1
|
Bugyna L, Bilská K, Boháč P, Pribus M, Bujdák J, Bujdáková H. Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Staphylococcus aureus Due to Photodynamic Inactivation. Molecules 2024; 29:3917. [PMID: 39202995 PMCID: PMC11357139 DOI: 10.3390/molecules29163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Resistant biofilms formed by Staphylococcus aureus on medical devices pose a constant medical threat. A promising alternative to tackle this problem is photodynamic inactivation (PDI). This study focuses on a polyurethane (PU) material with an antimicrobial surface consisting of a composite based on silicate, polycation, and erythrosine B (EryB). The composite was characterized using X-ray diffraction and spectroscopy methods. Anti-biofilm effectiveness was determined after PDI by calculation of CFU mL-1. The liquid PU precursors penetrated a thin silicate film resulting in effective binding of the PU/silicate composite and the PU bulk phases. The incorporation of EryB into the composite matrix did not significantly alter the spectral properties or photoactivity of the dye. A green LED lamp and laser were used for PDI, while irradiation was performed for different periods. Preliminary experiments with EryB solutions on planktonic cells and biofilms optimized the conditions for PDI on the nanocomposite materials. Significant eradication of S. aureus biofilm on the composite surface was achieved by irradiation with an LED lamp and laser for 1.5 h and 10 min, respectively, resulting in a 10,000-fold reduction in biofilm growth. These results demonstrate potential for the development of antimicrobial polymer surfaces for modification of medical materials and devices.
Collapse
Affiliation(s)
- Larysa Bugyna
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| | - Katarína Bilská
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| | - Peter Boháč
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
| | - Marek Pribus
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
| | - Juraj Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| |
Collapse
|
2
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
3
|
Tavakoli M, Najafinezhad A, Mirhaj M, Karbasi S, Varshosaz J, Al-Musawi MH, Madaninasab P, Sharifianjazi F, Mehrjoo M, Salehi S, Kazemi N, Nasiri-Harchegani S. Graphene oxide-encapsulated baghdadite nanocomposite improved physical, mechanical, and biological properties of a vancomycin-loaded PMMA bone cement. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:823-850. [PMID: 38300323 DOI: 10.1080/09205063.2024.2308328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Aliakbar Najafinezhad
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Pegah Madaninasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of GA, Tbilisi, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saeideh Salehi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Nafise Kazemi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Nasiri-Harchegani
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
4
|
Liu D, Li H, Yang Y, Xu S, Zheng X, Liu J, Miyazaki T, Zhu Y. Preparation and characterizations of antibacterial poly(methyl methacrylate) bone cement via copolymerization with a quaternary ammonium monomer of dimethylaminotriclosan methacrylate. J Mech Behav Biomed Mater 2024; 151:106367. [PMID: 38194787 DOI: 10.1016/j.jmbbm.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Poly (methyl methacrylate) (PMMA) bone cement relies on the loaded antibiotic to realize the antibacterial purpose. But the exothermic behavior during setting often makes temperature-sensitive antibiotics inactivated. It is necessary to develop new material candidates to replace antibiotics. In this study, a new quaternary ammonium methacrylate (QAM) monomer called dimethylaminetriclosan methacrylate (DMATCM) was designed by the quaternization between 2-(Dimethylamino)ethyl methacrylate and triclosan, then employed as the modifier to explore the feasibility of equipping bone cement with antibacterial activity, and to investigate the variations on the physical and biological performances brought by the substitution ratio of DMATCM to MMA. Results showed that DMATCM opened its C=C bonding to participate in the MMA polymerization, and the quaternary ammonium group helped it to perform broad-spectrum antibacterial property against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. With an increased substitution ratio of DMATCM to MMA, the glass transition temperatures, the maximum exothermic temperatures, and the contact angles of bone cements declined, but the residual monomer contents, the fluid uptakes, and the setting times under Vical indentation increased. Long-term soaking made almost no changes to the weight loss and the mechanical properties of DMATCM-modified cements with lower substitution ratios of 0∼20%, and the activation rather enhanced the strengths of uncured AMBC-4 and AMBC-5 samples. Owing to more DMATCM exposed on the cement surface, the inhibition ring diameter produced by modified cement was improved to a maximum of 28.09 mm, and MC3T3-E1 cells performed the cell viabilities all beyond 70% and healthy adhesion after 72 h co-culturing. Taking all measured properties and ISO standards into account, the antibacterial bone cement under the ratio of 10% performed better, besides its good bactericidal effect, the other properties satisfied the requirements for clinical application.
Collapse
Affiliation(s)
- Dong Liu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Haoyang Li
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Yunping Yang
- Spine Surgery Department, Affiliated Hospital of Yunnan University, No.176 Qingnian Road, Wuhua District, Kunming, Yunnan, 650021, China.
| | - Shan Xu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Xihao Zheng
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Jinkun Liu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu-shi, 808-0196, Japan.
| | - Yan Zhu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| |
Collapse
|
5
|
Al-Momani H, Massadeh MI, Almasri M, Al Balawi D, Aolymat I, Hamed S, Albiss BA, Ibrahim L, Balawi HA, Al Haj Mahmoud S. Anti-Bacterial Activity of Green Synthesised Silver and Zinc Oxide Nanoparticles against Propionibacterium acnes. Pharmaceuticals (Basel) 2024; 17:255. [PMID: 38399471 PMCID: PMC10891609 DOI: 10.3390/ph17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 μg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 μg/mL and 62.5 μg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 μg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 μg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Muhannad I. Massadeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Muna Almasri
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Saja Hamed
- Department of Pharmaceutical & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid 22110, Jordan;
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa’ Applied University, AL-Salt 19117, Jordan;
| |
Collapse
|
6
|
Li Z, Shi J, Wang Y, Li Y, Liu W, Xu R, Wang S, Chen L, Ye X, Zhang C, Xu W. Development of modified PMMA cement in spine surgery. ENGINEERED REGENERATION 2023; 4:375-386. [DOI: 10.1016/j.engreg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
7
|
Yang L, Yergeshov AA, Al-Thaher Y, Avdokushina S, Statsenko E, Abdullin TI, Prokopovich P. Nanocomposite orthopaedic bone cement combining long-acting dual antimicrobial drugs. BIOMATERIALS ADVANCES 2023; 153:213538. [PMID: 37390562 PMCID: PMC10824671 DOI: 10.1016/j.bioadv.2023.213538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Antibiotic loaded bone cements are widely used in total joint replacement (TJR); despite many limitations such as a burst release which leads to antibiotic concentration below inhibitory levels and possibly contributing to the selection of antibiotic resistant strains. In order to address such limitations and to simultaneously address antibiotic resistance and short-term antimicrobial activity, we developed a nanocomposite bone cement capable of providing a controlled release of antimicrobial agents from bone cement to act as prophylaxis or treatment against prosthetic joint infections (PJIs). Gentamicin and chlorhexidine were loaded in combination on silica nanoparticles surface using layer-by-layer coating technique (LbL) combining hydrolysable and non-hydrolysable polymers. The drug release from the nanocomposite continued for >50 days at concentrations higher than the commercial formulation containing the same amount of antimicrobial drugs, where burst release for few days were observed. Moreover, the nanocomposite bone cement showed superior antimicrobial inhibition without adversely affecting the mechanical properties or the ability of osteoblasts to grow. In vivo experiments with an infected bone lesion model along with mass-spectrometric analysis also provided further evidence of efficacy and safety of the implanted nanocomposite material as well as its prolonged drug eluting profile. The developed nanocomposite bone cement has the potential to reduce PJIs and enable treatment of resistant established infections; moreover, the newly developed LbL based nano-delivery system may also have wider applications in reducing the threat posed by antimicrobial resistance.
Collapse
Affiliation(s)
- Lirong Yang
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Abdulla A Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Yazan Al-Thaher
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Svetlana Avdokushina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Evgeny Statsenko
- Institute of Geology and Petroleum Technologies, 4/5 Kremlyovskaya St., 420111 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Larissa P, Gambrill B, de Carvalho RDP, Picolo MZD, Cavalli V, Boaro LCC, Prokopovich P, Cogo-Müller K. Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dent Mater 2023; 39:469-477. [PMID: 36934036 DOI: 10.1016/j.dental.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE In this study a dentistry nanocomposite with prolonged antibacterial activity using silica nanoparticles (SNPs) loaded with chlorhexidine (CHX) was developed. METHODS SNPs were coated with the Layer-by-Layer technique. Dental composites were prepared with organic matrix of BisGMA/TEGDMA and SNPs with or without CHX (0, 10, 20 or 30% w/w). The physicochemical properties of the developed material were evaluated and agar diffusion method was used to test the antibacterial. In addition, the biofilm inhibitory activity of the composites was evaluated against S. mutans. RESULTS SNPs were rounded with diameters about 50 nm, the organic load increased with increasing deposited layers. Material samples with SNPs loaded with CHX (CHX-SNPs) showed the highest values of post-gel volumetric shrinkage, that ranged from 0.3% to 0.81%. Samples containing CHX-SNPs 30% w/w showed the highest values of flexural strength and modulus of elasticity. Only samples containing SNPs-CHX showed growth inhibition against S. mutans, S. mitis and S. gordonii in a concentration-dependent manner. The composites with CHX-SNPs reduced the biofilm formation of S. mutans biofilm at 24 h and 72 h. SIGNIFICANCE The nanoparticle studied acted as fillers and did not interfere with the evaluated physicochemical properties while providing antimicrobial activity against streptococci. Therefore, this initial study is a step forward to the synthesis of experimental composites with improved performance using CHX-SNPs.
Collapse
Affiliation(s)
- Pavanello Larissa
- Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Benjamin Gambrill
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | | | | | - Vanessa Cavalli
- Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom.
| | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Al Thaher Y, Khalil R, Abdelghany S, Salem MS. Antimicrobial PMMA Bone Cement Containing Long Releasing Multi-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12081381. [PMID: 35458089 PMCID: PMC9026701 DOI: 10.3390/nano12081381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Prosthetic joint infections (PJIs) ensued from total joint replacement (TJR) pose a severe threat to patients that involve poor health outcomes, severe pain, death (in severe cases), and negative influence patients' quality of life. Antibiotic-loaded bone cement (ALBC) is frequently used for the prevention and treatment of PJI. This work aims to study gentamicin release from carbon nanotubes (CNTs) incorporated in polymethyl methacrylate (PMMA) bone cement to prolong release over several weeks to provide prophylaxis from PJIs after surgery. Different CNT concentrations were tested with the presence of gentamicin as a powder or preloaded onto carboxyl functionalized CNTs. The different types of bone cement were tested for drug release, mechanical properties, water uptake, antimicrobial properties, and cytocompatibility with human osteoblast cells (MTT, LDH, alizarin red, and morphology). Results showed prolonged release of gentamicin from CNT-loaded bone cements over several weeks compared to gentamicin-containing bone cement. Additionally, the presence of CNT enhanced the percentage of gentamicin released without adversely affecting the nanocomposite mechanical and antimicrobial properties needed for performance. Cytotoxicity testing showed non-inferior performance of the CNT-containing bone cement to the equivalent powder containing cement. Therefore, the developed nanocomposites may serve as a novel PMMA bone cement to prevent PJIs.
Collapse
Affiliation(s)
- Yazan Al Thaher
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
- Correspondence:
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman 19392, Jordan;
| | | | - Mutaz S. Salem
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
10
|
Al Thaher Y, Alotaibi HF, Yang L, Prokopovich P. PMMA bone cement containing long releasing silica-based chlorhexidine nanocarriers. PLoS One 2021; 16:e0257947. [PMID: 34587194 PMCID: PMC8480893 DOI: 10.1371/journal.pone.0257947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Prosthetic joint infections (PJI) are still an extremely concerning eventuality after joint replacement surgery; growing antibiotic resistance is also limiting the prophylactic and treatment options. Chlorhexidine (a widely used topical non-antibiotic antimicrobial compound) coatings on silica nanoparticles capable of prolonged drug release have been successfully developed and characterised. Such nanocarriers were incorporated into commercial formulation PMMA bone cement (Cemex), without adversely affecting the mechanical performance. Moreover, the bone cement containing the developed nanocarriers showed superior antimicrobial activity against different bacterial species encountered in PJI, including clinical isolates already resistant to gentamicin. Cytocompatibility tests also showed non inferior performance of the bone cements containing chlorhexidine releasing silica nanocarriers to the equivalent commercial formulation.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, Pharmacy College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Chen IC, Su CY, Nien WH, Huang TT, Huang CH, Lu YC, Chen YJ, Huang GC, Fang HW. Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers (Basel) 2021; 13:2240. [PMID: 34300997 PMCID: PMC8309450 DOI: 10.3390/polym13142240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement with considerable morbidity and large economic burdens. Antibiotic-Loaded Bone Cement (ALBC) has been developed as a valuable tool for local administration and is becoming one of the most effective methods for the prevention and treatment of orthopedic infections. Controlling antibiotic release from ALBC is critical to achieve effective infection control, however, the antibiotic elution rates are generally low, and the mechanisms are poorly understood. Thus, the present study aims to investigate the effects of the basic acrylic bone cement components, including liquid/powder (monomer-to-polymer) ratios, radiopacifier, initiator, and doses of antibiotics on the porosity, antibiotic elution rates and mechanical properties of polymethylmethacrylate (PMMA) based ALBC. The obtained results from the in vitro studies suggested that a reduction in the liquid/powder ratio and an increase in the radiopacifier ratio and gentamicin doses led to increased porosity and release of antibiotic, while the initiator ratio exerted no effect on elution rates. In conclusion, we hope that by varying the composition of ALBC, we could considerably enhance the antibiotic elution rates by increasing porosity, while maintaining an adequate mechanical strength of the bone cements. This finding might provide insights into controlling antibiotic release from ALBC to achieve effective infection control after total joint replacement surgery.
Collapse
Affiliation(s)
- I-Cheng Chen
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan;
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Wei-Han Nien
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Tzu-Tien Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Chang-Hung Huang
- Department of Medical Research, Biomechanics Research Laboratory, Mackay Memorial Hospital, New Taipei City 251020, Taiwan; (C.-H.H.); (Y.-C.L.)
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Chang Lu
- Department of Medical Research, Biomechanics Research Laboratory, Mackay Memorial Hospital, New Taipei City 251020, Taiwan; (C.-H.H.); (Y.-C.L.)
- Department of Orthopaedic Surgery, Mackay Memorial Hospital, Taipei 10491, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10491, Taiwan;
| | - Gwo-Che Huang
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10491, Taiwan;
| | - Hsu-Wei Fang
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan;
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
12
|
Hall TJ, Villapún VM, Addison O, Webber MA, Lowther M, Louth SET, Mountcastle SE, Brunet MY, Cox SC. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater Sci 2021; 8:4951-4974. [PMID: 32820747 DOI: 10.1039/d0bm01160f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global surge of antimicrobial resistance (AMR) is a major concern for public health and proving to be a key challenge in modern disease treatment, requiring action plans at all levels. Microorganisms regularly and rapidly acquire resistance to antibiotic treatments and new drugs are continuously required. However, the inherent cost and risk to develop such molecules has resulted in a drying of the pipeline with very few compounds currently in development. Over the last two decades, efforts have been made to tackle the main sources of AMR. Nevertheless, these require the involvement of large governmental bodies, further increasing the complexity of the problem. As a group with a long innovation history, the biomaterials community is perfectly situated to push forward novel antimicrobial technologies to combat AMR. Although this involvement has been felt, it is necessary to ensure that the field offers a united front with special focus in areas that will facilitate the development and implementation of such systems. This paper reviews state of the art biomaterials strategies striving to limit AMR. Promising broad-spectrum antimicrobials and device modifications are showcased through two case studies for different applications, namely topical and implantables, demonstrating the potential for a highly efficacious physical and chemical approach. Finally, a critical review on barriers and limitations of these methods has been developed to provide a list of short and long-term focus areas in order to ensure the full potential of the biomaterials community is directed to helping tackle the AMR pandemic.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney, NR4 7UQ, UK
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E T Louth
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E Mountcastle
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
13
|
Dadi NCT, Dohál M, Medvecká V, Bujdák J, Koči K, Zahoranová A, Bujdáková H. Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B. Molecules 2021; 26:E325. [PMID: 33435210 PMCID: PMC7827291 DOI: 10.3390/molecules26020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown by fluorescence spectra measurements. The water contact angles and the measurement of surface free energy demonstrated the hydrophilic nature of the hybrid films. Antimicrobial effectiveness, assessed by the photodynamic inactivation on hybrid films, was tested against a standard strain and against methicillin-resistant bacteria of Staphylococcus aureus (MRSA). One group of samples was irradiated (green LED light; 2.5 h) and compared to nonirradiated ones. S. aureus strains manifested a reduction in growth from 1-log10 to over 3-log10 compared to the control samples with Sap only, and defects in S. aureus cells were proven by scanning electron microscopy. The results proved the optimal photo-physical properties and anti-MRSA potential of this newly designed hybrid system that reflects recent progress in the modification of surfaces for various medical applications.
Collapse
Affiliation(s)
- Nitin Chandra teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Matúš Dohál
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
- Institute of Inorganic Chemistry of SAS, 845 36 Bratislava, Slovakia
| | - Kamila Koči
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| |
Collapse
|
14
|
Liang ZC, Yang C, Ding X, Hedrick JL, Wang W, Yang YY. Carboxylic acid-functionalized polycarbonates as bone cement additives for enhanced and sustained release of antibiotics. J Control Release 2021; 329:871-881. [DOI: 10.1016/j.jconrel.2020.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 01/22/2023]
|
15
|
Vu AA, Bose S. Natural Antibiotic Oregano in Hydroxyapatite-Coated Titanium Reduces Osteoclastic Bone Resorption for Orthopedic and Dental Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52383-52392. [PMID: 33181015 PMCID: PMC8009490 DOI: 10.1021/acsami.0c14993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Traditional infection prevention and treatment methods include synthetic antibiotics, which can cause severe adverse side effects. Carvacrol and thymol are biologically active monoterpenoid extractants from oregano leaves with antibiotic capabilities; however, little is known regarding their effects on bone tissue engineering. The objective of this work is to understand their effects on osteogenesis, specifically with osteoblast and osteoclast cells, from surface-modified Ti6Al4V with plasma sprayed hydroxyapatite (HA) coatings. This system is an alternative to cemented implants to aid in bone healing. Results reveal that full carvacrol release from the HA matrix is successful in aqueous environments and modulation of release kinetics can also be made using polycaprolactone (PCL) and polyethylene glycol (PEG) polymers. From HA-pressed disc samples in physiological pH, full carvacrol release is achieved in 10 days using PCL/PEG, about 95% release in 50 days using no polymer, and 60% in 50 days when using a PCL coating. Without polymer, full carvacrol release is achieved after 3 days from HA coatings in both physiological pH and acidic pH, mimicking the post-surgery environment. The release is assessed as a diffusion-based mechanism in phosphate-buffered saline but degradation-based mechanism in acetate buffer solution. Carvacrol and thymol show bacterial inhibition of Staphylococcus epidermidis and no cytotoxic effects on osteoblast proliferation in vitro. Carvacrol and thymol also induce a significant 7% reduction in osteoclast tartrate-resistant acid phosphatase (TRAP) activity, caused by poorly attached cellular morphologies, leading to an approximately 65% reduction in osteoclast resorption pit formation. Our goal is to demonstrate a natural medicinal system that can support bone healing while providing infection prevention and reducing costly revision surgeries for orthopedic and dental applications.
Collapse
Affiliation(s)
- Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
16
|
Xu YM, Peng HM, Feng B, Weng XS. Progress of antibiotic-loaded bone cement in joint arthroplasty. Chin Med J (Engl) 2020; 133:2486-2494. [PMID: 32960839 PMCID: PMC7575178 DOI: 10.1097/cm9.0000000000001093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
Bone cement, consisting of polymethyl methacrylate, is a bioinert material used for prothesis fixation in joint arthroplasty. To treat orthopedic infections, such as periprosthetic joint infection, antibiotic-loaded bone cement (ALBC) was introduced into clinical practice. Recent studies have revealed the limitations of the antibacterial effect of ALBC. Moreover, with the increase in high infection risk patients and highly resistant microbes, more researches and modification of ALBC are required. This paper reviewed latest findings about ALBC for most popular and destructive pathogens, summarized the influence of antibiotic kind, drug dosage, application method, and environment towards characteristic of ALBC. Subsequently, new cement additives and clinical applications of ALBC in joint arthroplasty were also discussed.
Collapse
Affiliation(s)
- Yi-Ming Xu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | |
Collapse
|
17
|
Long acting anti-infection constructs on titanium. J Control Release 2020; 326:91-105. [PMID: 32580044 DOI: 10.1016/j.jconrel.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 01/12/2023]
Abstract
Peri-prosthetic joint infections (PJI) are a serious adverse event following joint replacement surgeries; antibiotics are usually added to bone cement to prevent infection offset. For uncemented prosthesis, alternative antimicrobial approaches are necessary in order to prevent PJI; however, despite elution of drug from the surface of the device being shown one of the most promising approach, no effective antimicrobial eluting uncemented device is currently available on the market. Consequently, there is a clinical need for non-antibiotic antimicrobial uncemented prosthesis as these devices present numerous benefits, particularly for young patients, over cemented artificial joints. Moreover, non-antibiotic approaches are driven by the need to address the growing threat posed by antibiotic resistance. We developed a multilayers functional coating on titanium surfaces releasing chlorhexidine, a well-known antimicrobial agent used in mouthwash products and antiseptic creams, embedding the drug between alginate and poly-beta-amino-esters. Chlorhexidine release was sustained for almost 2 months and the material efficacy and safety was proven both in vitro and in vivo. The coatings did not negatively impact osteoblast and fibroblast cells growth and were capable of reducing bacterial load and accelerating wound healing in an excisional wound model. As PJI can develop weeks and months after the initial surgery, these materials could provide a viable solution to prevent infections after arthroplasty in uncemented prosthetic devices and, simultaneously, help the fight against antibiotic resistance.
Collapse
|
18
|
Synthesis Strategies for Biomedical Grade Polymers. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2020. [DOI: 10.1007/978-981-15-1251-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
19
|
Bistolfi A, Ferracini R, Albanese C, Vernè E, Miola M. PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4002. [PMID: 31810305 PMCID: PMC6926619 DOI: 10.3390/ma12234002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Polymethyl methacrylate (PMMA)-based bone cement is a biomaterial that has been used over the last 50 years to stabilize hip and knee implants or as a bone filler. Although PMMA-based bone cement is widely used and allows a fast-primary fixation to the bone, it does not guarantee a mechanically and biologically stable interface with bone, and most of all it is prone to bacteria adhesion and infection development. In the 1970s, antibiotic-loaded bone cements were introduced to reduce the infection rate in arthroplasty; however, the efficiency of antibiotic-containing bone cement is still a debated issue. For these reasons, in recent years, the scientific community has investigated new approaches to impart antibacterial properties to PMMA bone cement. The aim of this review is to summarize the current status regarding antibiotic-loaded PMMA-based bone cements, fill the gap regarding the lack of data on antibacterial bone cement, and explore the progress of antibacterial bone cement formulations, focusing attention on the new perspectives. In particular, this review highlights the innovative study of composite bone cements containing inorganic antibacterial and bioactive phases, which are a fascinating alternative that can impart both osteointegration and antibacterial properties to PMMA-based bone cement.
Collapse
Affiliation(s)
- Alessandro Bistolfi
- AO Citta’ della Salute e della Scienza. CTO Hospital, Department of Orthopedics. Via Zuretti 29, 10126 Turin, Italy; (A.B.); (C.A.)
| | - Riccardo Ferracini
- IRCCS Ospedale Policlinico San Martino, Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Carlo Albanese
- AO Citta’ della Salute e della Scienza. CTO Hospital, Department of Orthopedics. Via Zuretti 29, 10126 Turin, Italy; (A.B.); (C.A.)
| | - Enrica Vernè
- Department of Applied Science and Technology, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Marta Miola
- Department of Applied Science and Technology, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|