1
|
Dai X, Nie W, Duan C, Shen Y. Preparation of microspheres with sustained ketoprofen release by electrospray for the treatment of aseptic inflammation. Front Bioeng Biotechnol 2024; 12:1416659. [PMID: 39100621 PMCID: PMC11294161 DOI: 10.3389/fbioe.2024.1416659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The treatment of aseptic inflammation has always been a clinical challenge. At present, non-steroidal drug-loaded microspheres have been widely used in the treatment of aseptic inflammation due to their excellent injectable and sustained release capabilities. In this study, ketoprofen-loaded shellac microspheres (Keto-SLAC) were prepared by electrospray. Alterations of Keto-SLAC morphology was observed in response to changed shellac concentration in ethanol solution through electrospray. Further examination revealed that ketoprofen presented as amorphous solid dispersion in the shellac microspheres. Most importantly, it was also shown that ketoprofen can be slowly released from the shellac matrix for up to 3 weeks. In vitro cell experiments verified that the microspheres had favorable cell compatibility. We therefore proposed that the prepared microspheres, being readily available in use in a variety of clinical settings through topical application, have promising therapeutic potential for the treatment of aseptic inflammation.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | | | - Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Álvarez-Miguel I, Fodor B, López GG, Biglione C, Grape ES, Inge AK, Hidalgo T, Horcajada P. Metal-Organic Frameworks: Unconventional Nanoweapons against COVID. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32118-32127. [PMID: 38862123 PMCID: PMC11212624 DOI: 10.1021/acsami.4c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.
Collapse
Affiliation(s)
- Inés Álvarez-Miguel
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Beatrice Fodor
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Guillermo G. López
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Erik Svensson Grape
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - A. Ken Inge
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Tania Hidalgo
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
3
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Chen L, Wang X, Chen M, Sun Q, Chen Y, Zhang X, Hong R, Xu Y, Guan J, Hong S, Cao D, Sun T, Li X, Chen L, Diwu J. Self-Aggregated Nanoscale Metal-Organic Framework for Targeted Pulmonary Decorporation of Uranium. Adv Healthc Mater 2023; 12:e2300510. [PMID: 37377120 DOI: 10.1002/adhm.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The limited availability of effective agents for removing actinides from the lungs significantly restricts the effectiveness of medical treatments for nuclear emergencies. Inhalation is the primary route of internal contamination in 44.3% of actinide-related accidents, leading to the accumulation of radionuclides in the lungs and resulting in infections and potential tumor formation (tumorigenesis). This study focuses on the synthesis of a nanometal-organic framework (nMOF) material called ZIF-71-COOH, which is achieved by post-synthetic carboxyl functionalization of ZIF-71. The material demonstrates high and selective adsorption of uranyl, while also exhibiting increased particle size (≈2100 nm) when it aggregates in the blood, enabling passive targeting of the lungs through mechanical filtration. This unique property facilitates the rapid enrichment and selective recognition of uranyl, making nano ZIF-71-COOH highly effective in removing uranyl from the lungs. The findings of this study highlight the potential of self-aggregated nMOFs as a promising drug delivery system for targeted uranium decorporation in the lungs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mengping Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qiwen Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yemeng Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, 215123, China
| | - Rui Hong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yigong Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Sheng Hong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dehan Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Tingfeng Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ximeng Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Cui J, Zhang C, Liu H, Yang L, Liu X, Zhang J, Zhou Y, Zhang J, Yan X. Pulmonary Delivery of Recombinant Human Bleomycin Hydrolase Using Mannose-Modified Hierarchically Porous UiO-66 for Preventing Bleomycin-Induced Pulmonary Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11520-11535. [PMID: 36808971 DOI: 10.1021/acsami.2c20479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bleomycins (BLMs) are widely used in clinics as antitumor agents. However, BLM-based chemotherapies often accompany severe pulmonary fibrosis (PF). Human bleomycin hydrolase is a cysteine protease that can convert BLMs into inactive deamido-BLMs. In this study, mannose-modified hierarchically porous UiO-66 (MHP-UiO-66) nanoparticles (NPs) were used to encapsulate the recombinant human bleomycin hydrolase (rhBLMH). When rhBLMH@MHP-UiO-66 was intratracheally instilled into the lungs, the NPs were transported into the epithelial cells, and rhBLMH prevented the lungs from PF during BLM-based chemotherapies. Encapsulation of rhBLMH in the MHP-UiO-66 NPs protects the enzyme from proteolysis in physiological conditions and enhances cellular uptake. In addition, the MHP-UiO-66 NPs significantly enhance the pulmonary accumulation of intratracheally instilled rhBLMH, thus providing more efficient protection of the lungs against BLMs during the chemotherapies.
Collapse
Affiliation(s)
- Jingxuan Cui
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lijun Yang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
7
|
MIL-100(Fe) Sub-Micrometric Capsules as a Dual Drug Delivery System. Int J Mol Sci 2022; 23:ijms23147670. [PMID: 35887018 PMCID: PMC9324886 DOI: 10.3390/ijms23147670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nanoparticles of metal–organic frameworks (MOF NPs) are crystalline hybrid micro- or mesoporous nanomaterials that show great promise in biomedicine due to their significant drug loading ability and controlled release. Herein, we develop porous capsules from aggregate of nanoparticles of the iron carboxylate MIL-100(Fe) through a low-temperature spray-drying route. This enables the concomitant one-pot encapsulation of high loading of an antitumor drug, methotrexate, within the pores of the MOF NPs, and the collagenase enzyme (COL), inside the inter-particular mesoporous cavities, upon the formation of the capsule, enhancing tumor treatment. This association provides better control of the release of the active moieties, MTX and collagenase, in simulated body fluid conditions in comparison with the bare MOF NPs. In addition, the loaded MIL-100 capsules present, against the A-375 cancer cell line, selective toxicity nine times higher than for the normal HaCaT cells, suggesting that MTX@COL@MIL-100 capsules may have potential application in the selective treatment of cancer cells. We highlight that an appropriate level of collagenase activity remained after encapsulation using the spray dryer equipment. Therefore, this work describes a novel application of MOF-based capsules as a dual drug delivery system for cancer treatment.
Collapse
|
8
|
Rojas S, Hidalgo T, Luo Z, Ávila D, Laromaine A, Horcajada P. Pushing the Limits on the Intestinal Crossing of Metal-Organic Frameworks: An Ex Vivo and In Vivo Detailed Study. ACS NANO 2022; 16:5830-5838. [PMID: 35298121 PMCID: PMC9047668 DOI: 10.1021/acsnano.1c10942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Biocompatible nanoscaled metal-organic frameworks (nanoMOFs) have been widely studied as drug delivery systems (DDSs), through different administration routes, with rare examples in the convenient and commonly used oral administration. So far, the main objective of nanoMOFs as oral DDSs was to increase the bioavailability of the cargo, without considering the MOF intestinal crossing with potential advantages (e.g., increasing drug availability, direct transport to systemic circulation). Thus, we propose to address the direct quantification and visualization of MOFs' intestinal bypass. For that purpose, we select the microporous Fe-based nanoMOF, MIL-127, exhibiting interesting properties as a nanocarrier (great biocompatibility, large porosity accessible to different drugs, green and multigram scale synthesis, outstanding stability along the gastrointestinal tract). Additionally, the outer surface of MIL-127 was engineered with the biopolymer chitosan (CS@MIL-127) to improve the nanoMOF intestinal permeation. The biocompatibility and intestinal crossing of nanoMOFs is confirmed using a simple and relevant in vivo model, Caenorhabditis elegans; these worms are able to ingest enormous amounts of nanoMOFs (up to 35 g per kg of body weight). Finally, an ex vivo intestinal model (rat) is used to further support the nanoMOFs' bypass across the intestinal barrier, demonstrating a fast crossing (only 2 h). To the best of our knowledge, this report on the intestinal crossing of intact nanoMOFs sheds light on the safe and efficient application of MOFs as oral DDSs.
Collapse
Affiliation(s)
- Sara Rojas
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Tania Hidalgo
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Zhongrui Luo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - David Ávila
- Department
of Inorganic Chemistry, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
9
|
Fernández-Paz E, Fernández-Paz C, Barrios-Esteban S, Santalices I, Csaba N, Remuñán-López C. Dry powders containing chitosan-based nanocapsules for pulmonary administration: Adjustment of spray-drying process and in vitro evaluation in A549 cells. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris RE, Wuttke S. Toxicity of metal-organic framework nanoparticles: from essential analyses to potential applications. Chem Soc Rev 2022; 51:464-484. [PMID: 34985082 DOI: 10.1039/d1cs00918d] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the last two decades, the field of metal-organic frameworks (MOFs) has exploded, and MOF nanoparticles in particular are being investigated with increasing interest for various applications, including gas storage and separation, water harvesting, catalysis, energy conversion and storage, sensing, diagnosis, therapy, and theranostics. To further pave their way into real-world applications, and to push the synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', this tutorial review aims to shed light on the importance of a systematic toxicity assessment. After clarifying and working out the most important terms and aspects from the field of nanotoxicity, the current state-of-the-art of in vitro and in vivo toxicity studies of MOF nanoparticles is evaluated. Moreover, the key aspects affecting the toxicity of MOF nanoparticles such as their chemical composition, their physico-chemical properties, including their colloidal and chemical stability, are discussed. We highlight the need of more targeted synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', and their tailored hazard assessment in the context of their potential applications in order to tap the full potential of this versatile material class in the future.
Collapse
Affiliation(s)
- Romy Ettlinger
- School of Chemistry, University of St. Andrews, St. Andrews, UK.
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.,Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay, Université Paris Saclay, Paris, France
| | | | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Christian Serre
- Département de Chimie, Ecole Normale Supérieure de Paris, Paris, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, Université Paris Saclay, Paris, France
| | - Russell E Morris
- School of Chemistry, University of St. Andrews, St. Andrews, UK.
| | - Stefan Wuttke
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Basque Center for Materials, UPV/EHU Science Park, Leioa, Spain.
| |
Collapse
|
12
|
Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, Rojas S, Barrios-Esteban S, Csaba N, Horcajada P, Remuñán-López C. Microencapsulated Isoniazid-Loaded Metal-Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules 2021; 26:molecules26216408. [PMID: 34770817 PMCID: PMC8587908 DOI: 10.3390/molecules26216408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal–organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.
Collapse
Affiliation(s)
- Cristina Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Estefanía Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sheila Barrios-Esteban
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Noemi Csaba
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Carmen Remuñán-López
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
13
|
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13091377. [PMID: 34575452 PMCID: PMC8472419 DOI: 10.3390/pharmaceutics13091377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.
Collapse
|
14
|
Ren X, Han Y, Xu Y, Liu T, Cui M, Xia L, Li H, Gu Y, Wang P. Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to versatile. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Jiang X, He C, Lin W. Supramolecular metal-based nanoparticles for drug delivery and cancer therapy. Curr Opin Chem Biol 2021; 61:143-153. [PMID: 33631394 DOI: 10.1016/j.cbpa.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/05/2023]
Abstract
Although conventional cancer therapies such as chemotherapy and radiotherapy prevail in clinic, they tend to have narrow therapeutic windows. Many chemotherapies have unfavorable pharmacokinetics while radiotherapy incurs radiotoxicity to normal tissues surrounding tumors. The chemical tunability of supramolecular metal-based nanoparticles (SMNPs) enables the incorporation of various therapeutics, including hydrophilic and hydrophobic chemotherapeutic drugs, photosensitizers, radiosensitizers, and biological therapeutics for more effective delivery to tumors. In this mini-review, we highlight recent advances in SMNPs, namely nanoscale coordination polymers and nanoscale metal-organic frameworks, for drug delivery and cancer therapy. We particularly focus on innovative uses of metal clusters, ligands, pores, and surface modifications to load various therapeutics into SMNPs and critical evaluations of the anticancer efficacies of SMNPs.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Chunbai He
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Biswas P, Dastidar P. Anchoring Drugs to a Zinc(II) Coordination Polymer Network: Exploiting Structural Rationale toward the Design of Metallogels for Drug-Delivery Applications. Inorg Chem 2021; 60:3218-3231. [PMID: 33570921 DOI: 10.1021/acs.inorgchem.0c03550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new series of coordination polymers (CPs) were synthesized and crystallographically characterized by single-crystal X-ray diffraction with the aim of developing drug-delivery systems via metallogel formation. Structural rationale was employed to design such coordination-polymer-based metallogels. As many as nine CPs were obtained by reacting two bis(pyridyl)urea ligands, namely, 1,3-dipyridin-3-ylurea (3U) and 1,3-dipyridin-4-ylurea (4U), and the sodium salt of various nonsteroidal antiinflammatory drugs, namely, ibuprofen (IBU), naproxen (NAP), fenoprofen (FEN), diclofenac (DIC), meclofenamic acid (MEC), mefenamic acid (MEF), and Zn(NO3)2. All of the CPs displayed 1D polymeric chains that were self-assembled through various hydrogen-bonding interactions involving the urea N-H and carboxylate O atoms and, in a few cases, lattice-occluded water molecules. The reacting components of the CPs produced five metallogels in dimethyl sulfoxide/water. The gels were characterized by rheology and transmission electron microscopy. Three selected metallogelators, namely, 3UMEFg, 3UNAPg, and 3UMECg, showed in vitro anticancer, cell imaging, and multidrug delivery for antibacterial applications, respectively. The shear-thinning properties of 3UMECg (rheoreversibility and injectability) make it a potential candidate for plausible topical application.
Collapse
Affiliation(s)
- Protap Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
17
|
Luz I, Stewart IE, Mortensen NP, Hickey AJ. Designing inhalable metal organic frameworks for pulmonary tuberculosis treatment and theragnostics via spray drying. Chem Commun (Camb) 2020; 56:13339-13342. [PMID: 33025961 DOI: 10.1039/d0cc05471b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhalable metal organic framework (MOF) aerosols have been developed via spray drying as a therapy for multi-drug resistant (MDR) tuberculosis (TB). The CuPOA2 (pyrazinoate acid) MOFs can be tailored to exhibit a respirable mass median aerodynamic diameter (MMAD) of 2.6 μm. This method is repeated to manufacture Gd0.1Cu0.9(POA)2 MOFs for inhalable theragnostics.
Collapse
Affiliation(s)
- Ignacio Luz
- Center for Engineered Systems, RTI International, USA.
| | | | | | | |
Collapse
|
18
|
Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38989-39004. [PMID: 32805901 PMCID: PMC7719435 DOI: 10.1021/acsami.0c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing novel drug carriers for pulmonary delivery is necessary to achieve higher efficacy and consistency for treating pulmonary diseases while limiting off-target side effects that occur from alternative routes of administration. Metal-organic frameworks (MOFs) have recently emerged as a class of materials with characteristics well-suited for pulmonary drug delivery, with chemical tunability, high surface area, and pore size, which will allow for efficient loading of therapeutic cargo and deep lung penetration. UiO-66, a zirconium and terephthalic acid-based MOF, has displayed notable chemical and physical stability and potential biocompatibility; however, its feasibility for use as a pulmonary drug delivery vehicle has yet to be examined. Here, we evaluate the use of UiO-66 nanoparticles (NPs) as novel pulmonary drug delivery vehicles and assess the role of missing linker defects in their utility for this application. We determined that missing linker defects result in differences in NP aerodynamics but have minimal effects on the loading of model and therapeutic cargo, cargo release, biocompatibility, or biodistribution. This is a critical result, as it indicates the robust consistency of UiO-66, a critical feature for pulmonary drug delivery, which is plagued by inconsistent dosage because of variable properties. Not only that, but UiO-66 NPs also demonstrate pH-dependent stability, with resistance to degradation in extracellular conditions and breakdown in intracellular environments. Furthermore, the carriers exhibit high biocompatibility and low cytotoxicity in vitro and are well-tolerated in in vivo murine evaluations of orotracheally administered NPs. Following pulmonary delivery, UiO-66 NPs remain localized to the lungs before clearance over the course of seven days. Our results demonstrate the feasibility of using UiO-66 NPs as a novel platform for pulmonary drug delivery through their tunable NP properties, which allow for controlled aerodynamics and internalization-dependent cargo release while displaying remarkable pulmonary biocompatibility.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- corresponding author. Catherine A. Fromen, PhD, , 150 Academy St., Newark, DE 19716, (302) 831-3649
| |
Collapse
|
19
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|