1
|
Kang Z, Wang K, Zhang L, Yang Y, Wu J, Tong Y, Yan P, Chen Y, Qi H, Sun K, Müller-Buschbaum P, Zhang X, Shang J, Wang H. Homogenizing The Low-Dimensional Phases for Stable 2D-3D Tin Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402028. [PMID: 38970557 DOI: 10.1002/smll.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.
Collapse
Affiliation(s)
- Ziyong Kang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Wang
- School of microelectronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi, Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yang Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiandong Wu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Yan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Sun
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Xuewen Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jingzhi Shang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
2
|
Jia YH, Sun YX, Gao LL, Sun Y, Deng ZP, Li JG, Zhao B, Ji BT. A highly selective and sensitive rhodamine B-based chemosensor for Sn 4+ in water-bearing and biomaging and biosensing in zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124385. [PMID: 38714005 DOI: 10.1016/j.saa.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
A novel colorimetric-fluorescent dual-mode chemosensor (JT5) based on rhodamine B has been produced for monitoring Sn4+ in the DMSO/H2O (4:1, v/v) medium. It has high sensitivity, a low detection limit, a short response time (1 s) and high stability, and can still be maintained after two weeks with the red dual fluorescence/ colorimetric response. Enhancement of red fluorescence (591 nm) and red colorimetric (567 nm) response of JT5 by Sn4+ addition. The electrostatic potential of the sensor JT5 molecule was simulated to speculate on the sensing mechanism, and the IR, mass spectrometry and 1H NMR titration were utilized to further demonstrate that JT5 was coordinated to Sn4+ with a 1:1 type, the rhodamine spironolactam ring of JT5 opens up to form a penta-membered ring with Sn4+, meanwhile, its system may have chelation enhanced fluorescence (CHEF) effect. In addition, theoretical calculations were carried out to give the energy gaps of JT5 and [JT5 + Sn4+] as well as to simulate the electronic properties of the maximal absorption peaks. Notably, the sensor JT5 was successfully applied to monitoring Sn4+ in zebrafish, and the JT5-loaded filter paper provided a solid-state platform for detecting Sn4+ by both naked eye and fluorescent methods. In summary, this work contributes to monitoring Sn4+ in organisms and solid-state materials and promotes understanding of Sn4+ functions in biological systems, environments, and solid-state materials.
Collapse
Affiliation(s)
- Yue-Hui Jia
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
3
|
Hazra V, Mandal A, Bhattacharyya S. Optoelectronic insights of lead-free layered halide perovskites. Chem Sci 2024; 15:7374-7393. [PMID: 38784758 PMCID: PMC11110173 DOI: 10.1039/d4sc01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Arnab Mandal
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
4
|
Stanton R, Trivedi DJ. Charge Carrier Dynamics at the Interface of 2D Metal-Organic Frameworks and Hybrid Perovskites for Solar Energy Harvesting. NANO LETTERS 2023; 23:11932-11939. [PMID: 38100376 DOI: 10.1021/acs.nanolett.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Interfacing perovskites with two-dimensional materials such as metal-organic frameworks (MOFs) for improved stability and electron or hole extraction has emerged as a promising path forward for the generation of highly efficient and stable solar cells. In this work, we examine the structural properties and excitation dynamics of two MOF-perovskite systems: UMCM309-a@MAPbI3 and ZrL3@MAPbI3. We find that precise band alignment and electronegativity of the MOF-linkers are necessary to facilitate the capture of excited charge carriers. Furthermore, we demonstrate that intraband relaxation of hot electrons to the MOF subsystem results in optically disallowed transitions across the band gap, suppressing radiative recombination. Furthermore, we elucidate the key mechanisms associated with improved structural stability afforded to the perovskites by the two-dimensional MOFs, highlighting the necessity of broad surface coverage and strong MOF-perovskite interaction.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
5
|
Azmy A, Konovalova DM, Lepore L, Fyffe A, Kim D, Wojtas L, Tu Q, Trinh MT, Zibouche N, Spanopoulos I. Synthesis and Optical Properties of One Year Air-Stable Chiral Sb(III) Halide Semiconductors. Inorg Chem 2023. [PMID: 38009949 DOI: 10.1021/acs.inorgchem.3c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chiral hybrid metal-halide semiconductors (MHS) pose as ideal candidates for spintronic applications owing to their strong spin-orbit coupling (SOC), and long spin relaxation times. Shedding light on the underlying structure-property relationships is of paramount importance for the targeted synthesis of materials with an optimum performance. Herein, we report the synthesis and optical properties of 1D chiral (R-/S-THBTD)SbBr5 (THBTD = 4,5,6,7-tetrahydro-benzothiazole-2,6-diamine) semiconductors using a multifunctional ligand as a countercation and a structure directing agent. (R-/S-THBTD)SbBr5 feature direct and indirect band gap characteristics, exhibiting photoluminescence (PL) light emission at RT that is accompanied by a lifetime of a few ns. Circular dichroism (CD), second harmonic generation (SHG), and piezoresponse force microscopy (PFM) studies validate the chiral nature of the synthesized materials. Density functional theory (DFT) calculations revealed a Rashba/Dresselhaus (R/D) spin splitting, supported by an energy splitting (ER) of 23 and 25 meV, and a Rashba parameter (αR) of 0.23 and 0.32 eV·Å for the R and S analogs, respectively. These values are comparable to those of the 3D and 2D perovskite materials. Notably, (S-THBTD)SbBr5 has been air-stable for a year, a record performance among chiral lead-free MHS. This work demonstrates that low-dimensional, lead-free, chiral semiconductors with exceptional air stability can be acquired, without compromising spin splitting and manipulation performance.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Daria M Konovalova
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Leah Lepore
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alexander Fyffe
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Doyun Kim
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Minh Tuan Trinh
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nourdine Zibouche
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YW, U.K
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
6
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
7
|
Yang LJ, Xuan W, Webster D, Jagadamma LK, Li T, Miller DN, Cordes DB, Slawin AMZ, Turnbull GA, Samuel IDW, Chen HYT, Lightfoot P, Dyer MS, Payne JL. Manipulation of the Structure and Optoelectronic Properties through Bromine Inclusion in a Layered Lead Bromide Perovskite. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3801-3814. [PMID: 37251101 PMCID: PMC10210243 DOI: 10.1021/acs.chemmater.2c03125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Indexed: 05/31/2023]
Abstract
One of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden-Popper-like to Dion-Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic-inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic-inorganic metal halides.
Collapse
Affiliation(s)
- Lin-jie Yang
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Wenye Xuan
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - David Webster
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Lethy Krishnan Jagadamma
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Teng Li
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - David N. Miller
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - David B. Cordes
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Alexandra M. Z. Slawin
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Graham A. Turnbull
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Hsin-Yi Tiffany Chen
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Philip Lightfoot
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Matthew S. Dyer
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| | - Julia L. Payne
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| |
Collapse
|
8
|
Kumavat SR, Sonvane Y. Lead-free 2D MASnBr 3 and Ruddlesden-Popper BA 2MASn 2Br 7 as light harvesting materials. RSC Adv 2023; 13:7939-7951. [PMID: 36909767 PMCID: PMC9997451 DOI: 10.1039/d3ra00108c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
We have explored the structural, electronic, charge transport, and optical properties of lead-free 2D hybrid halide perovskites, MASnBr3 and Ruddlesden-Popper perovskites, BAMASn2Br7 monolayers. Under density functional theory (DFT) calculation, we applied mechanical strain, i.e., tensile and compressive strain up to 10% in both cases. The mechanical strain engineering technique is useful for a tuned bandgap of 2D MASnBr3 and 2D BAMASn2Br7. The calculated carrier mobility for the electron is 404 cm2 V-1 s-1 and for the hole is up to 800 cm2 V-1 s-1 for MASnBr3. For BAMASn2Br7 the highest carrier mobility is up to 557 cm2 V-1 s-1 for electrons and up to 779 cm2 V-1 s-1 for the hole, which is 14% and 24% higher than the reported lead-iodide based perovskites, respectively. The calculated solar cell efficiency of 2D MASnBr3 is 23.46%, which is 18% higher than the reported lead-based perovskites. Furthermore, the optical activity of the 2D MASnBr3 and 2D BAMASn2Br7 shows a high static dielectric constant of 2.48 and 2.14, respectively. This is useful to show nanodevice performance. Also, 2D MASNBr3 shows a high absorption coefficient of 15.25 × 105 cm-1 and 2D BAMASn2Br7 shows an absorption coefficient of up to 13.38 × 105 cm-1. Therefore our theoretical results suggest that the systems are under mechanical strain engineering. This is convenient for experimentalists to improve the performance of the 2D perovskites. The study supports these materials as good candidates for photovoltaic and optoelectronic device applications.
Collapse
Affiliation(s)
- Sandip R Kumavat
- Advanced Materials Lab, Department of Physics, Sardar Vallabhbhai National Institute of Technology Surat 395007 India
| | - Yogesh Sonvane
- Advanced Materials Lab, Department of Physics, Sardar Vallabhbhai National Institute of Technology Surat 395007 India
| |
Collapse
|
9
|
Stanton R, Trivedi DJ. Atomistic Description of the Impact of Spacer Selection on Two-Dimensional (2D) Perovskites: A Case Study of 2D Ruddlesden-Popper CsPbI 3 Analogues. J Phys Chem Lett 2022; 13:12090-12098. [PMID: 36546657 DOI: 10.1021/acs.jpclett.2c03463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inorganic CsPbI3 perovskites have become desirable for use in photovoltaic devices due to their excellent optoelectronic properties and increased resilience to thermal degradation compared to organic-inorganic perovskites. An effective strategy for improving both the performance and the phase stability of CsPbI3-based perovskites is through introducing a diverse set of spacing cations separating inorganic layers in their two-dimensional (2D) analogues. In this work, CsPbI3-based 2D Ruddlesden-Popper perovskites were investigated using three aromatic spacers, 2-thiophenemethylamine (ThMA), 2-thiopheneformamidine (ThFA), and benzylammonium, fluorinated through para substitution (pFBA). Our findings highlight the importance of the local bonding environment between organic spacers and the PbI6 octahedra. Additionally, we demonstrated the importance of energetic alignment between electronic states on spacing cations and inorganic layers for optoelectronic applications. Furthermore, thermoelectric performance was investigated revealing a preference for p-type ThFA and n-type ThMA and pFBA configurations.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
10
|
Liu X, Ji H, Li L, Zhang F, Guo J, Qin L, Lou Z, Li D, Hu Y, Hou Y, Teng F. Two-Dimensional Layered Simple Aliphatic Monoammonium Tin Perovskite Thin Films and Potential Applications in Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50401-50413. [PMID: 36302180 DOI: 10.1021/acsami.2c15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) layered organic-inorganic perovskites have great potential for fabricating field-effect transistors due to their unique structure that enables the horizontal transport of charge carriers in metal-halide octahedra, resembling the transport behavior in semiconducting channels. Their electronic band structures are mainly dominated by the metal-halide octahedra, which eventually determine the optical and electrical characteristics, whereas organic cations have no direct contributions but would impact the electronic structures via distorting the octahedra. So far, high performance has been achieved in 2D Sn perovskites compared to their Pb counterparts because the intrinsic differences of Sn promote transport properties. The champion hole mobility has been obtained in single-ring aromatic phenylethylammonium tin iodide perovskite [(PEA)2SnI4]. However, simple aliphatic monoammonium tin perovskites and their device applications have rarely been reported. Herein, 2D layered n-butylammonium tin iodide perovskite [(BA)2SnI4] thin films have been synthesized by a spin-coating approach. A structural phase transition occurs at about 225 K in the films, accompanied by the changes in the photoluminescence peak and exciton binding energy. Longitudinal optical (LO) phonons are found to govern the scattering of charge carriers and excitons via the Fröhlich interactions in the temperature range 77-300 K. The first-principles calculations predict that the perovskite has excellent transport characteristics comparable to those of molybdenum disulfide (MoS2) and methylammonium lead iodide perovskite (MAPbI3). The (BA)2SnI4 thin film field-effect transistors constructed on polymer dielectrics with a maximum hole mobility of 0.03 cm2 V-1 s-1 in ambient conditions have been successfully demonstrated for the first time. Our findings not only offer a deep insight into the physical properties of 2D layered aliphatic monoammonium tin perovskite thin films but also provide important experimental and theoretical guidance for their potential applications in lateral-type flexible optoelectronic devices.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Hongyu Ji
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Longtao Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Fan Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Junhan Guo
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Liang Qin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhidong Lou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Dan Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yufeng Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yanbing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
11
|
Zhang Y, Sahoo MPK, Liang Y, Tang G. Structural Dimensionality Dependence of the Band Gap in A n+1B nX 3n+1 Ruddlesden-Popper Perovskites: A Global Picture. J Phys Chem Lett 2022; 13:9632-9641. [PMID: 36214530 DOI: 10.1021/acs.jpclett.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dimensionality engineering in An+1BnX3n+1 Ruddlesden-Popper (RP) perovskites has recently emerged as a promising tool for tuning the band gap to improve optoelectronic properties. However, the evolution of the band gap is dependent on the material; distinguishing the effects of different factors is urgently needed to guide the rational design of high-performance materials. Through first-principles calculations, we perform a systematic investigation of RP oxide, chalcogenide, and halide perovskites. The results reveal that in addition to the confinement effect and the change in octahedral rotation motions and/or amplitudes, interfacial rumpling and a change in the A-site cation coordination number also determine the evolution of the band gap. More importantly, we emphasize that the evolution of the band gap in RP perovskites is not dependent on the material family. Instead, the B-site frontier orbital type (s, p, and d) and bandwidth, A-site cation, interfacial rumpling, and structural distortions simultaneously determine the evolution of the band gap. These insights enable a complete and deeper understanding of various experimental observations.
Collapse
Affiliation(s)
- Yajun Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education of China, Lanzhou University, Lanzhou, Gansu730000, People's Republic of China
- Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu730000, People's Republic of China
| | - M P K Sahoo
- Department of Physics, Veer Surendra Sai University of Technology, Burla, Odisha768017, India
| | - Yunting Liang
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan463000, People's Republic of China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing100081, People's Republic of China
| |
Collapse
|
12
|
Dyksik M. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. Int J Mol Sci 2022; 23:ijms232012531. [PMID: 36293385 PMCID: PMC9604088 DOI: 10.3390/ijms232012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the current state of research concerning the determination of the effective mass in 2D layered perovskites is presented. The available experimental reports in which the reduced effective mass μ has been directly measured using magneto-absorption spectroscopy of interband Landau levels are reviewed. By comparing these results with DFT computational studies and various other methods, it is concluded that depending on the approach used, the μ found spans a broad range of values from as low as 0.05 up to 0.3 me. To facilitate quick and reliable estimation of μ, a model is proposed based solely on the available experimental data that bypass the complexity of interband Landau level spectroscopy. The model takes advantage of the μ value measured for (PEA)2PbI4 and approximates the reduced effective mass of the given 2D layered perovskites based on only two experimental parameters—the diamagnetic coefficient and the effective dielectric constant. The proposed model is tested on a broad range of 2D layered perovskites and captures well the main experimental and theoretical trends.
Collapse
Affiliation(s)
- Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
13
|
Babaei M, Ahmadi V, Darvish G. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications. Phys Chem Chem Phys 2022; 24:21052-21060. [PMID: 36004762 DOI: 10.1039/d2cp00638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, 2D halide perovskites have attracted attention because they are excellent photo absorbing materials for perovskite solar cells. To date, the majority of 2D perovskite-based devices have been made of Pb, a material with toxic properties and environmental concerns. Thus, lead-free alternatives are essential to enable the expansion of photovoltaic systems based on perovskites. Herein, we examine the structural, electronic, optical and stability properties of Pb-free 2D Ruddlesden-Popper (RP) perovskites (BA)2(MA)n-1GenI3n+1 (BA = CH3(CH2)3NH3+; MA = CH3NH3+; n = 1-5, and ∝) by using DFT calculations and comparing the results to their Pb-based counterparts (BA)2(MA)n-1PbnI3n+1 (n = 1-5, and ∝). Theoretical analysis indicates that Pb and Ge-based 2D perovskites are significantly more thermodynamically stable than their corresponding 3D materials. A more accurate bandgap is achieved using the HSE06 + SOC scheme and compared to the findings of the PBE and PBE + SOC. These materials are direct bandgap semiconductors. Due to spin-orbit coupling, Pb-based perovskite displays higher Rashba energy splitting than Ge-based ones. The bandgap changes from 2.37 eV (n = 1) to 1.79 eV (n = 5), and from 1.92 eV (n = 1) to 1.56 eV (n = 5) for Pb and Ge-based perovskites, respectively. The bandgap of all Ge-based perovskites is lower than their corresponding Pb-based ones. We show that the 2D perovskites could serve as hole-transporting materials when they are alongside 3D perovskites. The trade-off between thermodynamic stability and absorption coefficient of the considered compounds indicates that 2D RP perovskites BA2MA4Ge5I16 are promising Pb-free halide semiconductors for solar cell applications.
Collapse
Affiliation(s)
- Maryam Babaei
- Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Vahid Ahmadi
- Optoelectronics and Nanophotonics Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P.O. Box: 14115-194, Tehran, Iran.
| | - Ghafar Darvish
- Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| |
Collapse
|
14
|
Lai H, Zhou Y, Zhou H, Zhang N, Ding X, Liu P, Wang X, Xie W. Photoinduced Multi-Bit Nonvolatile Memory Based on a van der Waals Heterostructure with a 2D-Perovskite Floating Gate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110278. [PMID: 35289451 DOI: 10.1002/adma.202110278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The development of floating-gate nonvolatile memory (FGNVM) is limited by the charge storage, retention and transfer ability of the charge-trapping layer. Here, it is demonstrated that due to the unique alternate inorganic/organic chain structure and superior optical sensitivity, an insulating 2D Ruddlesden-Popper perovskite (2D-RPP) layer can function both as an excellent charge-storage layer and a photosensitive layer. Optoelectronic memory composed of a MoS2 /hBN/2D-RPP (MBR) van der Waals heterostructure is demonstrated. The MBR device exhibits unique light-controlled charge-storage characteristics, with maximum memory window up to 92 V, high on/off ratio of 104 , negligible degeneration over 103 s, >1000 program/erase cycles, and write speed of 500 µs. Dependent on the initial states, the MBR optoelectronic memory can be programmed in both positive photoconductivity (PPC) and negative photoconductivity (NPC) modes, with up to 11 and 22 distinct resistance states, respectively. The optical program power for each bit is as low as 36/10 pJ for PPC/NPC. The results not only reveal the potential of 2D-RPP as a superior charge-storage medium in floating-gate memory, but also provides an effective strategy toward fast, low-power and stable optical multi-bit storage and neuromorphic computing.
Collapse
Affiliation(s)
- Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huabin Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ning Zhang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xidong Ding
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
15
|
Jayanthi K, Spanopoulos I, Zibouche N, Voskanyan AA, Vasileiadou ES, Islam MS, Navrotsky A, Kanatzidis MG. Entropy Stabilization Effects and Ion Migration in 3D "Hollow" Halide Perovskites. J Am Chem Soc 2022; 144:8223-8230. [PMID: 35482958 DOI: 10.1021/jacs.2c01383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.
Collapse
Affiliation(s)
- K Jayanthi
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Albert A Voskanyan
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K..,Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Vasileiadou ES, Jiang X, Kepenekian M, Even J, De Siena MC, Klepov VV, Friedrich D, Spanopoulos I, Tu Q, Tajuddin IS, Weiss EA, Kanatzidis MG. Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. J Am Chem Soc 2022; 144:6390-6409. [PMID: 35378979 DOI: 10.1021/jacs.2c00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The nature of the organic cation in two-dimensional (2D) hybrid lead iodide perovskites tailors the structural and technological features of the resultant material. Herein, we present three new homologous series of (100) lead iodide perovskites with the organic cations allylammonium (AA) containing an unsaturated C═C group and iodopropylammonium (IdPA) containing iodine on the organic chain: (AA)2MAn-1PbnI3n+1 (n = 3-4), [(AA)x(IdPA)1-x]2MAn-1PbnI3n+1 (n = 1-4), and (IdPA)2MAn-1PbnI3n+1 (n = 1-4), as well as their perovskite-related substructures. We report the in situ transformation of AA organic layers into IdPA and the incorporation of these cations simultaneously into the 2D perovskite structure. Single-crystal X-ray diffraction shows that (AA)2MA2Pb3I10 crystallizes in the space group P21/c with a unique inorganic layer offset (0, <1/2), comprising the first example of n = 3 halide perovskite with a monoammonium cation that deviates from the Ruddlesden-Popper (RP) halide structure type. (IdPA)2MA2Pb3I10 and the alloyed [(AA)x(IdPA)1-x]2MA2Pb3I10 crystallize in the RP structure, both in space group P21/c. The adjacent I···I interlayer distance in (AA)2MA2Pb3I10 is ∼5.6 Å, drawing the [Pb3I10]4- layers closer together among all reported n = 3 RP lead iodides. (AA)2MA2Pb3I10 presents band-edge absorption and photoluminescence (PL) emission at around 2.0 eV that is slightly red-shifted in comparison to (IdPA)2MA2Pb3I10. The band structure calculations suggest that both (AA)2MA2Pb3I10 and (IdPA)2MA2Pb3I10 have in-plane effective masses around 0.04m0 and 0.08m0, respectively. IdPA cations have a greater dielectric contribution than AA. The excited-state dynamics investigated by transient absorption (TA) spectroscopy reveal a long-lived (∼100 ps) trap state ensemble with broad-band emission; our evidence suggests that these states appear due to lattice distortions induced by the incorporation of IdPA cations.
Collapse
Affiliation(s)
- Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Jiang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, F-35000 Rennes, France
| | - Michael C De Siena
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vladislav V Klepov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel Friedrich
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Imra S Tajuddin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Yan L, Ma J, Li P, Zang S, Han L, Zhang Y, Song Y. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106822. [PMID: 34676930 DOI: 10.1002/adma.202106822] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In recent years, 2D Ruddlesden-Popper (2DRP) perovskite materials have been explored as emerging semiconductor materials in solar cells owing to their excellent stability and structural diversity. Although 2DRP perovskites have achieved photovoltaic efficiencies exceeding 19%, their widespread use is hindered by their inferior charge-carrier transport properties in the presence of diverse organic spacer cations, compared to that of traditional 3D perovskites. Hence, a systematic understanding of the carrier transport mechanism in 2D perovskites is critical for the development of high-performance 2D perovskite solar cells (PSCs). Here, the recent advances in the carrier behavior of 2DRP PSCs are summarized, and guidelines for successfully enhancing carrier transport are provided. First, the composition and crystal structure of 2DRP perovskite materials that affect carrier transport are discussed. Then, the features of 2DRP perovskite films (phase separation, grain orientation, crystallinity kinetics, etc.), which are closely related to carrier transport, are evaluated. Next, the principal direction of carrier transport guiding the selection of the transport layer is revealed. Finally, an outlook is proposed and strategies for enhancing carrier transport in high-performance PSCs are rationalized.
Collapse
Affiliation(s)
- Linfang Yan
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjie Ma
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuangquan Zang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liyuan Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Zhang P, Chen Y, Wu S, Li X, Liu M, Li S. Enhancing the performance of n-i-p perovskite solar cells by introducing hydroxyethylpiperazine ethane sulfonic acid for interfacial adjustment. NANOSCALE 2021; 14:35-41. [PMID: 34768278 DOI: 10.1039/d1nr05939d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has improved greatly in recent years, the challenges of efficiency and stability still need to be overcome before these solar cells can be used in commercial applications. Here, a weak acid buffer, hydroxyethyl piperazine ethane sulfonic acid (HEPES), is used to passivate the interface of an SnO2 electron transport layer (ETL) and a photoactive layer in n-i-p solar cells. The device efficiency based on a SnO2/HEPES ETL reaches 20.22%, which is 9.7% higher than that of the control (18.43%), and the device stability is also significantly improved. The improvement in the device performance is mainly due to the introduction of the HEPES interface layer to adjust the interface energy level, which also improves the crystallinity of the perovskite film and reduces the interface defects. Electrochemical impedance spectroscopy and transient photovoltage/photocurrent results show that the HEPES-modified PSCs have lower charge transfer resistance, weaker leakage current intensity and improved interfacial charge separation and transport.
Collapse
Affiliation(s)
- Putao Zhang
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| | - Yiming Chen
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| | - Shenghan Wu
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| | - Xiaohui Li
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| | - Meiyue Liu
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| | - Shengjun Li
- Key Laboratory of Photovoltaic Materials, Henan University, Henan, Kaifeng 475004, China.
| |
Collapse
|
19
|
Adjogri SJ, Meyer EL. Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7857. [PMID: 34947450 PMCID: PMC8707488 DOI: 10.3390/ma14247857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022]
Abstract
In 2015, a class of unconventional semiconductors, Chalcogenide perovskites, remained projected as possible solar cell materials. The MAPbI3 hybrid lead iodide perovskite has been considered the best so far, and due to its toxicity, the search for potential alternatives was important. As a result, chalcogenide perovskites and perovskite-based chalcohalide have recently been considered options and potential thin-film light absorbers for photovoltaic applications. For the synthesis of novel hybrid perovskites, dimensionality tailoring and compositional substitution methods have been used widely. The study focuses on the optoelectronic properties of chalcogenide perovskites and perovskite-based chalcohalide as possibilities for future photovoltaic applications.
Collapse
Affiliation(s)
- Shadrack J. Adjogri
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa;
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - Edson L. Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
20
|
Vasileiadou ES, Kanatzidis MG. Structure‐Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Isr J Chem 2021. [DOI: 10.1002/ijch.202100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
22
|
Zhou X, Yu G. Preparation Engineering of Two-Dimensional Heterostructures via Bottom-Up Growth for Device Applications. ACS NANO 2021; 15:11040-11065. [PMID: 34264631 DOI: 10.1021/acsnano.1c02985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional heterostructures with tremendous electronic and optoelectronic properties hold great promise for nanodevice integrations and applications owing to the wide tunable characteristics. Toward this end, developing construction strategies in allusion to large-scale production of high-quality heterostructures is critical. The mainstream preparation routes are representatively classified into two categories of top-down and bottom-up approaches. Nonetheless, the relatively low reproductivity and the limitation for lateral heterostructure formations of top-down methods at the present stage inherently impeded their further developments. To surmount these obstacles, assembling heterostructures via miscellaneous bottom-up preparation protocols has emerged as a potential solution, attributed to the controllability and clean interface. Three typical approaches of chemical/physical vapor deposition, solution synthesis, and growth under ultrahigh vacuum conditions have shown promise due to the possibilities for preparing heterostructures with predesigned structures, clean interfaces, and the like. Therefore, bottom-up preparation engineering of heterostructures in two dimensions for further device applications is of vital importance. Moreover, heterostructure integrations by these methods have experienced a period of flourishing development in the past few years. In this review, the classical bottom-up growth routes, characterization methods, and latest progress of diverse heterostructures and further device applications are overviewed. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Xiahong Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
23
|
Lanzetta L, Webb T, Zibouche N, Liang X, Ding D, Min G, Westbrook RJE, Gaggio B, Macdonald TJ, Islam MS, Haque SA. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat Commun 2021; 12:2853. [PMID: 33990560 PMCID: PMC8121806 DOI: 10.1038/s41467-021-22864-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Tin perovskites have emerged as promising alternatives to toxic lead perovskites in next-generation photovoltaics, but their poor environmental stability remains an obstacle towards more competitive performances. Therefore, a full understanding of their decomposition processes is needed to address these stability issues. Herein, we elucidate the degradation mechanism of 2D/3D tin perovskite films based on (PEA)0.2(FA)0.8SnI3 (where PEA is phenylethylammonium and FA is formamidinium). We show that SnI4, a product of the oxygen-induced degradation of tin perovskite, quickly evolves into iodine via the combined action of moisture and oxygen. We identify iodine as a highly aggressive species that can further oxidise the perovskite to more SnI4, establishing a cyclic degradation mechanism. Perovskite stability is then observed to strongly depend on the hole transport layer chosen as the substrate, which is exploited to tackle film degradation. These key insights will enable the future design and optimisation of stable tin-based perovskite optoelectronics.
Collapse
Affiliation(s)
- Luis Lanzetta
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas Webb
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | | - Xinxing Liang
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Dong Ding
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Ganghong Min
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Robert J E Westbrook
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Benedetta Gaggio
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas J Macdonald
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | | - Saif A Haque
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
24
|
Li R, Li B, Fang X, Wang D, Shi Y, Liu X, Chen R, Wei Z. Self-Structural Healing of Encapsulated Perovskite Microcrystals for Improved Optical and Thermal Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100466. [PMID: 33788315 DOI: 10.1002/adma.202100466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Perovskite materials and their optoelectronic devices have attracted intensive attentions in recent years. However, it is difficult to further improve the performance of perovskite devices due to the poor stability and the intrinsic deep level trap states (DLTS), which are caused by surface dangling bonds and grain boundaries. Herein, the CH3 NH3 PbBr3 perovskite microcrystal is encapsulated by a dense Al2 O3 layer to form a microenvironment. Through optical measurement, it is found that the structure of perovskite can be healed by itself even under high temperature and long-time laser illumination. The DLTS density decreases nearly an order of magnitude, which results in 4-14 times enhancement of light emission. The observation is ascribed to the micron-level environment, which serves as a self-sufficient high-vacuum growth chamber, where the components of the perovskite are completely retained when sublimated and the decomposed atoms can re-arrange after thermal treatment. The modified structure showing high thermal stability is able to maintain excellent optical and lasing stability up to 2 years. This discovery provides a new idea and perspective for improving the stability of perovskite and can be of practical interest for perovskite device application.
Collapse
Affiliation(s)
- Ruxue Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China
- School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545006, P. R. China
| | - Bobo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, 518118, P. R. China
| | - Xuan Fang
- State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China
| | - Dengkui Wang
- State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China
| | - Yueqing Shi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiu Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
25
|
Li A, Liu Q, Chu W, Liang W, Prezhdo OV. Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16567-16575. [PMID: 33793206 DOI: 10.1021/acsami.1c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Much effort has been dedicated to boost the development of lead-free perovskite solar cells. However, their performance and stability are still much less competitive to the lead-bearing counterparts. By exploiting a mixed Sn-Ge cation strategy for the development of lead-free perovskites, we perform ab initio electronic structure calculations and quantum dynamics simulations on MASn0.5Ge0.5I3 and compare them to MASnI3. The calculations demonstrate that the hybrid cation strategy can improve simultaneously the perovskite stability and the lifetime of charge carriers. The stability increases due to a larger space of possible structures within the favorable range of the structural parameters, such as the Goldschmidt tolerance and octahedron factors. By exploring the larger structure space, mixed perovskites find stable configurations with lower free energies and better fitting components that exhibit reduced fluctuations around the equilibrium geometries. Charge carriers live longer in mixed perovskites because cation mixing results in an additional and moderate disorder that separates electrons and holes, reducing their interactions while still maintaining efficient band-like charge transport. These general and fundamental principles established by the analysis of the simulation results are useful for the design of advanced materials for solar energy and construction of optoelectronic devices.
Collapse
Affiliation(s)
- Akang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Qi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - WeiBin Chu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:046401. [PMID: 33730709 DOI: 10.1088/1361-6633/abefba] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.
Collapse
Affiliation(s)
- Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou University City, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
| | - Thomas R Hopper
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
27
|
Jahanbakhshi F, Mladenović M, Dankl M, Boziki A, Ahlawat P, Rothlisberger U. Organic Spacers in 2D Perovskites: General Trends and Structure‐Property Relationships from Computational Studies. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farzaneh Jahanbakhshi
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Marko Mladenović
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Mathias Dankl
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Ariadni Boziki
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Paramvir Ahlawat
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
28
|
Liu P, Han N, Wang W, Ran R, Zhou W, Shao Z. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002582. [PMID: 33511702 DOI: 10.1002/adma.202002582] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Indexed: 05/11/2023]
Abstract
In the last decade, perovskite solar cells (PSCs) have undergone unprecedented rapid development and become a promising candidate for a new-generation solar cell. Among various PSCs, typical 3D halide perovskite-based PSCs deliver the highest efficiency but they suffer from severe instability, which restricts their practical applications. By contrast, the low-dimensional Ruddlesden-Popper (RP) perovskite-based PSCs have recently raised increasing attention due to their superior stability. Yet, the efficiency of RP perovskite-based PSCs is still far from that of the 3D counterparts owing to the difficulty in fabricating high-quality RP perovskite films. In pursuit of high-efficiency RP perovskite-based PSCs, it is critical to manipulate the film formation process to prepare high-quality RP perovskite films. This review aims to provide comprehensive understanding of the high-quality RP-type perovskite film formation by investigating the influential factors. On this basis, several strategies to improve the RP perovskite film quality are proposed via summarizing the recent progress and efforts on the preparation of high-quality RP perovskite film. This review will provide useful guidelines for a better understanding of the crystallization and phase kinetics during RP perovskite film formation process and the design and development of high-performance RP perovskite-based PSCs, promoting the commercialization of PSC technology.
Collapse
Affiliation(s)
- Pengyun Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Ning Han
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
29
|
Vasileiadou ES, Wang B, Spanopoulos I, Hadar I, Navrotsky A, Kanatzidis MG. Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. J Am Chem Soc 2021; 143:2523-2536. [DOI: 10.1021/jacs.0c11328] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eugenia S. Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bin Wang
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ido Hadar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
- School of Molecular Sciences, School for Engineering of Matter, Transport and Energy, and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Mercouri G. Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Jung MH. The red light emission in 2D (C 4SH 3CH 2NH 3) 2SnI 4 and (C 4OH 7CH 2NH 3) 2SnI 4 perovskites. Dalton Trans 2021; 50:10261-10274. [PMID: 34250994 DOI: 10.1039/d1dt01465j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) perovskites have a large exciton binding energy due to the structure of the quantum confinement, which produces a faster radiative recombination, and so are promising potential materials for light-emitting diodes. However, most of the highly efficient hybrid halide perovskites are based on the toxic Pb-based materials, so the replacement of Pb with less toxic and suitable substitute elements has been investigated for environmental efficient materials. Herein, we report the Sn-based 2D perovskites, which include (TPM)2SnI4 (TPM = C4SH3CH2NH3) and (TFF)2SnI4 (TFF = C4OH7CH2NH3), as red emission materials. Structural characterization by single crystal X-ray diffraction reveals that (TPM)2SnI4 undergoes a structural evolution from the orthorhombic space group Cmc21 (100 K) to Pbca (298 K), while the (TFF)2SnI4 perovskite exhibits the monoclinic space group P21/c at 100 K and 298 K. The inorganic framework of (TFF)2SnI4 was separated by the bilayer TFF chains with an empty space, which is an effective structure to increase the quantum confinement effect. The band gaps of the (TPM)2SnI4 (1.80 eV) and (TFF)2SnI4 (1.73 eV) compounds indicate the direct band gap semiconductor materials. From the time-resolved photoluminescence results, it can be seen that (TPM)2SnI4 produces uniform short emission (0.73 ns) throughout the entire powder crystals, whereas (TFF)2SnI4 has a uniform and long emission life time (47 ns). Temperature-dependent photoluminescence (PL) studies indicate that the (TPM)2SnI4 and (TFF)2SnI4 perovskites have a strong split red emission at low temperature due to the vibration of the inorganic framework. As the temperature increases, the PL spectra shift to the high energy region and the emission intensity decreases. The PL spectra of (TPM)2SnI4 and (TFF)2SnI4 perovskites have maximum peak wavelengths at 622 nm and 640 nm, and show the photoluminescence quantum yields of 0.30% and 1.71%, respectively.
Collapse
Affiliation(s)
- Mi-Hee Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
31
|
Fridriksson M, van der Meer N, de Haas J, Grozema FC. Tuning the Structural Rigidity of Two-Dimensional Ruddlesden-Popper Perovskites through the Organic Cation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:28201-28209. [PMID: 33391582 PMCID: PMC7771047 DOI: 10.1021/acs.jpcc.0c08893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites are an interesting class of semi-conducting materials. One of their main advantages is the large freedom in the nature of the organic spacer molecules that separates the individual inorganic layers. The nature of the organic layer can significantly affect the structure and dynamics of the 2D material; however, there is currently no clear understanding of the effect of the organic component on the structural parameters. In this work, we have used molecular dynamics simulations to investigate the structure and dynamics of a 2D Ruddlesden-Popper perovskite with a single inorganic layer (n = 1) and varying organic cations. We discuss the dynamic behavior of both the inorganic and the organic part of the materials as well as the interplay between the two and compare the different materials. We show that both aromaticity and the length of the flexible linker between the aromatic unit and the amide have a clear effect on the dynamics of both the organic and the inorganic part of the structures, highlighting the importance of the organic cation in the design of 2D perovskites.
Collapse
|
32
|
Fridriksson M, Maheshwari S, Grozema FC. Structural Dynamics of Two-Dimensional Ruddlesden-Popper Perovskites: A Computational Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:22096-22104. [PMID: 33072237 PMCID: PMC7552078 DOI: 10.1021/acs.jpcc.0c05225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Indexed: 05/29/2023]
Abstract
Recently two-dimensional (2D) hybrid organic-inorganic perovskites have attracted a lot of interest as more stable analogues of their three-dimensional counterparts for optoelectronic applications. However, a thorough understanding of the effect that this reduced dimensionality has on dynamical and structural behavior of individual parts of the perovskite is currently lacking. We have used molecular dynamics simulations to investigate the structure and dynamics of 2D Ruddlesden-Popper perovskite with the general formula BA2MA n-1Pb n I3n+1, where BA is butylammonium, MA is methylammonium, and n is the number of lead-iodide layers. We discuss the dynamic behavior of both the inorganic and the organic part and compare between the different 2D structures. We show that the rigidness of the inorganic layer markedly increases with the number of lead-iodide layers and that low-temperature structural phase changes accompanied by tilting of the octahedra occurs in some but not all structures. Furthermore, the dynamic behavior of the MA ion is significantly affected by the number of inorganic layers, involving changes both in the reorientation times and in the occurrence of specific preferred orientations.
Collapse
|