1
|
Kim JY, Hwang W, Han SY, Jung YS, Pang F, Shen W, Park C, Kim S, Soon A, Cho YS. Oxygen-Doped 2D In 2Se 3 Nanosheets with Extended In-Plane Lattice Strain for Highly Efficient Piezoelectric Energy Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410851. [PMID: 39587991 PMCID: PMC11744569 DOI: 10.1002/advs.202410851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Indexed: 11/27/2024]
Abstract
With the emergence of electromechanical devices, considerable efforts have been devoted to improving the piezoelectricity of 2D materials. Herein, an anion-doping approach is proposed as an effective way to enhance the piezoelectricity of α-In2Se3 nanosheets, which has a rare asymmetric structure in both the in-plane and out-of-plane directions. As the O2 plasma treatment gradually substitutes selenium with oxygen, it changes the crystal structure, creating a larger lattice distortion and, thus, an extended dipole moment. Prior to the O2 treatment, the lattice extension is deliberately maximized in the lateral direction by imposing in situ tensile strain during the exfoliation process for preparing the nanosheets. Combining doping and strain engineering substantially enhances the piezoelectric coefficient and electromechanical energy conversion. As a result, the optimal harvester with a 0.9% in situ strain and 10 min plasma exposure achieves the highest piezoelectric energy harvesting values of ≈13.5 nA and ≈420 µW cm-2 under bending operation, outperforming all previously reported 2D materials. Theoretical estimation of the structural changes and polarization with gradual oxygen substitution supports the observed dependence of the electromechanical performance.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Woohyun Hwang
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Seo Yeon Han
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Ye Seul Jung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- SK HynixIcheonGyeonggi‐do17336Republic of Korea
| | - Fengyi Pang
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Wenhu Shen
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sang‐Woo Kim
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Aloysius Soon
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yong Soo Cho
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
2
|
Bao Y, Feng H, Chen X, Liu Z, Li Z, Wang Y, Zhao B, Liu S, Zhang X, Wu W, Gao C. Magnetic Nanocomposite Modified Hybrid Hole-Transport Layer for Constructing Organic Solar Cells with High Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54081-54091. [PMID: 39327723 DOI: 10.1021/acsami.4c15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
An interface modification layer holds paramount significance in reducing interface carrier recombination and improving the ohmic contact between the active layer and the electrode in organic solar cells (OSCs). Modifying or doping the widely used hole-transport layer (HTL) PEDOT:PSS to adjust the work function, conductivity, and acidity has become a common strategy for achieving high-performance OSCs. Metal oxides and two-dimensional materials as secondary dopants into PEDOT:PSS, respectively, as well as a replacement of PEDOT:PSS both exhibit immense potential for achieving high-performance OSCs due to their excellent electrical properties. Herein, we report a method utilizing a Fe3O4/GO magnetic nanocomposite as a secondary dopant for PEDOT:PSS to modulate its inherent properties for constructing high-efficiency OSCs. The magnetic nanocomposite hybrid HTL exhibits a suitable optical transmittance and higher work function. Meanwhile, it is found that the addition of Fe3O4/GO magnetic nanoparticles expands the domain of PEDOT and enhances the phase separation between PEDOT and PSS segments, thereby improving the conductivity of PEDOT:PSS. By fine-tuning the doping ratio of a Fe3O4/GO magnetic nanocomposite in PEDOT:PSS, the best power conversion efficiency of OSCs based on PM6:L8-BO was up to 18.91%. The notable enhancement of the device's performance was due to the enhanced hole mobility and the improved charge extraction, further complemented by the decreased likelihood of interface recombination brought about by the hybrid HTL. Compared with PEDOT:PSS-based OSCs, an enhanced stability of the hybrid HTL-based device was also obtained. In addition, the diverse adaptability of the hybrid HTL was demonstrated in enhancing the performance of OSCs that are based on PM6:Y6 and PBDB-T:ITIC. The effectiveness and versatility of a magnetic nanocomposite hybrid HTL present opportunities for achieving high-performance OSCs.
Collapse
Affiliation(s)
- Yinhui Bao
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Huanran Feng
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Xing Chen
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Zhihui Liu
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Zifei Li
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Yuanzhang Wang
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Shaanxi 710126, People's Republic of China
| | - Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Shaanxi 710126, People's Republic of China
| | - Xiaoyv Zhang
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Shaanxi 710126, People's Republic of China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi 710126, People's Republic of China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, Xidian University, Shaanxi 710126, People's Republic of China
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Shaanxi 710126, People's Republic of China
| |
Collapse
|
3
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
4
|
Zhang J, Jin F, Peng R, Ge J, Guo Y, Qiu Y, Zhou R, Ge Z. High Efficiency over 18.6% of Organic Solar Cells Enabled by PEDOT:PSS/Br-2PACz Dual-Anode Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9117-9125. [PMID: 38330209 DOI: 10.1021/acsami.3c17981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic solar cells (OSCs) with high performance were prepared using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and [2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid (Br-2PACz) double-layer films as the anode interface. By spin-coating a layer of Br-2PACz on PEDOT:PSS to form a PEDOT:PSS/Br-2PACz dual-anode interface, both the Jsc and FF of the device can be increased simultaneously, resulting in a high Jsc of 27.84 mA cm-2 and a high FF of 78.18%. The promising result indicates that the PEDOT:PSS/Br-2PACz dual-anode interface is an effective way to improve the performance of OSCs. The improvement of device performance is mainly attributed to (1) improved interface conductivity; (2) increased hole mobility and more balanced carrier transport efficiency; and (3) optimized morphology, which well explains the increase of Jsc and FF of the device. In addition, the OSC based on the PEDOT:PSS/Br-2PACz dual-anode interface exhibits exceptional stability, as it can maintain 94.7% of its initial efficiency even after 500 h of storage in a nitrogen environment. This work provides a promising strategy for improving the efficiency and stability of OSCs by dual-anode interface modulation.
Collapse
Affiliation(s)
- Jinna Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Fei Jin
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuntong Guo
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yi Qiu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Rong Zhou
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Jing W, Xu X, Yu L, Peng Q. Structure Influence of Amine-Containing Additives on the Solution State and Out-of-Plane Conductivity of PEDOT:PSS for Efficient Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300400. [PMID: 37469203 DOI: 10.1002/marc.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Additives are extensively explored for improving PEDOT:PSS performances mainly through the removal of excess PSS and as a secondary dopant. In this work, amine-containing additives are introduced to PEDOT:PSS solutions as processing additives where the interactions to the PSS are anticipated through electrostatic interactions. Such interactions affected solution property where the increased viscosity is found to significantly increase the out-of-plane conductivity of the PEDOT:PSS thin films. Organic solar cells adopting these additive-assisted processed PEDOT:PSS layers as hole transporting layers (HTL) showed the improved device performances that resulted from the reduced series resistance provided by the PEDOT:PSS HTL. A top power conversion efficiency of 18.28% is achieved with para-phenylenediamine (PPD) additive in the PEDOT:PSS HTL, which is 3.5% higher compared to devices with neat PEDOT:PSS thin film as the HTL.
Collapse
Affiliation(s)
- Wenwen Jing
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Lobanov AD, Korkh YV, Patrakov EI, Gaviko VS, Sarychev MN, Ivanov VY, Kuznetsova TV. Effect of 10 MeV electron irradiation on the electrical properties of bulk α-In 2Se 3 crystals. Phys Chem Chem Phys 2023; 25:25772-25779. [PMID: 37724343 DOI: 10.1039/d3cp03098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In this work, the effect of 10 MeV electron irradiation on the structure and electrical properties of bulk α-In2Se3 crystals is studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray microanalysis, atomic-force microscopy, and Raman spectroscopy methods. Droplets of 200-500 nm in size were detected on the bulk α-In2Se3 crystal surface. The droplets can be formations with the γ-In2Se3 crystalline phase. The current-voltage characteristics measured by conductive atomic-force microscopy are different on and outside the droplets after electron irradiation. On the droplets, slightly better conductive properties were detected after irradiation with the electron fluence of 1015 cm-2. It is found that local resistance increases significantly for both on and outside the droplets after irradiation with the electron fluence of 1017 cm-2. Our study shows that electron irradiation can contribute to the disappearance of ferroelectric domains in the bulk α-In2Se3 crystals. Also, the distribution of surface potentials measured by Kelvin probe force microscopy becomes more uniform after electron irradiation. The results obtained in the work allow us to calculate the operating time of the device containing α-In2Se3 under conditions of long-term electron irradiation with high-energy electrons. The study shows that α-In2Se3 is a very promising material for applications in the aerospace and nuclear industries.
Collapse
Affiliation(s)
- Alexey D Lobanov
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia.
| | - Yulia V Korkh
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia.
| | - Evgeny I Patrakov
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia.
| | - Vasily S Gaviko
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia.
| | | | | | - Tatyana V Kuznetsova
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia.
- Ural Federal University, Yekaterinburg, 620002, Russia
| |
Collapse
|
7
|
Xia Z, Sun Y, Jiang Y, Chen L, Zhao C, Dai C, Wei Z, Zhang G, Yu Y, Wang H, Zhang Z, Xie J, Zhou S, Zhang Q, Li X, Shuai J, Yang C, Liu S. Two-Dimensional Graphitic Carbon Nitride for Improving the Performance of Organic Solar Cells. J Phys Chem Lett 2023:6532-6541. [PMID: 37450690 DOI: 10.1021/acs.jpclett.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Organic solar cells (OSCs) have attracted lots of attention owing to their low cost, lightweight, and flexibility properties. Nowadays, the performance of OSCs is continuously improving with the development of active layer materials. However, the traditional hole transport layer (HTL) material Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) presents insufficient conductivity and rapid degradation, which decreases the efficiency and stability of OSCs. To conquer the challenge, the two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanomaterials incorporated into the PEDOT:PSS as hybrid HTL are reported. The addition of g-C3N4 into PEDOT:PSS enables the thickness of the HTL to decrease for enhancing the transmittance of the film and increase the conductivity of PEDOT:PSS. Thus, the device exhibts improved charge transport and suppressed carrier recombination, leading to the increase in short-circuit current density and power conversion efficiency of the devices. This work demonstrates that the incorporation of 2D g-C3N4 into PEDOT:PSS for D18:Y6 and PM6:L8-BO-based OSCs can significantly improve the device efficiency to 17.48% and 18.47% with the enhancement of 7.04% and 8.46%, respectively.
Collapse
Affiliation(s)
- Zihao Xia
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yali Sun
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yabin Jiang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Langkun Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong 518118, China
| | - Chaohua Dai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhenbang Wei
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong 518118, China
| | - Yaoguang Yu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Hong Wang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - ZhiZhen Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jiangsheng Xie
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Qian Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Xiangguo Li
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jing Shuai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chunzhen Yang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Shenghua Liu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
8
|
Li L, Feng H, Dong Z, Yang T, Xue S. Indium selenide/silver phosphate hollow microsphere S-scheme heterojunctions for photocatalytic hydrogen production with simultaneous degradation of tetracycline. J Colloid Interface Sci 2023; 649:10-21. [PMID: 37331106 DOI: 10.1016/j.jcis.2023.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Designing heterojunction photocatalysts with strong interfacial interactions is an effective way to reduce the recombination of photogenerated charge carriers. Here, silver phosphate (Ag3PO4) nanoparticles are coupled with hollow flower-like indium selenide (In2Se3) microspheres by a facile Ostwald ripening and in-situ growth method, resulting in the construction of In2Se3/Ag3PO4 hollow microsphere step-scheme (S-scheme) heterojunction with a large contact interface. The flower-like In2Se3 with hollow and porous structure provides a large specific surface area and numerous active sites for photocatalytic reactions to take place. The photocatalytic activity was tested by measuring the hydrogen evolution from antibiotic wastewater, and the H2 evolution rate of In2Se3/Ag3PO4 reached 4206.4 µmol g-1h-1 under visible light, which is approximately 2.8 times greater than that of In2Se3. In addition, the amount of tetracycline (TC) degradation when it was used as a sacrificial agent is about 54.4% after 1 h. On the one hand, Se-P chemical bonds act as electron transfer channels in the S-scheme heterojunctions, which can facilitate the migration and separation of photogenerated charge carriers. On the other hand, the S-scheme heterojunctions can retain the useful holes and electrons with higher redox capacities, which is very favorable for the generation of more •OH radicals and the photocatalytic activity is greatly enhanced. This work provides an alternative design approach for photocatalysts toward hydrogen evolution in antibiotic wastewater.
Collapse
Affiliation(s)
- Lingwei Li
- College of Science, Donghua University, Shanghai 201620, China
| | - Hange Feng
- College of Science, Donghua University, Shanghai 201620, China; College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Zibo Dong
- College of Science, Donghua University, Shanghai 201620, China
| | - Tiantian Yang
- College of Science, Donghua University, Shanghai 201620, China
| | - Shaolin Xue
- College of Science, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Deng B, Lian H, Xue B, Song R, Chen S, Wang Z, Xu T, Dong H, Wang S. Niobium-Carbide MXene Modified Hybrid Hole Transport Layer Enabling High-Performance Organic Solar Cells Over 19. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207505. [PMID: 36890774 DOI: 10.1002/smll.202207505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Indexed: 06/08/2023]
Abstract
Niobium-carbide (Nb2 C) MXene as a new 2D material has shown great potential for application in photovoltaics due to its excellent electrical conductivity, large surface area, and superior transmittance. In this work, a novel solution-processable poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-Nb2 C hybrid hole transport layer (HTL) is developed to enhance the device performance of organic solar cells (OSCs). By optimizing the doping ratio of Nb2 C MXene in PEDOT:PSS, the best power convention efficiency (PCE) of 19.33% can be achieved for OSCs based on the ternary active layer of PM6:BTP-eC9:L8-BO, which is so far the highest value among those of single junction OSCs using 2D materials. It is found that the addition of Nb2 C MXene can facilitate the phase separation of the PEDOT and PSS segments, thus improving the conductivity and work function of PEDOT:PSS. The significantly enhanced device performance can be attributed to the higher hole mobility and charge extraction capability, as well as lower interface recombination probabilities generated by the hybrid HTL. Additionally, the versatility of the hybrid HTL to improve the performance of OSCs based on different nonfullerene acceptors is demonstrated. These results indicate the promising potential of Nb2 C MXene in the development of high-performance OSCs.
Collapse
Affiliation(s)
- Baozhong Deng
- Sino-European School of Technology, Shanghai University, Shanghai, 200444, P. R. China
| | - Hong Lian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China
| | - Baotong Xue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China
| | - Ruichen Song
- Materials Gerome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Shi Chen
- Materials Gerome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zihan Wang
- Materials Gerome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Tao Xu
- Sino-European School of Technology, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Shenghao Wang
- Materials Gerome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Jin XZ, Li H, Wang Y, Yang ZY, Qi XD, Yang JH, Wang Y. Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27083-27095. [PMID: 35638614 DOI: 10.1021/acsami.2c05875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermoelectric (PTE) conversion can achieve the recovery of low-quality light or heat efficiently. Much effort has been devoted to the exploitation of the inorganic heterogeneous asynchronous (separate) PTE conversion system. Here, a full organic PTE film with a pseudobilayer architecture (PBA) according to the homogeneous synchronous (all-in-one) PTE conversion hypothesis was prepared via successive drop-casting a PEDOT:PSS/helical carbon nanotube (HCNT) mixture and PEDOT:PSS onto a vacuum ultraviolet treated substrate. Our results prove that the heptagon-pentagon pairs embedded in HCNTs promote a denser arrangement of the molecular chains of PEDOT, which enhances the crystallinity and affects the thermoelectric properties. The weak connection and hollow structure of HCNTs inhibit the dissipation of heat, and the zT value of the film reaches over 0.01. The PBA film shows better photothermal conversion performance than a neat PEDOT:PSS film and stably generates a temperature difference of over 25.68 °C without external cooling. A flexible PTE chip demo was manufactured, and the ideal open-circuit voltage (simulated via COMSOL) of that reaches over 1.5 mV under weak NIR stimulation (83.12 mW/cm2), which is the best value reported for an organic all-in-one PTE device, and the real maximum output power reaches 2.55 nW (166.01 mW/cm2). The chip has incredible ultraflexibility, and its inner resistance changes less than 1.42% after 10000 bending cycles and displays ultrahigh stability (similarity >90%) in a continuous periodic output. Our work fills the deficit of homogeneous synchronous PTE research for a PEDOT:PSS composite and is a preliminary attempt in an ultraflexible integrated all-in-one PTE chip design.
Collapse
Affiliation(s)
- Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huan Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Ying Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhen-Yu Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
11
|
In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells. CRYSTALS 2022. [DOI: 10.3390/cryst12050699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.
Collapse
|
12
|
Xu X, Peng Q. Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells. Chemistry 2022; 28:e202104453. [PMID: 35224789 DOI: 10.1002/chem.202104453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/27/2022]
Abstract
Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
13
|
Verma A, Chaudhary P, Tripathi RK, Singh A, Yadav BC. State of the Art Metallopolymer Based Functional Nanomaterial for Photodetector and Solar Cell Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02301-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Anrango-Camacho C, Pavón-Ipiales K, Frontana-Uribe BA, Palma-Cando A. Recent Advances in Hole-Transporting Layers for Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:443. [PMID: 35159788 PMCID: PMC8840354 DOI: 10.3390/nano12030443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
Collapse
Affiliation(s)
- Cinthya Anrango-Camacho
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Karla Pavón-Ipiales
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, Carretera Toluca Atlacomulco, Km 14.5, Toluca 50200, Mexico;
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| |
Collapse
|
15
|
Abstract
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs. In this review, we summarize the most recent successful applications of the 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, and g-C3N4, etc., adapted in the charge transporting layer, the active layer, and the electrode of the OSCs, respectively, for boosting the PCE and stability of the devices. The strengths and weaknesses of the 2D materials in the application of OSCs are also reviewed in details. Additionally, the challenges, commercialization potentials, and prospects for the further development of 2D materials-based OSCs are outlined in the end.
Collapse
|
16
|
Wang J, Peng R, Gao J, Li D, Xie L, Song W, Zhang X, Fu Y, Ge Z. Ti 3C 2T x/PEDOT:PSS Composite Interface Enables over 17% Efficiency Non-fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45789-45797. [PMID: 34523906 DOI: 10.1021/acsami.1c11139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal carbide Ti3C2Tx as a new two-dimensional material with excellent metallic conductivity, good water solubility, and superior transmittance in the visible light range shows great potential for applications in optoelectronic devices. Herein, Ti3C2Tx/PEDOT:PSS composite films were fabricated by a simple solution process and employed as an anode interfacial layer in organic solar cells. By introducing the Ti3C2Tx/PEDOT:PSS composite interface into the devices, the highest power conversion efficiency (PCE) of 17.26% was achieved while using PM6:Y6 as the active layer, with a high short-circuit current (Jsc) of 26.52 mA/cm2 and a fill factor of up to 0.76. The PCE is much higher than 15.89% for the pure PEDOT:PSS interfacial layer-based device without doping. The dramatically improved performance was attributed to the increased conductivity of the Ti3C2Tx/PEDOT:PSS composite interface and the increased charge extraction and collection efficiency of the devices. This work presents an effective method to prepare the Ti3C2Tx/PEDOT:PSS composite interface and high-performance organic solar cells.
Collapse
Affiliation(s)
- Jie Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jing Gao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Dandan Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yaqin Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Raji IO, Wen S, Li Y, Huang D, Shi X, Saparbaev A, Gu C, Yang C, Bao X. Benzo bis(Thiazole)-Based Conjugated Polymer with Varying Alkylthio Side-Chain Positions for Efficient Fullerene-Free Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36071-36079. [PMID: 34283560 DOI: 10.1021/acsami.1c07822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alkylthio groups can be used to modulate energy levels and molecular packing of organic semiconductors, which makes it important in the design of materials for organic solar cell. However, its effect has not been sufficiently exploited as most of the studies report introducing an alkylthio group to the donor unit and seldom to the acceptor unit of donor-acceptor conjugated polymers. In this report, two alkylthio-substituted polymers, namely, PBB-TSA and PBB-TSD, with benzo[1,2-d:4,5-d']bis(thiazole) (BBT) as the acceptor unit and benzo[1,2-b:4,5-b']dithiophene (BDT) as the donor unit, were rationally designed, synthesized, and applied in organic photovoltaics. An alkylthio side chain was substituted on the BBT-accepting unit for PBB-TSA, while for PBB-TSD, the alkylthio side chain was substituted on the BDT donor unit. PBB-TSA and PBB-TSD show upshifted and downshifted energy levels, respectively, compared to the nonsulfur-substituted material. Both polymers exhibit dominate face-on orientation, while PBB-TSD exhibits higher crystallinity compared to PBB-TSA. With the contribution of lower energy level and beneficial film morphology, the device based on PBB-TSD/IT-4F has much higher power conversion efficiency (PCE) of 14.6%, whereas the PBB-TSA blend had a lower PCE of 10.7%. 1,8-Diiodooctane can effectively optimize the blend film morphology, and the effect on device performance has also been demonstrated in detail. This result indicates that introducing an alkylthio side chain into the donor or acceptor moieties would result in materials with different energy levels and thus would be utilized to match with various acceptors, achieving optimized performance in organic solar cells.
Collapse
Affiliation(s)
- Ibrahim Oladayo Raji
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Wen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao 266101, China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao 266101, China
| | - Da Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Aziz Saparbaev
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xichang Bao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Han YW, Lee HS, Moon DK. Printable and Semitransparent Nonfullerene Organic Solar Modules over 30 cm 2 Introducing an Energy-Level Controllable Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19085-19098. [PMID: 33784450 DOI: 10.1021/acsami.1c01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the commercialization of organic solar cells (OSCs), the fabrication of large-area modules via a solution process is important. The fabrication of OSCs via a solution process using a nonfullerene acceptor (NFA)-based photoactive layer is limited by the energetic mismatch and carrier recombination, reducing built-in potential and effective carriers. Herein, for the fabrication of high-performance NFA-based large-area OSCs and modules via a solution process, hybrid hole transport layers (h-HTLs) incorporating WO3 and MoO3 are developed. The high bond energies and electronegativities of W and Mo atoms afford changes in the electronic properties of the h-HTLs, which can allow easy control of the energy levels. The h-HTLs show matching energy levels that are suitable for both deep and low-lying highest occupied molecular orbital energy level systems with a stoichiometrically small amount of oxygen vacancies (forming W6+ and Mo6+ from the W5+ and Mo5+), affording high conductivity and good film forming properties. With the NFA-based photoactive layer, a large-area module fabricated via the all-printing process with an active area over 30 cm2 and a high power conversion efficiency (PCE) of 8.1% is obtained. Furthermore, with the h-HTL, the fabricated semitransparent module exhibits 7.2% of PCE and 22.3% of average visible transmittance with high transparency, indicating applicable various industrial potentials.
Collapse
Affiliation(s)
- Yong Woon Han
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- The Academy of Applied Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyoung Seok Lee
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
19
|
Chang B, Cheng HW, Lin YC, Wang HC, Chen CH, Nguyen VT, Yang Y, Wei KH. Incorporating Indium Selenide Nanosheets into a Polymer/Small Molecule Binary Blend Active Layer Enhances the Long-Term Stability and Performance of Its Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55023-55032. [PMID: 33238703 DOI: 10.1021/acsami.0c14461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this report, we demonstrated that the incorporation of 15 wt % two-dimensional transition-metal dichalcogenide materials indium selenide (In2Se3) nanosheets into a polymer (PM6)/small molecule (Y6) active layer not only increased its light absorption but also enhanced the long-term stability of the PM6/Y6/In2Se3 ternary blend organic photovoltaic (OPV) devices. The power conversion efficiency (PCE) of the device was improved from 15.7 to 16.5% for the corresponding PM6/Y6 binary blend device. Moreover, the PM6/Y6/In2Se3 device retained 80% of its initial PCE after thermal treatment at 100 °C for 600 h; in comparison, the binary blend device retained only 62% of its initial value. This relative enhancement of 29% resulted from the In2Se3 nanosheets retarding or facilitating molecule packing in different orientations that stabilizes the morphology of the active layer. We adopted a modified kinetics model to account for the intrinsic degradation of the OPV; the degradation-facilitated energy for the degradation kinetics of the PCE for the ternary blend device was 5.3 kJ/mol, half of that (11.3 kJ/mol) of the binary blend device, indicating a slower degradation rate occurring for the case of incorporating In2Se3 nanosheets. Therefore, the incorporation of transition metal dichalcogenide nanosheets having tunable band gaps and large asymmetric shape appears to be a new way to improve the long-term stability of devices and realize the practical use of OPVs.
Collapse
Affiliation(s)
- Bin Chang
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Hao-Wen Cheng
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Yu-Che Lin
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Hao-Cheng Wang
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Van-Truong Nguyen
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Yang Yang
- Department of Material Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|