1
|
Shen R, He T, Yao S, Zhang Y, Peng T, Tan W, Chen N, Yuan Q. Defect Regulation Strategy of Porous Persistent Phosphors for Multiple and Dynamic Information Encryption. SMALL METHODS 2024; 8:e2400439. [PMID: 38864536 DOI: 10.1002/smtd.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Optical encryption technologies based on persistent luminescence material have currently drawn increasing attention due to the distinctive and long-lived optical properties, which enable multi-dimensional and dynamic optical information encryption to improve the security level. However, the controlled synthesis of persistent phosphors remains largely unexplored and it is still a great challenge to regulate the structure for optical properties optimization, which inevitably sets significant limitations on the practical application of persistent luminescent materials. Herein, a controlled synthesis method is proposed based on defect structure regulation and a series of porous persistent phosphors is obtained with different luminous intensities, lifetime, and wavelengths. By simply using diverse templates during the sol-gel process, the oxygen vacancy defects structures are successfully regulated to improve the optical properties. Additionally, the obtained series of porous Al2O3 are utilized for multi-color and dynamic optical information encryption to increase the security level. Overall, the proposed defect regulation strategy in this work is expected to provide a general and facile method for optimizing the optical properties of persistent luminescent materials, paving new ways for broadening their applications in multi-dimensional and dynamic information encryption.
Collapse
Affiliation(s)
- Ruichen Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and, Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tianpei He
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Sailing Yao
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350025, P. R. China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and, Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and, Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Na Chen
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and, Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Alidaei-Sharif H, Babazadeh-Mamaqani M, Mohammadi-Jorjafki M, Roghani-Mamaqani H, Salami-Kalajahi M. Multi-Responsive Polymer Nanoparticles: A Versatile Platform for Double-Security Anticounterfeiting and Smart Food Packaging. Macromol Rapid Commun 2024; 45:e2400561. [PMID: 39461898 DOI: 10.1002/marc.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Indexed: 10/29/2024]
Abstract
Potential applications of colloidal polymer nanoparticles in the preparation of smart inks are investigated by physical incorporation of the oxazolidine molecules. Precise adjusting the polymer chain flexibility and polarity is achieved by controlling the ratio of methyl methacrylate and butyl acrylate monomers in the polymerization reaction. In addition, nanofibrous indicators of acid-base vapors are prepared from the latex nanoparticles. This can be beneficial for creating materials that sense and respond to environmental changes, such as humidity or moisture and acidity. Thermochromic inks are prepared by microencapsulating crystal violet lactone dye (CVL) in polymer matrices to prevent their release into the aqueous media. Combining two distinct systems with varying triggers, such as light and temperature, provides an effective strategy for double-encryption anticounterfeiting and crack and scratch detection and indication applications. Preparing labels impregnated with double-responsive inks, a novel approach is developed for food spoilage detection and preservation indication. Labels are manufactured using polymer nanoparticles, which contain photoluminescent oxazolidine molecules, as well as a trinary mixture of CVL within core-shell latex particles as the thermochromic dye. The combination of these two responsive elements transforms traditional packaging into a dynamic and interactive sentinel for the food it holds.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Moein Mohammadi-Jorjafki
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| |
Collapse
|
3
|
Nakamura S, Hirano K, Tohnai N. Organic Mechanochromic Luminescent Materials with Self-Recovering Characters. Chempluschem 2024; 89:e202400437. [PMID: 39079915 DOI: 10.1002/cplu.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Indexed: 11/08/2024]
Abstract
Recently, applied research on stimuli-responsive materials with luminescence-switching characteristics has been conducted in various fields. A representative phenomenon of stimuli-responsive luminescent materials is mechanochromic luminescence (MCL), which exhibits luminescent color change induced by mechanical stimuli such as grinding. These materials are among the most prominent candidates for security and sensing applications. Interestingly, some mechanochromic luminescent materials have shown self-recovery character, in which their original luminescent color can be recovered by just standing under ambient conditions after grinding. Although there have been more and more reports of such materials in recent years, the fundamental principles of molecular design still remain elusive. In this concept, we summarize distinctive advances in mechanochromic luminescent materials with self-recovery according to the core structures of luminescent molecules. Controlling amorphous state by introducing substituents such as alkyl or polar groups is effective method to provide self-recovering properties.
Collapse
Affiliation(s)
- Shotaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Zhao J, Zhou Y, Zhang X, Zheng Y, Liu J, Bao Y, Shan G, Guo H, Yu C, Pan P. Spatially and Temporally Programmable Transparency Evolutions in Hydrogels Enabled by Metal Coordination toward Transient Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401261. [PMID: 38533971 DOI: 10.1002/smll.202401261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Hydrogels have emerged as promising candidates for anticounterfeiting materials, owing to their unique stimulus-responsive capabilities. To improve the security of encrypted information, efforts are devoted to constructing transient anticounterfeiting hydrogels with a dynamic information display. However, current studies to design such hydrogel materials inevitably include sophisticated chemistry, complex preparation processes, and particular experimental setups. Herein, a facile strategy is proposed to realize the transient anticounterfeiting by constructing bivalent metal (M2+)-coordination complexes in poly(acrylic acid) gels, where the cloud temperature (Tc) of the gels can be feasibly tuned by M2+ concentration. Therefore, the multi-Tc parts in the gel can be locally programmed by leveraging the spatially selective diffusion of M2+ with different concentrations. With the increase of temperature or the addition of a complexing agent, the transparency of the multi-Tc parts in the gel spontaneously evolves in natural light, enabling the transient information anticounterfeiting process. This work has provided a new strategy and mechanism to fabricate advanced anticounterfeiting hydrogel materials.
Collapse
Affiliation(s)
- Jin Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yichen Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Hui Guo
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| |
Collapse
|
6
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Han H, Oh JW, Lee H, Lee S, Mun S, Jeon S, Kim D, Jang J, Jiang W, Kim T, Jeong B, Kim J, Ryu DY, Park C. Rewritable Photoluminescence and Structural Color Display for Dual-Responsive Optical Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310130. [PMID: 38145576 DOI: 10.1002/adma.202310130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Indexed: 12/27/2023]
Abstract
Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength-tunable coloration as well as variable light intensity PL is not adequately demonstrated yet. Herein, a rewritable PL and structural color (SC) display suitable for dual-responsive optical encryption developed with a stimuli-responsive SC of a block copolymer (BCP) photonic crystal (PC) with alternating in-plane lamellae, of which a variety of 3D and 2D perovskite nanocrystals is preferentially self-assembled with characteristic PL, is presented. The SC of a BCP PC is controlled in the visible range with different perovskite precursor doping times. The perovskite nanocrystals developed in the BCP PC are highly luminescent, with a PL quantum yield of ≈33.7%, yielding environmentally stable SC and PL dual-mode displays. The independently programmed SC and PL information is erasable and rewritable. Dual-responsive optical encryption is demonstrated, in which true Morse code information is deciphered only when the information encoded by SCs is properly combined with PL information. Numerous combinations of SC and PL realize high security level of data anticounterfeiting. This dual-mode encryption display offers novel optical encryption with high information security and anti-counterfeiting.
Collapse
Affiliation(s)
- Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seungsoo Mun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dongjun Kim
- School of Integrated Technology, College of Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Beomjin Jeong
- Department of Organic Material Science and Engineering, Pusan National University, Busandaehak-ro 63 beongil 2, Geumjeong-gu, Busan, 46241, South Korea
| | - Jiwon Kim
- School of Integrated Technology, College of Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, Incheon, 21983, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
8
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
9
|
Men F, Hu T, Jiang Z, Yang H, Gao Y, Zeng Q. The Creation of Multimode Luminescent Phosphor through an Oxygen Vacancy Center for High-Level Anticounterfeiting. Inorg Chem 2024; 63:668-676. [PMID: 38113464 DOI: 10.1021/acs.inorgchem.3c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Integrating multimode optical properties into a single material simultaneously is promising for improving the security level of fluorescent anticounterfeiting. However, there has been a lack of affirmative principles and unambiguous mechanisms that guide the design of such material. Herein, we achieve color-tunable photoluminescence, long-lived persistent emission, thermally stimulated luminescence, and reversible photochromism in a Tb3+-activated Mg4Ga8Ge2O20 phosphor by employing the F-like color center as an energy reservoir. It is experimentally revealed that the role of oxygen vacancies in the lattice of Mg4Ga8Ge2O20 is assumed as the main trap for the photogenerated electronic carriers, which is the origin of metastable F-like color centers. The formed color centers with the estimated depths of 0.48-0.95 eV could suppress the recombination of electron-hole pairs, thus giving rise to good photochromism and persistent emission properties, while under various modes of stimulation such as thermal attack or photo radiation, a quick recombination of electron holes happens, accounting for the bright thermally stimulated luminescence and the accompanied color bleaching. Finally, we fabricate a flexible phosphor/polymer composite by encapsulating the developed phosphor into a polydimethylsiloxane matrix, and conceptual demonstration of the composite for the high-security fluorescent anticounterfeiting technology, by virtue of multimode optical phenomena as authentication signals.
Collapse
Affiliation(s)
- Fanchao Men
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Tao Hu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
| | - Zelong Jiang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Hong Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Yan Gao
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
| |
Collapse
|
10
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
11
|
Fan J, Wu W, Liu Y, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Customizable High-Contrast Optical Responses: Dual Photosensitive Colors for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54085-54097. [PMID: 37939228 DOI: 10.1021/acsami.3c11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Smart textiles demonstrating optical responses to external light stimuli hold great promise as functional materials with a wide range of applications in personalized decoration and information visualization. The incorporation of high-contrast, vivid, and real-time optical signals, such as color change or fluorescence emission, to indicate light on/off states is both crucial and challenging. In this study, we have developed a dual output photosensitive dye system possessing photochromic and photofluorescent properties, which was successfully applied to the dyeing and finishing processes of cotton fabrics. The design and fabrication of this dye system were based on the unique photoinduced proton transfer (PPT) principle exhibited by the water-soluble spiropyran (trans-MCH) molecule. The dual output response relies on the open-/closed-loop mechanism, wherein light regulates the trans-MCH molecule. Upon excitation by UV or visible light, the dye system and dyed fabrics display significant color changes and fluorescence switching in a real-time and highly reversible manner. Moreover, diverse photosensitive color systems can be tailored by direct blending with commercially available water-soluble dyes. By integrating high-contrast dual optical outputs into this scalable, versatile, and reversible dye system, we envisage the development and design of smart textiles capable of producing high-end products.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City 271000, Shandong, China
| |
Collapse
|
12
|
Sun F, Gao A, Xiong X, Duan Y, Dai D, Zhu Y, Xie C, Wei Q, Chen L, He B, Zhao H, Zheng Y, Deng X, Wei C, Wang D. Not in black or white, encryption of grayscale images by donor-acceptor Stenhouse adducts. Chem Commun (Camb) 2023; 59:12573-12576. [PMID: 37812075 DOI: 10.1039/d3cc04098d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Invisible inks have been applied for the secrecy of texts, symbols and binary images. Based on the photochromism of donor-acceptor Stenhouse adducts (DASAs) in the solid-state promoted by ester-containing molecules, we report the encryption of grayscale information by controlling the kinetics of photoisomerization.
Collapse
Affiliation(s)
- Fanxi Sun
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ang Gao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoyu Xiong
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongli Duan
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dacheng Dai
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yifei Zhu
- The Experimental High School Attached to UESTC, Chengdu 611730, China
| | - Chaoming Xie
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiang Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bo He
- LONGi Green Energy Technology Co., Ltd, Xi'an 710016, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Wei
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
13
|
Zhong Y, Liu SP, Lin YP, Qi XH, Yang B, Zhang Q, Du KZ. Multi-Mode Photoluminescence Regulation in a Zero-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite─[(CH 3) 4N] 2SnCl 6. Inorg Chem 2023; 62:14422-14430. [PMID: 37607342 DOI: 10.1021/acs.inorgchem.3c02293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Metal ion-doped zero-dimensional halide perovskites provide good platforms to generate broadband emission and explore the fundamental dynamics of emission regulations. Recently, Sb3+-doped zero-dimensional halide perovskites have attracted considerable attention for the high quantum yield of yellow emission; however, the triplet state recombination is activated and the singlet state emission is usually absent. Herein, we fabricate an Sb3+-doped zero-dimensional [(CH3)4N]2SnCl6 perovskite that can induce singlet and triplet emission. Density functional theory calculation shows that there are some overlaps between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals, which may induce a large energy separation between the lowest excited triplet states (T1) and the lowest excited singlet states (S1) [ΔE(S1 - T1)], impeding all the carriers' transfer from the singlet state to the triplet state. As a result, the reserved singlet emission together with the triplet emission can be regulated by excitation wavelength in situ. In addition, different Bi3+ ratios are co-doped into Sb3+@[(CH3)4N]2SnCl6, resulting in a photoluminescence ex situ regulation. Single-phase white light LED and optical anti-counterfeiting are developed further.
Collapse
Affiliation(s)
- Yu Zhong
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
- Qinghai Environmental Monitoring Center, Xining 810000, P. R. China
| | - Si-Ping Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Yang-Peng Lin
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Xing-Hui Qi
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ke-Zhao Du
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| |
Collapse
|
14
|
Li Y, Zhu C, Gu F, Liu F. Revisiting photocyclization of the donor-acceptor stenhouse adduct: missing pieces in the mechanistic jigsaw discovered. Phys Chem Chem Phys 2023; 25:7417-7422. [PMID: 36847409 DOI: 10.1039/d2cp05143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASA) have recently emerged as a class of visible-light-induced photochromic molecular switches, but their photocyclization mechanism remains puzzling and incomplete. In this work, we carried out MS-CASPT2//SA-CASSCF calculations to reveal the complete mechanism of the dominant channels and possible side reactions. We found that a new thermal-then-photo isomerization channel, i.e., EEZ → EZZ → EZE, other than the commonly accepted EEZ → EEE → EZE channel, is dominant in the initial step. Besides, our calculations rationalized why the expected byproducts ZEZ and ZEE are unobserved and proposed a competitive stepwise channel for the final ring-closure step. The findings here redraw the mechanistic picture of the DASA reaction by better accounting for experimental observations, and more importantly, provide critical physical insight in understanding the interplay between thermal- and photo-induced processes widely present in photochemical synthesis and reactions.
Collapse
Affiliation(s)
- Yazhen Li
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.
| | - Fenglong Gu
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
15
|
Abdollahi A, Dashti A. Photosensing of Chain Polarity and Visualization of Latent Fingerprints by Amine-Functionalized Polymer Nanoparticles Containing Oxazolidine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Li X, Wang Z, Sun H, Bai F, Xu S, Wang C. Solvent stimuli-responsive off-on fluorescence induced by synergistic effect of doping and phase transformation for Te 4+ doped indium halide perovskite: Giving printable and colorless ink for information encryption and decryption. J Colloid Interface Sci 2023; 633:808-816. [PMID: 36493745 DOI: 10.1016/j.jcis.2022.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Since traditional fluorescent materials are too easily observed by the eyes just under the UV light, off-on fluorescent materials are explored as the new generation of fluorescent labels. In the "off" state, such off-on fluorescent labels cannot be observed by naked eyes under either natural light or UV light. Only after a specific decryption treatment to make the fluorescent materials turning into the "on" state, the fluorescent labels can be observed under the UV light. Up to now, it is still a challenge to prepare fluorescent inks with aforementioned ideal properties by using halide perovskite materials. Herein, we reported the first example of Te4+ doped indium halide perovskite inks with both off-on fluorescence under solvent stimuli and invisible ink color by the naked eyes. The synergistic effect of doping/undoping of Te4+ together with the reversible phase transformation between Cs2InCl5(H2O) and Cs3InCl6 under solvent stimuli is key for the off-on fluorescence of crystals. Under acid solvent, the substitutional doping of Te4+ during the process of phase transformation from Cs3InCl6 to Cs2InCl5(H2O):Te4+ gives rise to "turning-on" orange emission from Te-induced self-trap emission (STE). Under the stimuli of methanol, the dissolution of Te4+ from the crystals destroys the structure of Te4+ in ligand-field and results in "turning-off" Te-induced emission during the process of phase transformation from Cs2InCl5(H2O):Te4+ to Cs3InCl6. On the basis of the Te4+ doped indium halide perovskite, printable and colorless ink can be prepared for the confidential information encryption and decryption. Since the mixture of Cs3InCl6 crystals and TeCl4 have no absorption in visible light scope, the printed encrypted information by such off-state fluorescent ink is colorless and invisible by the naked eyes under either ambient light or UV light. After decryption by acid solvent stimuli, the resulted Cs2InCl5(H2O):Te4+ doping crystals have a large Stokes shift with absorption below 450 nm from the excitation of Te4+ in ligand-field and emission around 570 nm from Te-induced STE. It makes the decryption information still colorless and invisible by the naked eyes under the ambient light but visible and readable under the UV light. In comparison to traditional undoped CsPbBr3/CsPb2Br5 perovskites with small Stokes shift and eye-visible ink color, the current colorless Te4+doped indium halide perovskites are no doubt providing better security level for both encrypted and decrypted information.
Collapse
Affiliation(s)
- Xiang Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhiwei Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Hongcan Sun
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Fuquan Bai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuhong Xu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
17
|
Quan Z, Xue F, Li H, Chen Z, Zhu H, He H. Design of a biomimetic cellulose nanofibre-based double information encryption sensor for fingerprint imaging. Carbohydr Polym 2023; 302:120394. [PMID: 36604072 DOI: 10.1016/j.carbpol.2022.120394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/25/2022]
Abstract
The development of double encryption system enables information to switch reversibly between "False" and "True", which helps to ensure information security in the transmission process. Herein, a biomimetic cellulose nanofibre-based double information encryption sensor (CNF-DIES) with an excellent pH response and fluorescence colour-switching performance was prepared with fluorescein isothiocyanate and protoporphyrin IX modified acetylated cellulose nanofibres (ACNF) as the pH response switch and background, respectively. Interestingly, with the addition of cellulose, CNF-DIES can be regarded as both a dye and an ink binder, which can realize direct writing function. The fluorescein grafted to ACNF guaranteed the stability of writing and avoided the "coffee ring" phenomenon. The handwriting written by CNF-DIES processes excellent light/pH double encryption performance. Besides, the film prepared by CNF-DIES can realize high resolution fingerprint imaging. This work demonstrated a strategy for pH-responsive colour-tunable materials for sensors and double information encryption.
Collapse
Affiliation(s)
- Zongyan Quan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Fei Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Haoyuan Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
18
|
Abdollahi A, Rahmanidoust M, Hanaei N, Dashti A. All-in-One Photoluminescent Janus Nanoparticles for Smart Technologies: Organic Light-Emitting Diodes, Anticounterfeiting, and Optical Sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Photoluminescent Janus oxazolidine nanoparticles for development of organic light-emitting diodes, anticounterfeiting, information encryption, and optical detection of scratch. J Colloid Interface Sci 2023; 630:242-256. [DOI: 10.1016/j.jcis.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
20
|
Chen J, Guo Y, Chen B, Zheng W, Wang F. Ultrafast and Multicolor Luminescence Switching in a Lanthanide-Based Hydrochromic Perovskite. J Am Chem Soc 2022; 144:22295-22301. [DOI: 10.1021/jacs.2c10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
21
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Salami-Kalajahi M. Photoluminescent Polymer Nanoparticles Based on Oxazolidine Derivatives for Authentication and Security Marking of Confidential Notes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13782-13792. [PMID: 36318093 DOI: 10.1021/acs.langmuir.2c01947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal materials have widely been used to develop innovative anticounterfeiting nanoinks for information encryption. Latex nanoparticles based on methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) bearing hydroxyl functional groups were synthesized via semicontinuous miniemulsion polymerization. The size determination of the nanoparticles and microscopic results showed mostly spherical nanoparticles with a narrow size distribution and a mean size of about 80 nm. Two oxazolidine derivatives were physically doped at the surface of the nanoparticles to prepare photoluminescent polymer nanoparticles. Hydroxyl functional groups at the surface of the nanoparticles led to their hydrogen bonding interactions with the doped luminescent compounds. Optical analysis of the photoluminescent nanoparticles displayed different fluorescence emission and UV-vis absorbance intensities based on the amount of polar groups located at the surface of colloidal nanoparticles. Reducing the particle size to below 100 nm along with increasing the surface area can assist the decrease of the light reflectance and improvement of the latex nanoparticles' efficiency in the anticounterfeiting industry. This preparation methodology can efficiently provide remarkable photoreversible anticounterfeiting nanoinks used in different applications, such as print marking, security encoded tags, labeling, probing, and handwriting.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Keyvan Sahandi-Zangabad
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|
22
|
Dong Y, Ling Y, Wang D, Liu Y, Chen X, Zheng S, Wu X, Shen J, Feng S, Zhang J, Huang W. Harnessing molecular isomerization in polymer gels for sequential logic encryption and anticounterfeiting. SCIENCE ADVANCES 2022; 8:eadd1980. [PMID: 36322650 PMCID: PMC9629717 DOI: 10.1126/sciadv.add1980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using smart photochromic and luminescent tissues in camouflage/cloaking of natural creatures has inspired efforts to develop synthetic stimuli-responsive materials for data encryption and anticounterfeiting. Although many optical data-encryption materials have been reported, they generally require only one or a simple combination of few stimuli for decryptions and rarely offer output corruptibility that prevents trial-and-error attacks. Here, we report a series of multiresponsive donor-acceptor Stenhouse adducts (DASAs) with unprecedented switching behavior and controlled reversibility via diamine conformational locking and substrate free-volume engineering and their capability of sequential logic encryption (SLE). Being analogous to the digital circuits, the output of DASA gel-based data-encryption system depends not only on the present input stimulus but also on the sequence of past inputs. Incorrect inputs/sequences generate substantial fake information and lead attackers to the point of no return. This work offers new design concepts for advanced data-encryption materials that operate via SLE, paving the path toward advanced encryptions beyond digital circuit approaches.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
- Corresponding author. (W.H.); (J.Z.)
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Corresponding author. (W.H.); (J.Z.)
| |
Collapse
|
23
|
Razavi B, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-Responsive Dendritic Macromolecules for Optical Detection of Metal Ions and Acidic Vapors by the Photoinduced Electron Transfer Mechanism: Paper-Based Indicator for Food Spoilage Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41433-41446. [PMID: 36050933 DOI: 10.1021/acsami.2c12144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visual detection of analytes has been a significant challenge in the design and development of optical chemosensors. Sensing of analytes in aqueous solution by organic molecules has encountered some issues, such as poor water solubility and quenching of optical properties. In this study, a new category of smart dendritic macromolecules was designed and synthesized by functionalization of the poly(amidoamine) (PAMAM) dendrimer with spiropyran molecules to afford a photoluminescent dendritic structure (SP-PAMAM). Smart optical sensors were prepared by physical incorporation of four different oxazolidine derivatives containing hydroxyl and nitro substituted groups into the SP-PAMAM structure. Investigation of optical properties demonstrated photoinduced electron transfer (PET) between the spiropyran end group of SP-PAMAM and oxazolidine derivatives (in a concentration of about 0.0002 M), which can result in quenching of fluorescence emission of spiropyran photoswitch in the form of merocyanine (MC). Treatment of the oxazolidine-doped SP-PAMAM samples with metal ions resulted in changes in the PET mechanism (switching on or off), as observed in the case of Fe3+, Pb2+, Cu2+, Zn2+, Cd2+, Co2+, and Ni2+ by different oxazolidine derivatives through various mechanisms (increase or decrease of fluorescence emission). These smart photoluminescent dendritic macromolecules have potential applications for photodetection of metal ions in aqueous media as optical chemosensors. In addition, the smart macromolecules displayed disconnection of PET between MC and oxazolidine and also showed red fluorescence emission under acidic conditions (pH 1-5). It is due to the protonation of the MC to MCH form and demonstrates a remarkable red shift in fluorescence spectra. The pH-responsivity of smart macromolecules was used for designing a paper-based pH indicator for visual detection of spoilage in the food industry, especially in the case of milk. The prepared papers applied on cap of the milk bottles did not show any fluorescence emission in the case of fresh milk; however, a red fluorescence emission was observed after milk spoilage as a result of adsorption of acidic volatile components generated by bacterial degradation and oxidation process on the paper surface. The reported smart papers can serve as optical portable pH indicators for timely detection of spoilage in food materials, which are usable in food packaging as smart indicator tags.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|
24
|
Yuan B, Gou G, Fan T, Liu M, Ma Y, Matsuda R, Li L. Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202204568. [DOI: 10.1002/anie.202204568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Baoling Yuan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Yunsheng Ma
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
25
|
Rewritable acidochromic papers based on oxazolidine for anticounterfeiting and photosensing of polarity and pH of aqueous media. Sci Rep 2022; 12:9412. [PMID: 35672386 PMCID: PMC9174242 DOI: 10.1038/s41598-022-13440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Oxazolidine is a new category of stimuli-chromic organic compounds with unique characteristics in response to polarity, pH changes, water, light, and metal ions that were well-known as solvatochromism, acidochromism, hydrochromism, photochromism, and ionochromism, respectively. Therefore, oxazolidine derivatives have been developed for their potential applications in chemosensors, anticounterfeiting, and rewritable hydrochromic papers. In this study, various oxazolidine derivatives containing hydroxyl and naphthalene substituted groups were synthesized by using two different indolenine compounds. The synthesized oxazolidine derivatives were used for investigation of solvatochromism in different solvents, and also acidochromism in various pHs by using UV–Vis and fluorescence spectroscopies. In addition, the oxazolidine derivatives were coated on cellulosic papers using a layer-by-layer strategy to develop rewritable acidochromic papers for printing of security tags on cellulosic papers by using acidic and alkaline solutions as water-based inks. Therefore, the developed rewritable acidochromic papers could be used as security papers.
Collapse
|
26
|
Yuan B, Gou G, Fan T, Liu M, Ma Y, Matsuda R, Li L. Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baoling Yuan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Yunsheng Ma
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
27
|
Shpinov Y, Schlichter A, Pelupessy P, Le Saux T, Jullien L, Adelizzi B. Unexpected Acid-Triggered Formation of Reversibly Photoswitchable Stenhouse Salts from Donor-Acceptor Stenhouse Adducts. Chemistry 2022; 28:e202200497. [PMID: 35218266 DOI: 10.1002/chem.202200497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/12/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are reversibly photoswitchable dyes, which are able to interconvert between a red/NIR absorbing triene-like state and a colorless cyclic state. Although optically attractive for multiple applications, their low solubility and lack of photoswitching in water impede their use in aqueous environments. We developed water-soluble DASAs based on indoline as donor and methyl, or trifluoromethyl, pyrazolone-based acceptors. In acetonitrile, photophysical analysis and photochemical studies, accounted with a three-state kinetic model, confirmed the reversible photoswitching mechanism previously proposed. In water, the colorless cyclic state is a thermodynamic sink at neutral pH values. In contrast, in acidic conditions, we observed a fast scrambling of DASAs' end-group resulting in the in situ formation of Stenhouse salts (StS), which are in turn capable of reversible photoswitching. We believe that this unexpected result is of interest not only for the future design of DASAs with improved stability, but also for further development and applications of StS as photoswitchable probes.
Collapse
Affiliation(s)
- Yuriy Shpinov
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Antoine Schlichter
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Philippe Pelupessy
- Laboratoire de biomolécules (LBM), Département de chimie, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Beatrice Adelizzi
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
28
|
Lou D, Sun Y, Li J, Zheng Y, Zhou Z, Yang J, Pan C, Zheng Z, Chen X, Liu W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew Chem Int Ed Engl 2022; 61:e202117066. [PMID: 35104032 DOI: 10.1002/anie.202117066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Developing extra safety encryption technologies to prevent information leakage and combat fakes is in high demand but is challenging. Herein, we propose a "double lock" strategy based on both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) polymer hydrogels for information camouflage and multilevel encryption. Two types of hydrogels were synthesized by the method of random copolymerization. The number of -CO-NH2 groups in the network structure of the hydrogels changed the enthalpic or entropic thermo-responsive hydrogels, and ultimately precisely controlled their phase transition temperature. The crosslink density of the polymer hydrogels governs the diffusion kinetics, resulting in a difference in the time for their color change. The combination of multiple LCST and UCST hydrogels in one label realized information encryption and dynamic information identification in the dimensions of both time and temperature. This work is highly interesting for the fields of information encryption, anti-counterfeiting, and smart responsive materials.
Collapse
Affiliation(s)
- Dongyang Lou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Chuxuan Pan
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
29
|
Zhao X, Yang S, Deng J, Zhang J. Reversibly stealth QR code based on N-methylmaleimide-vinyl acetate copolymers under the condition of acid-base change. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Lou D, Sun Y, Li J, Zheng Y, Zhou Z, Yang J, Pan C, Zheng Z, Chen X, Liu W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Lou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Chuxuan Pan
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| |
Collapse
|
31
|
Razavi B, Roghani-Mamaqani H, Salami-Kalajahi M. Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Sci Rep 2022; 12:1079. [PMID: 35058519 PMCID: PMC8776736 DOI: 10.1038/s41598-022-05098-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
Optical chemosensors and ionochromic cellulosic papers based on oxazolidine chromophores were developed for selective photosensing of metal ions and information encryption as security tags, respectively. The oxazolidine molecules have been displayed highly intense fluorescent emission and coloration characteristics that are usable in sensing and anticounterfeiting applications. Obtained results indicated that oxazolidine molecules can be used for selective detection of pb2+ (0.01 M), and photosensing of Fe3+, Co2+ and Ag+ metal ion solutions by colorimetric and fluorometric mechanisms with higher intensity and sensitivity. Also, oxazolidine derivatives were coated on cellulosic papers via layer-by-layer method to prepare ionochromic papers. Prepared ionochromic papers were used for printing and handwriting of optical security tags by using of metal ion solutions as a new class of anticounterfeiting inks with dual-mode fluorometric and colorimetric securities. The ionochromic cellulosic papers can be used for photodetection of metal ions in a fast and facile manner that presence of metal ions is detectable by naked eyes. Also, key-lock anticounterfeiting technology based on ionochromic papers and metal ion solution as ink is the most significant strategy for encryption of information to optical tags with higher security.
Collapse
|
32
|
Jung C, Kim G, Jeong M, Jang J, Dong Z, Badloe T, Yang JKW, Rho J. Metasurface-Driven Optically Variable Devices. Chem Rev 2021; 121:13013-13050. [PMID: 34491723 DOI: 10.1021/acs.chemrev.1c00294] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optically variable devices (OVDs) are in tremendous demand as optical indicators against the increasing threat of counterfeiting. Conventional OVDs are exposed to the danger of fraudulent replication with advances in printing technology and widespread copying methods of security features. Metasurfaces, two-dimensional arrays of subwavelength structures known as meta-atoms, have been nominated as a candidate for a new generation of OVDs as they exhibit exceptional behaviors that can provide a more robust solution for optical anti-counterfeiting. Unlike conventional OVDs, metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered. Well-known examples of mOVDs include ultrahigh-resolution structural color printing, various types of holography, and polarization encoding. In this review, we discuss the new generation of mOVDs. The fundamentals of plasmonic and dielectric metasurfaces are presented to explain how the optical responses of metasurfaces can be manipulated. Then, examples of monofunctional, tunable, and multifunctional mOVDs are discussed. We follow up with a discussion of the fabrication methods needed to realize these mOVDs, classified into prototyping and manufacturing techniques. Finally, we provide an outlook and classification of mOVDs with respect to their capacity and security level. We believe this newly proposed concept of OVDs may bring about a new era of optical anticounterfeit technology leveraging the novel concepts of nano-optics and nanotechnology.
Collapse
Affiliation(s)
- Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore.,Engineering Product Development, Singapore University of Technology and Design, 487372, Singapore
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
33
|
Minh NH, Kim K, Kang DH, Yoo YE, Yoon JS. Fabrication of robust and reusable mold with nanostructures and its application to anti-counterfeiting surfaces based on structural colors. NANOTECHNOLOGY 2021; 32:495302. [PMID: 34380119 DOI: 10.1088/1361-6528/ac1cbf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we report a method to fabricate molds and flexible stamps with 2D photonic crystal structures. This includes self-assembly of polystyrene particles into monolayer, oxygen reactive ion etching, thin film (chromium (Cr)) deposition, and polydimethylsiloxane replication. By tuning the thickness of Cr layer, reusable master molds with nano bumps or nano concaves could be prepared selectively. We showed that the replicated flexible stamps out of these molds exhibited structural colors. Characteristics of the colors depended on viewing angle, brightness of background and light source. And the colors even faded out when the background is white or when the stamp was bent. By using this feature, possible strategies for anti-counterfeiting applications have been suggested in this study. Since the molds are reusable and the fabrication method is simple and cost-effective, this study is expected to contribute to nano devices for industries in future.
Collapse
Affiliation(s)
- Nguyen Hoang Minh
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| | - Kwanoh Kim
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
| | - Do Hyun Kang
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
| | - Yeong-Eun Yoo
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| | - Jae Sung Yoon
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| |
Collapse
|
34
|
Lin J, Ma H, Wang Z, Zhou S, Yan B, Shi F, Yan Q, Wang J, Fan H, Xiang J. 808 nm Near-Infrared Light-Triggered Payload Release from Green Light-Responsive Donor-Acceptor Stenhouse Adducts Polymer-Coated Upconversion Nanoparticles. Macromol Rapid Commun 2021; 42:e2100318. [PMID: 34347335 DOI: 10.1002/marc.202100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Indexed: 12/23/2022]
Abstract
Owing to deep activation in biotissues and enhanced targeting efficiency, developing photoresponsive polymer-upconversion nanoparticles (PP-UCNPs) nanovectors has witnessed rapid growth in the past decade. However, up to date, all developed nanovectors require high-order photon processes to initiate the release of cargos. The photodamage caused by high-power near-infrared laser light may be a critical obstacle to their clinical application. Here, for the first time, by leveraging absorption-emission spectral matching between donor-acceptor Stenhouse adducts (DASA) PP and UCNPs (λex , 808 nm) in the green region (≈530 nm), the designed nanovector is capable of releasing cargos at a low-power 808 nm excitation (0.2 W). Considering the high molar absorptivity, biobenign, and synthetic tunability of DASA, DASA PP can be utilized as an up-and-coming candidate to design and synthesize the next generation of upconversion nanovectors without photodamage.
Collapse
Affiliation(s)
- Jianxun Lin
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hao Ma
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhonghui Wang
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shenglin Zhou
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Feng Shi
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jiliang Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Haojun Fan
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jun Xiang
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
35
|
Zheng C, Yu Y, Kuang S, Zhu B, Zhou H, Zhang SQ, Yang J, Shi L, Ran C. β-Amyloid Peptides Manipulate Switching Behaviors of Donor-Acceptor Stenhouse Adducts. Anal Chem 2021; 93:9887-9896. [PMID: 34235921 DOI: 10.1021/acs.analchem.1c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular switching plays a critical role in biological and displaying systems. Donor-acceptor Stenhouse adducts (DASAs) is a newly re-discovered series of switchable photochromes, and light is the most used approach to control its switching behavior. In this report, we speculated that hydrophobic binding pockets of biologically relevant peptides/proteins could be harnessed to alter its switching behavior without the assistance of light. We designed and synthesized a DASA compound SHA-2, and we demonstrated that the Aβ40 species could stabilize SHA-2 in the linear conformation and decrease the rate of molecular switching via fluorescence spectral studies. Moreover, molecular dynamics simulation revealed that SHA-2 could bind to the hydrophobic fragment of the peptide and resulted in substantial changes in the tertiary structure of Aβ40 monomer. This structural change is likely to impede the aggregation of Aβ40, as evidenced by the results from thioflavin T fluorescence and ProteoStat aggregation detection experiments. We believe that our study opens a new window to alter the switching behavior of DASA via DASA-peptide/protein interactions.
Collapse
Affiliation(s)
- Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yue Yu
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Heng Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Shao-Qing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
36
|
Yin P, Yang E, Chen Y, Peng Z, Li D, Duan Y, Lin Q. Multiplexing steganography based on laser-induced breakdown spectroscopy coupled with machine learning. Chem Commun (Camb) 2021; 57:7312-7315. [PMID: 34223591 DOI: 10.1039/d1cc02787e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study proposes steganography based on laser-induced breakdown spectroscopy (LIBS) for the first time. LIBS inks containing different elements in varying concentrations were fabricated to write steganographic text. LIBS was combined with machine learning as an ideal tool to efficiently extract hidden information. The proposed steganography strategy has the advantages of low cost, high security, and good stability, thus providing a practical tool for information transfer.
Collapse
Affiliation(s)
- Pengkun Yin
- Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Mao L, Wang Z, Duan Y, Xiong C, He C, Deng X, Zheng Y, Wang D. Designing of Rewritable Paper by Hydrochromic Donor-Acceptor Stenhouse Adducts. ACS NANO 2021; 15:10384-10392. [PMID: 34036790 DOI: 10.1021/acsnano.1c02629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rewritable paper is meaningful to the recyclable and sustainable utilization of environmental resources and thus has been extensively investigated for several decades. In this work, we demonstrated an efficient and convenient strategy to fabricate rewritable paper based on reversible hydrochromism of donor-acceptor Stenhouse adducts (DASAs). The kinetics and efficiency of isomerization could be well-controlled by adjusting the surrounding temperature and humidity. Monocolored rewritable paper was prepared by coating cyclic DASA·xH2O on the paper surface. Writing, printing, stamping and patterning were realized on the rewritable paper. The information could be controllably erased by treatment in a humid atmosphere. More importantly, the rewritable paper was upgraded to multicolored by combination of two DASA materials. The color of chirography was switched by controlling the writing speed.
Collapse
Affiliation(s)
- Lijun Mao
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhen Wang
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongli Duan
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chaoyue Xiong
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institute of Electronic and Information Engineering, UESTC in Guangdong, Dongguan 523808, China
| |
Collapse
|
38
|
Si P, Liang M, Sun M, Zhao B. Nature-inspired robust hydrochromic film for dual anticounterfeiting. iScience 2021; 24:102652. [PMID: 34159301 PMCID: PMC8193611 DOI: 10.1016/j.isci.2021.102652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Nature-inspired materials have been actively developed for anticounterfeiting applications. Among a variety of stimuli-responsive anticounterfeiting strategies, hydrochromic materials exhibit reversible color change in response to moisture or water and have the advantage of being easy to authenticate. However, the security level of current hydrochromic anticounterfeiting materials is not sufficient for practical applications since they only exhibit a single anticounterfeiting function, where the information switches between visible and invisible. To improve the security level and efficiency of hydrochromic anticounterfeiting materials, here we developed a robust dual hydrochromic material via the self-assembly of polyurethane (PU)-polyelectrolytes colloids with which the desired information can not only switch between visible and invisible but also transform from one pattern to another within 3 s without the need of any external instruments. The bio-inspiration, material design and demonstrated hydrochromic properties might have profound implications for using colloidal complexes to make advanced anticounterfeiting materials. Micro-structures are formed by self-assembly of polyurethane-polyelectrolyte colloids Information changes from one pattern to another within 3 s when exposed to water The hydrochromic films are mechanically robust in both dry and wet state
Collapse
Affiliation(s)
- Pengxiang Si
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, N2L 3G1, Canada
| | - Mingrui Liang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, N2L 3G1, Canada
| | - Manyou Sun
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, N2L 3G1, Canada
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, N2L 3G1, Canada
| |
Collapse
|
39
|
Feng P, Yang X, Feng X, Zhao G, Li X, Cao J, Tang Y, Yan CH. Highly Stable Perovskite Quantum Dots Modified by Europium Complex for Dual-Responsive Optical Encoding. ACS NANO 2021; 15:6266-6275. [PMID: 33630564 DOI: 10.1021/acsnano.0c09228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic perovskite quantum dots (QDs) have attracted great scientific attention in the field of luminescent materials, but the application has been limited by the inferior stability that results from highly dynamic capping ligands. In this work, we use a rare-earth complex to modify perovskite QDs with ligand exchange to realize perovskite functionalization; meanwhile, the stability of perovskite QDs is greatly improved. Density functional theory calculation results show that the adsorption energy of the europium complex to QDs is higher than that with traditional ligands, which provides a thermodynamic basis for stability improvement. Furthermore, the modified QDs exhibit attractive dual-response property, including temperature and pH response ascribed to QDs and europium complexes, respectively. The superior property can be applied to multi-stimuli-responsive optical encoding, which is further capable of enhancing the security of encrypted information. This study not only affords a strategy for the synthesis of highly stable perovskites but also provides a method for the functionalization of perovskites.
Collapse
Affiliation(s)
- Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoxi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoxia Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guodong Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaochen Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P.R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
40
|
Duan Y, Zhao H, Xiong C, Mao L, Wang D, Zheng Y. Learning from Spiropyrans: How to Make Further Developments of
Donor‐Acceptor
Stenhouse Adducts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Haiquan Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Chaoyue Xiong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Lijun Mao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| |
Collapse
|
41
|
Nánási D, Kunfi A, Ábrahám Á, Mayer PJ, Mihály J, Samu GF, Kiss É, Mohai M, London G. Construction and Properties of Donor-Acceptor Stenhouse Adducts on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3057-3066. [PMID: 33645991 PMCID: PMC8031373 DOI: 10.1021/acs.langmuir.0c03275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/27/2021] [Indexed: 05/15/2023]
Abstract
The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.
Collapse
Affiliation(s)
- Dalma
Edit Nánási
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Attila Kunfi
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Ágnes Ábrahám
- Laboratory
of Interfaces and Nanostructures, Eötvös
Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Péter J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
- Institute
of Chemistry, University of Szeged, Rerrich tér 1, 6720 Szeged, Hungary
| | - Judith Mihály
- Biological
Nanochemistry Research Group, Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Magyar tudósok
körútja 2, 1117 Budapest, Hungary
| | - Gergely F. Samu
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, H-6720 Szeged, Hungary
| | - Éva Kiss
- Laboratory
of Interfaces and Nanostructures, Eötvös
Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Miklós Mohai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Magyar tudósok
körútja 2, 1117 Budapest, Hungary
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
42
|
Lin YP, Rao LC, Zhao MJ, Huang XY, Du KZ. The moisture-responsive structural transformation of manganochlorine for water-soluble luminescent switching ink. Dalton Trans 2021; 50:2001-2006. [PMID: 33522556 DOI: 10.1039/d0dt03948a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CsMnCl3(H2O)2 (CMCH) has been widely investigated for magnetic and optical applications, including anti-Stokes photoluminescence, microwave absorption, and magnon-assisted optical transitions. Herein, CMCH crystals, which are colorless and transparent (unlike the pink crystals reported previously), were obtained through a unique approach. Consequently, a high-resolution optical absorption spectrum and distinct thermal behavior were observed. The reversible (de)hydration of CMCH being accompanied by photoluminescence switching (mainly in terms of the color temperature) was rationalized using crystal structure analysis. As a result, water-soluble CMCH could be applied as a moisture-responsive luminescent ink. Moreover, density functional theory (DFT) calculations were performed to understand the optical absorption of CMCH.
Collapse
Affiliation(s)
- Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Lin-Cong Rao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ming-Jun Zhao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
43
|
Connolly SW, Tiwari R, Holder SJ, Shepherd HJ. A simple strategy to overcome concentration dependence of photoswitching properties in donor-acceptor Stenhouse adducts. Phys Chem Chem Phys 2021; 23:2775-2779. [PMID: 33492320 DOI: 10.1039/d0cp06312f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoswitchable donor-acceptor Stenhouse adducts (DASAs) have been reported to exhibit an undesirable concentration dependence, where photoswitching is greatly inhibited with increasing photochrome concentration. Here we show that the use of piperazine-based donor moieties eliminates this concentration dependence and results in complete, rapid and reversible photoswitching behaviour for first generation DASAs, even in chlorinated solvents. Structural data and computational studies reveal proton transfer during isomerisation to the terminal amine rather than the donor amine. The improvement in photoswitching efficiency is attributed to resultant differences in supramolecular association.
Collapse
Affiliation(s)
- Sean W Connolly
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Rahul Tiwari
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK. and School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Simon J Holder
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Helena J Shepherd
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
44
|
Xiong C, Xue G, Mao L, Gu L, He C, Zheng Y, Wang D. Carbon Spacer Strategy: Control the Photoswitching Behavior of Donor-Acceptor Stenhouse Adducts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:802-809. [PMID: 33406356 DOI: 10.1021/acs.langmuir.0c03133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the relationship between chemical structure and photoswitching property of donor-acceptor Stenhouse adducts (DASAs) is necessary for developments and applications of the novel photoresponsive molecule. In the current work, we demonstrated a close relationship between the length of carbon spacer and photoswitching property of DASAs. A series of DASAs with barbituric acid substituted electron-withdrawing part and N-methylaniline substituted electron-donating part were synthesized. With shortening the carbon spacer between the phenyl and amine groups in the electron-donating part, the efficiency and rate of the light-induced linear-to-cyclic isomerization are improved in all the test solvents. The molecular energy variation during the isomerization process was investigated by density functional theory calculation to further understand the mechanism. This work provides a reliable carbon spacer strategy to control the photoswitching behavior of DASAs using chemical methods.
Collapse
Affiliation(s)
- Chaoyue Xiong
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guodong Xue
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijun Mao
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lianghong Gu
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
| |
Collapse
|
45
|
Wu BX, Chang HY, Liao YS, Yeh MY. Synthesis, photochemical isomerization and photophysical properties of hydrazide–hydrazone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d0nj05172a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure–property relationships for the hydrazide–hydrazone derivatives were investigated to provide new insights into the design of photo-responsive materials.
Collapse
Affiliation(s)
- Bao-Xing Wu
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Hsin-Yueh Chang
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Yi-Shun Liao
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| |
Collapse
|
46
|
Huang Y, Zhang T, Chu LL, Zhang Y, Ge JZ, Fu DW. A hybrid hydrochromic molecular crystal applicable to invisible ink with high reversibility. NEW J CHEM 2021. [DOI: 10.1039/d1nj04470b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Highly reversible hydrochromic behavior is realized in a novel hybrid molecular crystal by controlling the gain and loss of coordinated water.
Collapse
Affiliation(s)
- Yao Huang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Lu-Lu Chu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
47
|
Verma P, Singh A, Maji TK. Photo-modulated wide-spectrum chromism in Eu 3+ and Eu 3+/Tb 3+ photochromic coordination polymer gels: application in decoding secret information. Chem Sci 2020; 12:2674-2682. [PMID: 34164036 PMCID: PMC8179347 DOI: 10.1039/d0sc05721e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Photo-switching emission of photochromic materials has paramount importance in the field of optoelectronics. Here, we report synthesis and characterization of a dithienylethene (DTE) based photochromic low molecular weight gelator (LMWG) and self-assembly with lanthanide (Eu3+ and Tb3+) ions to form a photochromic coordination polymer gel (pcCPG). Based on DTE ring opening and closing, the TPY-DTE gel shuttles from pale-yellow coloured TPY-DTE-O to dark blue coloured TPY-DTE-C and vice versa upon irradiating with UV and visible light, respectively, and both the photoisomers show distinct optical properties. Furthermore, integration of Eu3+ and Tb3+ lanthanides with TPY-DTE resulted in red and green emissive Eu-pcCPG (Q.Y. = 18.7% for the open state) and Tb-pcCPG (Q.Y. = 23.4% for the open state), respectively. The photoisomers of Eu-pcCPG exhibit photo-switchable spherical to fibrous reversible morphology transformation. Importantly, an excellent spectral overlap of the Eu3+ centred emission and absorption of DTE in the closed form offered photo-switchable emission properties in Eu-pcCPG based on pcFRET (energy transfer efficiency >94%). Further, owing to the high processability and photo-switchable emission, the Eu-pcCPG has been utilized as invisible security ink for protecting confidential information. Interestingly, mixed Eu3+/Tb3+ pcCPG exhibited photo-modulated multi-spectrum chromism reversibly where the colour changes from yellow, blue, and red to green and vice versa under suitable light irradiation.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Material Laboratory, Chemistry and Physics of Material Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore-560064 India
| | - Ashish Singh
- Molecular Material Laboratory, Chemistry and Physics of Material Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore-560064 India
| | - Tapas Kumar Maji
- Molecular Material Laboratory, Chemistry and Physics of Material Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore-560064 India
| |
Collapse
|
48
|
Rojas-Torres J, Cea M, Zhu YJ, Fonseca GM. Behavior of 4 types of paper with printed QR codes for evaluating denture marking in conditions of extreme heat. J Prosthet Dent 2020; 127:645-650. [PMID: 33341253 DOI: 10.1016/j.prosdent.2020.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
STATEMENT OF PROBLEM Quick response (QR) codes are a fast and efficient technology for linking and accessing identifying information, and their use has been proposed in forensics. The heat resistance and esthetics of denture marking methods (DMMs) have been recommended by the American Dental Association (ADA), but studies on these aspects of printed QR codes are lacking. PURPOSE The purpose of this study was to determine the optimal printed material with QR codes for implementation as a DMM adjusted to the recommendations of the ADA. MATERIAL AND METHODS The behavior of 4 types of paper, bond paper, fiberglass filter paper, ultralong hydroxyapatite nanowire paper, and polyolefin and silica paper with printed QR codes was analyzed. They were exposed to temperatures between 100 °C and 1000 °C in a heat muffle for 1 hour. Each specimen was subjected to both a morphological and a thermogravimetric analysis (TGA) and scanned by using 3 different smartphones. RESULTS The scans were positive for bond paper (33.3%), fiberglass fiber paper (50%), ultralong hydroxyapatite nanowire paper (100%), and polyolefin and silica paper (70.4%). The TGA revealed continuous decomposition curves (average 16.5 minutes at 624 °C). CONCLUSIONS Printed QR codes on ultralong hydroxyapatite nanowire paper appear to be suitable as information reservoirs, even surviving incineration, and may be implemented as a DMM conforming to the ADA recommendations.
Collapse
Affiliation(s)
- Javier Rojas-Torres
- Junior Scientist, Programa de Magister en Odontología and Centro de Investigación en Odontología Legal y Forense (CIO), Facultad de Odontología, Universidad de La Frontera, Temuco, Chile.
| | - Mara Cea
- Associate Professor, Center of Waste Management and Bioenergy - BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Ying-Jie Zhu
- Full Professor, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| | - Gabriel M Fonseca
- Associate Professor, Programa de Magister en Odontología and Centro de Investigación en Odontología Legal y Forense (CIO), Facultad de Odontología, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
49
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS NANO 2020; 14:14417-14492. [PMID: 33079535 DOI: 10.1021/acsnano.0c07289] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Counterfeiting and inverse engineering of security and confidential documents, such as banknotes, passports, national cards, certificates, and valuable products, has significantly been increased, which is a major challenge for governments, companies, and customers. From recent global reports published in 2017, the counterfeiting market was evaluated to be $107.26 billion in 2016 and forecasted to reach $206.57 billion by 2021 at a compound annual growth rate of 14.0%. Development of anticounterfeiting and authentication technologies with multilevel securities is a powerful solution to overcome this challenge. Stimuli-chromic (photochromic, hydrochromic, and thermochromic) and photoluminescent (fluorescent and phosphorescent) compounds are the most significant and applicable materials for development of complex anticounterfeiting inks with a high-security level and fast authentication. Highly efficient anticounterfeiting and authentication technologies have been developed to reach high security and efficiency. Applicable materials for anticounterfeiting applications are generally based on photochromic and photoluminescent compounds, for which hydrochromic and thermochromic materials have extensively been used in recent decades. A wide range of materials, such as organic and inorganic metal complexes, polymer nanoparticles, quantum dots, polymer dots, carbon dots, upconverting nanoparticles, and supramolecular structures, could display all of these phenomena depending on their physical and chemical characteristics. The polymeric anticounterfeiting inks have recently received significant attention because of their high stability for printing on confidential documents. In addition, the printing technologies including hand-writing, stamping, inkjet printing, screen printing, and anticounterfeiting labels are discussed for introduction of the most efficient methods for application of different anticounterfeiting inks. This review would help scientists to design and develop the most applicable encryption, authentication, and anticounterfeiting technologies with high security, fast detection, and potential applications in security marking and information encryption on various substrates.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
50
|
Wu Y, Ren Y, Guo J, Liu Z, Liu L, Yan F. Imidazolium-type ionic liquid-based carbon quantum dot doped gels for information encryption. NANOSCALE 2020; 12:20965-20972. [PMID: 33090171 DOI: 10.1039/d0nr06358d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, a strategy for the preparation of adjustable imidazolium-type ionic liquid (IL)-based carbon quantum dots (CQDs) was reported. The effect of chemical structure, including carbon chain length of the N-substitution and the type of anion, on the amphiphilicity of CQDs was systematically investigated. It was found that the hydrophobicity of CQDs can be increased with the increase of carbon chain length for substitution at the N3 position. Moreover, the amphiphilicity of CQDs was also switched by changing the hydrophilic anions to hydrophobic anions. Due to adjustable amphiphilicity, the hydrophilic and hydrophobic CQDs were used for the preparation of fluorescent hydrogels and organogels, respectively. The fluorescent CQD-doped gels showed light- and force-dual stimuli responsiveness, which provides more secure information encryption than traditional single encryption inks.
Collapse
Affiliation(s)
- Yiqing Wu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Yongyuan Ren
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Lili Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|