Xavier-Júnior FH, Lopes RMJ, Mellor RD, Uchegbu IF, Schätzlein AG. The influence of amphiphilic quaternary ammonium palmitoyl glycol chitosan (GCPQ) polymer composition on oil-loaded nanocapsule architecture. J Colloid Interface Sci 2025; 678:1181-1193. [PMID: 39293271 DOI: 10.1016/j.jcis.2024.08.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024]
Abstract
HYPOTHESIS Predicting the exact nature of the self-assembly of amphiphilic molecules into supramolecular structures is of utmost importance for a variety of applications, but this is a challenge for nanotechnology. The amphiphilic drug delivery polymer-N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ) self-assembles in aqueous media to form nanoparticles. EXPERIMENT This work aimed to develop a systematic predictive mathematical model on the eventual nature of oil-loaded GCPQ-nanoparticles and to determine the main independent variables that affect their nanoarchitecture following self-assembly. GCPQ polymers were produced with varying degree of palmitoylation (DP, 5.7-23.8 mol%), degree of quaternization (DQ, 7.2-22.7 mol%), and molecular weight (MW, 11.2-44.2 kDa) and their critical hydrophilic-lipophilic balance (cHLB) optimized to produce oil-loaded nanocapsules. FINDINGS Non-linear mathematical models (Particle size (nm) = 466.05 - 5.64DP - 6.52DQ + 0.13DQ2 - 0.03 MW2 - 14.48cHLB + 0.48cHLB2) were derived to predict the nanoparticle sizes (R2 = 0.998, R2adj = 0.995). Smaller nanoparticle sizes (148-157 nm) were obtained at high DP, DQ, and cHLB values, in which DP was the main independent variable responsible for nanoparticle size. Single or multiple-oil cores with small particles stabilizing polymer shells could be observed depending on the oil volume. Nanoparticle architectures, especially the nature of the oil-core(s), were driven by the DP, DQ, cHLB, and oil concentration. Here, we have developed a predictive model that may be applied to understand the nanoarchitecture of oil-loaded GCPQ-nanoparticles.
Collapse
Affiliation(s)
- Francisco Humberto Xavier-Júnior
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Federal University of Paraíba (UFPB), Department of Pharmaceutical Sciences, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Campus I, Castelo Branco III, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil; Postgraduate Program in Natural and Synthetic Bioactive Products (PPgPNSB/UFPB), R. Tab. Stanislau Eloy, 41 - Conj. Pres. Castelo Branco III, 58050-585 João Pessoa, PB, Brazil
| | - Rui Manuel Jesus Lopes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd. Northwick Park and St Mark's Hospital, Y Block, Watford Road, Harrow, Middlesex HA1 3UJ, UK
| | - Ryan D Mellor
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd. Northwick Park and St Mark's Hospital, Y Block, Watford Road, Harrow, Middlesex HA1 3UJ, UK
| | - Andreas G Schätzlein
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd. Northwick Park and St Mark's Hospital, Y Block, Watford Road, Harrow, Middlesex HA1 3UJ, UK.
| |
Collapse
|
2
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Wang J, Chen P. Engineering Biomimetic Protein Camouflage for Delivering Peptide/siRNA Nanocomplexes. J Am Chem Soc 2024; 146:15096-15107. [PMID: 38773940 DOI: 10.1021/jacs.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
For cationic nanoparticles, the spontaneous nanoparticle-protein corona formation and aggregation in biofluids can trigger unexpected biological reactions. Herein, we present a biomimetic strategy for camouflaging the cationic peptide/siRNA nanocomplex (P/Si) with single or dual proteins, which exploits the unique properties of endogenous proteins and stabilizes the cationic P/Si complex for safe and targeted delivery. An in-depth study of the P/Si protein corona (P/Si-PC) formation and protein binding was conducted. The results provided insights into the biochemical and toxicological properties of cationic nanocomplexes and the rationales for engineering biomimetic protein camouflages. Based on this, the human serum albumin (HSA) and apolipoprotein AI (Apo-AI) ranked within the top 20 abundant protein species of P/Si-PC were selected to construct biomimetic HSA-dressed P/Si (P/Si@HSA) and dual protein (HSA and Apo-AI)-dressed P/Si (P/Si@HSA_Apo), given that the dual-protein camouflage plays complementary roles in efficient delivery. A branched cationic peptide (b-HKR) was tailored for siRNA delivery, and their nanocomplexes, including the cationic P/Si and biomimetic protein-dressed P/Si, were produced by a precise microfluidic technology. The biomimetic anionic protein camouflage greatly enhanced P/Si biostability and biocompatibility, which offers a reliable strategy for overcoming the limitation of applying cationic nanoparticles in biofluids and systemic delivery.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
5
|
Marques C, Borchard G, Jordan O. Unveiling the challenges of engineered protein corona from the proteins' perspective. Int J Pharm 2024; 654:123987. [PMID: 38467206 DOI: 10.1016/j.ijpharm.2024.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
It is well known that protein corona affects the "biological identity" of nanoparticles (NPs), which has been seen as both a challenge and an opportunity. Approaches have moved from avoiding protein adsorption to trying to direct it, taking advantage of the formation of a protein corona to favorably modify the pharmacokinetic parameters of NPs. Although promising, the results obtained with engineered NPs still need to be completely understood. While much effort has been put into understanding how the surface of nanomaterials affects protein absorption, less is known about how proteins can affect corona formation due to their specific physicochemical properties. This review addresses this knowledge gap, examining key protein factors influencing corona formation, highlighting current challenges in studying protein-protein interactions, and discussing future perspectives in the field.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| |
Collapse
|
6
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
7
|
Dillion Lima Cavalcanti I, Humberto Xavier Junior F, Stela Santos Magalhães N, Cajubá de Britto Lira Nogueira M. ISOTHERMAL TITRATION CALORIMETRY (ITC) AS A PROMISING TOOL IN PHARMACEUTICAL NANOTECHNOLOGY. Int J Pharm 2023; 641:123063. [PMID: 37209790 DOI: 10.1016/j.ijpharm.2023.123063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique for evaluating the thermodynamic profiles of connection between two molecules, allowing the experimental design of nanoparticles systems with drugs and/or biological molecules. Taking into account the relevance of ITC, we conducted, therefore, an integrative revision of the literature, from 2000 to 2023, on the main purposes of using this technique in pharmaceutical nanotechnology. The search were carried out in the Pubmed, Sciencedirect, Web of Science, and Scifinder databases using the descriptors "Nanoparticles", "Isothermal Titration Calorimetry", and "ITC". We have observed that the ITC technique has been increasingly used in pharmaceutical nanotechnology, seeking to understand the interaction mechanisms in the formation of nanoparticles. Additionally, to understand the behavior of nanoparticles with biological materials (proteins, DNA, cell membranes, among others), thereby helping to understand the behavior of nanocarriers in vivo studies. As a contribution, we intended to reveal the importance of ITC in the laboratory routine, which is itself a quick and easy technique to obtain relevant results that help to optimize the nanosystems formulation process.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Francisco Humberto Xavier Junior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Department of Pharmacy, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Federal University of Paraíba (UFPB), Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nereide Stela Santos Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), R. Alto do Reservatório - Alto José Leal, Vitória de Santo Antão - PE, 55608-680, Brazil.
| |
Collapse
|
8
|
Toro-Mendoza J, Maio L, Gallego M, Otto F, Schulz F, Parak WJ, Sanchez-Cano C, Coluzza I. Bioinspired Polyethylene Glycol Coatings for Reduced Nanoparticle-Protein Interactions. ACS NANO 2023; 17:955-965. [PMID: 36602983 DOI: 10.1021/acsnano.2c05682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticles (NPs) and other engineered nanomaterials have great potential as nanodrugs or nanomedical devices for biomedical applications. However, the adsorption of proteins in blood circulation or similar physiological fluids can significantly alter the surface properties and therapeutic response induced by most nanomaterials. For example, interaction with proteins can change the bloodstream circulation time and availability of therapeutic NPs or hinder the accumulation in their desired target organs. Proteins can also trigger or prevent agglomeration. By combining experimental and computational approaches, we have developed NPs carrying polyethylene glycol (PEG) polymeric coatings that mimic the surface charge distribution of proteins typically found in blood, which are known to show low aggregation under normal blood conditions. Here, we show that NPs with coatings based on apoferritin or human serum albumin display better antifouling properties and weaker protein interaction compared to similar NPs carrying conventional PEG polymeric coatings.
Collapse
Affiliation(s)
- Jhoan Toro-Mendoza
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Lucia Maio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Marta Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Ferdinand Otto
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Florian Schulz
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Wolfgang J Parak
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Carlos Sanchez-Cano
- Ikerbasque, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao48009, Spain
- Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal, 4, 20018Donostia/San Sebastian, Gipuzkoa, Spain
| | - Ivan Coluzza
- Ikerbasque, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao48009, Spain
- BCMaterials, Bld. Martina Casiano, Third Floor, UPV/EHU Science Park, Barrio Sarriena s/n, 48940Leioa, Spain
| |
Collapse
|
9
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
10
|
Ahmad A, Georgiou PG, Pancaro A, Hasan M, Nelissen I, Gibson MI. Polymer-tethered glycosylated gold nanoparticles recruit sialylated glycoproteins into their protein corona, leading to off-target lectin binding. NANOSCALE 2022; 14:13261-13273. [PMID: 36053227 PMCID: PMC9494357 DOI: 10.1039/d2nr01818g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Upon exposure to biological fluids, the fouling of nanomaterial surfaces results in non-specific capture of proteins, which is particularly important when in contact with blood for in vivo and ex vivo applications. It is crucial to evaluate not just the protein components but also the glycans attached to those proteins. Polymer-tethered glycosylated gold nanoparticles have shown promise for use in biosensing/diagnostics, but the impact of the glycoprotein corona has not been established. Here we investigate how polymer-tethered glycosylated gold nanoparticles interact with serum proteins and demonstrate that the protein corona introduces new glycans and hence off-specific targeting capability. Using a panel of RAFT-derived polymers grafted to the gold surface, we show that the extent of corona formation is not dependent on the type of polymer. In lectin-binding assays, a glycan (galactose) installed on the chain-end of the polymer was available for binding even after protein corona formation. However, using sialic-acid binding lectins, it was found that there was significant off-target binding due to the large density of sialic acids introduced in the corona, confirmed by western blotting. To demonstrate the importance, we show that the nanoparticles can bind Siglec-2, an immune-relevant lectin post-corona formation. Pre-coating with (non-glycosylated) bovine serum albumin led to a significant reduction in the total glycoprotein corona. However, sufficient sialic acids were still present in the residual corona to lead to off-target binding. These results demonstrate the importance of the glycans when considering the protein corona and how 'retention of the desired function' does not rule out 'installation of undesired function' when considering the performance of glyco-nanomaterials.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alessia Pancaro
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, BE-2400, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek, BE-3590, Belgium
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, BE-2400, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C, Diepenbeek, BE-3590, Belgium
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
11
|
Wu B, Yu J, Luo Y, Wu L, Zhang Z, Deng L. An Albumin-Enriched Nanocomplex Achieves Systemic Delivery of Clopidogrel Bisulfate to Ameliorate Renal Ischemia Reperfusion Injury in Rats. Mol Pharm 2022; 19:3934-3947. [PMID: 36067352 DOI: 10.1021/acs.molpharmaceut.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, an albumin-enriched nanocomplex was developed for the solubilization and intravascular administration of clopidogrel bisulfate (CLP). In particular, CLP nanoparticles (HS-CLP-NPs) were synthesized via an improved nab-technology method using Solutol HS-15, and bovine serum albumin (BSA) was further enriched on the nanoparticle surface forming a protein corona (BH-CLP-NPs). BH-CLP-NPs displayed an average size of 163.4 ± 10.5 nm, a zeta potential of 1.85 ± 0.03 mV, an encapsulation efficiency of 99.9%, and a drug loading capacity of 32.9%. The cumulative release of CLP from BH-CLP-NPs reached about 60% within 168 h. The pharmacokinetic study on the CLP metabolite indicated that the BSA-enriched nanoparticle showed greater in vivo exposure. Pharmacodynamic studies in the renal ischemia/reperfusion injury rat model further demonstrated the renal protective effect of systemically administered BH-CLP-NPs against acute kidney injury with significantly downregulated blood urea nitrogen and creatinine levels. Overall, the albumin-enriched nanocomplexes offer a neat and efficient strategy for the development of poorly water-soluble drugs to achieve intravascular administration.
Collapse
Affiliation(s)
- Bangqing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Guiyang Public Health Clinical Center, Guiyang 550000, China
| | - Jiaojiao Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lijun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
13
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
14
|
Greytak AB, Abiodun SL, Burrell JM, Cook EN, Jayaweera NP, Islam MM, Shaker AE. Thermodynamics of nanocrystal–ligand binding through isothermal titration calorimetry. Chem Commun (Camb) 2022; 58:13037-13058. [DOI: 10.1039/d2cc05012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications.
Collapse
Affiliation(s)
- Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Sakiru L. Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jennii M. Burrell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Emily N. Cook
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nuwanthaka P. Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Md Moinul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Abdulla E Shaker
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
15
|
Willinger M, Reimhult E. Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size. J Phys Chem B 2021; 125:7009-7023. [PMID: 34156854 PMCID: PMC8279546 DOI: 10.1021/acs.jpcb.1c00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/26/2021] [Indexed: 11/27/2022]
Abstract
Polymer brush-grafted superparamagnetic iron oxide nanoparticles can change their aggregation state in response to temperature and are potential smart materials for many applications. Recently, the shell morphology imposed by grafting to a nanoparticle core was shown to strongly influence the thermoresponsiveness through a coupling of intrashell solubility transitions and nanoparticle aggregation. We investigate how a change from linear to cyclic polymer topology affects the thermoresponsiveness of poly(2-isopropyl-2-oxazoline) brush-grafted superparamagnetic iron oxide nanoparticles. Linear and cyclic polymers with three different molecular weights (7, 18, and 24.5 kg mol-1) on two different core sizes (3.7 and 9.2 nm) and as free polymer were investigated. We observed the critical flocculation temperature (CFT) during temperature cycling dynamic light scattering experiments, the critical solution temperature (CST), and the transition enthalpy per monomer during differential scanning calorimetry measurements. When all conditions are identical, cyclic polymers increase the colloidal stability and the critical flocculation temperature compared to their linear counterparts. Furthermore, the cyclic polymer shows only one uniform transition, while we observe multiple transitions for the linear polymer shells. We link the single transition and higher colloidal stability to the absence in cyclic PiPrOx shells of a dilute outer part where the particle shells can interdigitate.
Collapse
Affiliation(s)
- Max Willinger
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|