1
|
Obořilová R, Kučerová E, Botka T, Vaisocherová-Lísalová H, Skládal P, Farka Z. Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity. Sci Rep 2025; 15:3419. [PMID: 39870739 PMCID: PMC11772602 DOI: 10.1038/s41598-024-85064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 ΔtarM, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Eliška Kučerová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hana Vaisocherová-Lísalová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Tao H, Peng J, Chen Y, Zhou L, Lin T. Migration of natural organic matter and Pseudomonas fluorescens-associated polystyrene on natural substrates in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174997. [PMID: 39053541 DOI: 10.1016/j.scitotenv.2024.174997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the migration behavior of microplastics (MPs) covered with natural organic matter (NOM) and biofilm on three substrates (silica, Pseudomonas fluorescent and Pseudomonas aeruginosa biofilms) in various ionic strengths, focusing on the alterations in surface properties based on surface energy theory that affected their deposition and release processes. Peptone and Pseudomonas fluorescens were employed to generate NOM-attached and biofilm-coated polystyrene (PS) (NOM-PS and Bio-PS). NOM-PS and Bio-PS both exhibited different surface properties, as increased roughness and particle sizes, more hydrophilic surfaces and altered zeta potentials which increased with ionic strength. Although the deposition of NOM-PS on biofilms were enhanced by higher ionic strengths and the addition of Ca2+, while Bio-PS deposited less on biofilms and more on the silica surface. Both types exhibited diffusion-driven adsorption on the silica surface, with Bio-PS also engaging in synergistic and competitive interactions on biofilm surfaces. Release tests revealed that NOM-PS and Bio-PS were prone to release from silica than from biofilms. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory furtherly demonstrated that mid-range electrostatic (EL) repulsion had significantly impacts on NOM-PS deposition, and structural properties of extracellular polymeric substances (EPS) and substrate could affect Bio-PS migration.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jingtong Peng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Gadhvi MS, Javia BM, Vyas SJ, Patel R, Dudhagara DR. Bhargavaea beijingensis a promising tool for bio-cementation, soil improvement, and mercury removal. Sci Rep 2024; 14:23976. [PMID: 39402263 PMCID: PMC11473754 DOI: 10.1038/s41598-024-75019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Microbially Induced Calcite Precipitation (MICP) has emerged as a promising technique for bio-cementation, soil improvement, and heavy metal remediation. This study explores the potential of Bhargavaea beijingensis, a urease-producing bacterium, for these applications. Six ureolytic bacteria were isolated from calcareous bricks mine soil and screened for urease and calcite production. B. beijingensis exhibited the highest urease activity and calcite precipitation. Urease activity, calcite precipitation, sand solidification, heavy metal removal efficiency, and compressive strength were evaluated. It showed significant heavy metal removal efficiency, particularly highest for HgCl2. Mortar blocks treated with B. beijingensis or its crude enzyme exhibited improved compressive strength, suggesting its potential for bio-cementation. Crack remediation tests demonstrated successful crack healing in mortar blocks using the bacterium or its enzyme. This study identifies B. beijingensis as a novel and promising MICP agent with potential applications in bio-cementation, soil improvement, and heavy metal remediation. Hence, B. beijingensis diversified abilities prove superior performance compared to commonly used strains like Bacillus subtilis and Shewanella putrefaciens in bio-cementation applications. Its high urease activity, calcite precipitation, and heavy metal removal abilities make it a valuable candidate for sustainable and eco-friendly solutions in various fields.
Collapse
Affiliation(s)
- Megha S Gadhvi
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, Junagadh, 362263, India
| | - Bhumi M Javia
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, Junagadh, 362263, India
| | - Suhas J Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, Junagadh, 362263, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Udhana - Magdalla Road, Surat, Gujarat, India
| | - Dushyant R Dudhagara
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, Junagadh, 362263, India.
| |
Collapse
|
4
|
Palai D, Ohta M, Cetnar I, Taguchi T, Nishiguchi A. Enhanced ROS scavenging and tissue adhesive abilities in injectable hydrogels by protein modification with oligoethyleneimine. Biomater Sci 2024; 12:2312-2320. [PMID: 38497434 DOI: 10.1039/d3bm02065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Postsurgical treatment comprehensively benefits from the application of tissue-adhesive injectable hydrogels, which reduce postoperative complications by promoting wound closure and tissue regeneration. Although various hydrogels have been employed as clinical tissue adhesives, many exhibit deficiencies in adhesive strength under wet conditions or in immunomodulatory functions. Herein, we report the development of reactive oxygen species (ROS) scavenging and tissue-adhesive injectable hydrogels composed of polyamine-modified gelatin crosslinked with the 4-arm poly (ethylene glycol) crosslinker. Polyamine-modified gelatin was particularly potent in suppressing the secretion of proinflammatory cytokines from stimulated primary macrophages. This effect is attributed to its ability to scavenge ROS and inhibit the nuclear translocation of nuclear factor kappa-B. Polyamine-modified gelatin-based hydrogels exhibited ROS scavenging abilities and enhanced tissue adhesive strength on collagen casing. Notably, the hydrogel demonstrated exceptional tissue adhesive properties in a wet environment, as evidenced by its performance using porcine small intestine tissue. This approach holds significant promise for designing immunomodulatory hydrogels with superior tissue adhesion strength compared to conventional medical materials, thereby contributing to advancements in minimally invasive surgical techniques.
Collapse
Affiliation(s)
- Debabrata Palai
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Miho Ohta
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Iga Cetnar
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Al. Waszyngtona 4/8 Warsaw, Poland
| | - Tetsushi Taguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Akihiro Nishiguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|