1
|
Yang X, Sun X, Qi J, Zhang J, Zheng X, Zhang X, Lei F, Sun X, Tang B, Xie J. Two-dimensional confined topotactic transformation to produce Co-Pi/Co 3O 4 hybrid porous nanosheets for promoted water oxidation. J Colloid Interface Sci 2025; 677:406-416. [PMID: 39153244 DOI: 10.1016/j.jcis.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Exploring advanced electrocatalyst for the oxygen evolution reaction (OER) is of great importance in pursuing efficient and sustainable hydrogen production via electrolytic water splitting. Considering the structure-activity-stability relationship for designing advanced OER catalysts, two-dimensional (2D) porous catalyst with single crystallinity is deemed to be an ideal platform which could simultaneously endow enriched active sites, facile mass and charge transport ability as well as robust structural stability. Herein, we proposed a facile 2D confined topotactic phase transformation approach, which realizes the fabrication of highly porous single-crystalline Co3O4 nanosheets with in-situ surface modification of amorphous Co-Pi active species. Benefitted from the highly exposed undercoordinated cobalt sites, facilitated mass transport and facile 2D charge transfer pathway, the Co-Pi/Co3O4 hybrid porous nanosheets display enhanced OER activity with obvious pre-oxidation-induced activation. In addition, the operational stability was significantly improved owing to the strengthened structural stability which effectively buffers the internal strains and avoids the structural collapse during the electrochemical process. This work proposed a facile and mild method for the synthesis of amorphous/single-crystalline hybrid porous materials, and the achievement of synergistic modulation of active site density and charge transfer ability via targeted microstructural construction will shed light on catalyst design in the future.
Collapse
Affiliation(s)
- Xue Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Xiaoning Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Jindi Qi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Jiaqi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Xinqi Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Xiaodong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes of Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
2
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
3
|
Zhang S, Zhao W, Liu J, Tao Z, Zhang Y, Zhao S, Zhang Z, Du M. Spin Manipulation of Co sites in Co 9S 8/Nb 2CT x Mott-Schottky Heterojunction for Boosting the Electrocatalytic Nitrogen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407301. [PMID: 39225309 PMCID: PMC11516103 DOI: 10.1002/advs.202407301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Regulating the adsorption of an intermediate on an electrocatalyst by manipulating the electron spin state of the transition metal is of great significance for promoting the activation of inert nitrogen molecules (N2) during the electrocatalytic nitrogen reduction reaction (eNRR). However, achieving this remains challenging. Herein, a novel 2D/2D Mott-Schottky heterojunction, Co9S8/Nb2CTx-P, is developed as an eNRR catalyst. This is achieved through the in situ growth of cobalt sulfide (Co9S8) nanosheets over a Nb2CTx MXene using a solution plasma modification method. Transformation of the Co spin state from low (t2g 6eg 1) to high (t2g 5eg 2) is achieved by adjusting the interface electronic structure and sulfur vacancy of Co9S8/Nb2CTx-P. The adsorption ability of N2 is optimized through high spin Co(II) with more unpaired electrons, significantly accelerating the *N2→*NNH kinetic process. The Co9S8/Nb2CTx-P exhibits a high NH3 yield of 62.62 µg h-1 mgcat. -1 and a Faradaic efficiency (FE) of 30.33% at -0.40 V versus the reversible hydrogen electrode (RHE) in 0.1 m HCl. Additionally, it achieves an NH3 yield of 41.47 µg h-1 mgcat. -1 and FE of 23.19% at -0.60 V versus RHE in 0.1 m Na2SO4. This work demonstrates a promising strategy for constructing heterojunction electrocatalysts for efficient eNRR.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Weihua Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jiameng Liu
- School of Medical EngineeringXinxiang Medical UniversityXinxiang453003P. R. China
| | - Zheng Tao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Yinpeng Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
4
|
Wang G, Wang C, Tian X, Li Q, Liu S, Zhao X, Waterhouse GIN, Zhao X, Lv X, Xu J. Facile Construction of CuFe-Based Metal Phosphides for Synergistic NO x -Reduction to NH 3 and Zn-Nitrite Batteries in Electrochemical Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311439. [PMID: 38161250 DOI: 10.1002/smll.202311439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The electrocatalytic nitrite/nitrate reduction reaction (eNO2RR/eNO3RR) offer a promising route for green ammonia production. The development of low cost, highly selective and long-lasting electrocatalysts for eNO2RR/eNO3RR is challenging. Herein, a method is presented for constructing Cu3P-Fe2P heterostructures on iron foam (CuFe-P/IF) that facilitates the effective conversion of NO2 - and NO3 - to NH3. At -0.1 and -0.2 V versus RHE (reversible hydrogen electrode), CuFe-P/IF achieves a Faradaic efficiency (FE) for NH3 production of 98.36% for eNO2RR and 72% for eNO3RR, while also demonstrating considerable stability across numerous cycles. The superior performance of CuFe-P/IF catalyst is due tothe rich Cu3P-Fe2P heterstuctures. Density functional theory calculations have shed light on the distinct roles that Cu3P and Fe2P play at different stages of the eNO2RR/eNO3RR processes. Fe2P is notably active in the early stages, engaging in the capture of NO2 -/NO3 -, O─H formation, and N─OH scission. Conversely, Cu3P becomes more dominant in the subsequent steps, which involve the formation of N─H bonds, elimination of OH* species, and desorption of the final products. Finally, a primary Zn-NO2 - battery is assembled using CuFe-P/IF as the cathode catalyst, which exhibits a power density of 4.34 mW cm-2 and an impressive NH3 FE of 96.59%.
Collapse
Affiliation(s)
- Guoqiang Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chuanjun Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, 271018, China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Qiang Li
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Shenjie Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiuying Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | - Xin Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoqing Lv
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, 271018, China
| |
Collapse
|
5
|
Islam J, Shareef M, Anwar R, Akter S, Ullah MH, Osman H, Rahman IM, Khandaker MU, Chowdhury FI. A brief insight on electrochemical energy storage toward the production of value-added chemicals and electricity generation. JOURNAL OF ENERGY STORAGE 2024; 77:109944. [DOI: 10.1016/j.est.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
6
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Gupta D, Kafle A, Nagaiah TC. Dinitrogen Reduction Coupled with Methanol Oxidation for Low Overpotential Electrochemical NH 3 Synthesis Over Cobalt Pyrophosphate as Bifunctional Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208272. [PMID: 36922907 DOI: 10.1002/smll.202208272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Indexed: 06/15/2023]
Abstract
Electrochemical dinitrogen (N2 ) reduction to ammonia (NH3 ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h-1 mgca -1 is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg-1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h-1 mgcat -1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h-1 mgcat -1 and HCOOH formation rate of 2.53 µmol h-1 mg-1 are witnessed under full-cell conditions.
Collapse
Affiliation(s)
- Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
8
|
Zhang W, Qin X, Wei T, Liu Q, Luo J, Liu X. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J Colloid Interface Sci 2023; 638:650-657. [PMID: 36774878 DOI: 10.1016/j.jcis.2023.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Electrocatalytic nitric oxide reduction reaction (NORR) at ambient environments not only offers a promising strategy to yield ammonia (NH3) but also degrades the NO contaminant; however, its application depends on searching for high-performance catalysts. Herein, we present single atomic Ce sites anchored on nitrogen-doped hollow carbon spheres that are capable of electro-catalyzing NO reduction to NH3 in an acidic solution, achieving a maximal Faradaic efficiency of 91 % and a yield rate of 1023 μg h-1 mgcat.-1 at -0.7 V vs RHE for NH3 formation, both of which outperform these on Ce nanoclusters and approach the best-reported results. Meanwhile, the single atomic Ce catalyst shows good structural and electrochemical stability during the 30-h NO electrolysis. Furthermore, when the single atomic Ce catalyst was used as cathodic material in a proof-of-concept of Zn-NO battery, it delivers a maximal power density of 3.4 mW cm-2 and a high NH3 yield rate of 309 μg h-1 mgcat.-1. Theoretical simulations suggest that the Ce-N4 active moiety can not only activate NO molecules via a strong electronic interaction but also reduce the free energy barrier of *NO transition to *NOH intermediate as the limiting step, and therefore boosting the NORR kinetics and suppressing the competitive hydrogen evolution.
Collapse
Affiliation(s)
- Weiqing Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| | - Xuhui Qin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Huang Z, Rafiq M, Woldu AR, Tong QX, Astruc D, Hu L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Liu J, He L, Zhao S, Li S, Hu L, Tian J, Ding J, Zhang Z, Du M. Plasma-Assisted Defect Engineering on p-n Heterojunction for High-Efficiency Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205786. [PMID: 36683249 PMCID: PMC10015844 DOI: 10.1002/advs.202205786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Linghao He
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Sizhuan Li
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Lijun Hu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jia‐Yue Tian
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Junwei Ding
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
11
|
Li H, Xu X, Lin X, Chen J, Zhu K, Peng F, Gao F. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction. NANOSCALE 2023; 15:4071-4079. [PMID: 36734374 DOI: 10.1039/d2nr06195c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N2 adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO3 by pyrolysis at 450 °C (450-NiMnO3) to achieve remarkable NRR activity. The NiMnO3 3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N2 adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO3, 450-NiMnO3 showed excellent performance for nitrogen reduction to ammonia with a high NH3 yield of 31.44 μg h-1 mgcat-1 (at -0.3 V vs. RHE) and a splendid FE of 14.5% (at -0.1 V vs. RHE) in 0.1 M KOH. 450-NiMnO3 also shows high long-term electrochemical stability with excellent selectivity for NH3 formation. 15N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO3. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaoyue Xu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaohu Lin
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Jianmin Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Kunling Zhu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
12
|
Feng Y, Chen L, Yuan ZY. Recent Advances in Transition Metal Layered Double Hydroxide Based Materials as Efficient Electrocatalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Lv C, Liu J, Lee C, Zhu Q, Xu J, Pan H, Xue C, Yan Q. Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS NANO 2022; 16:15512-15527. [PMID: 36240028 DOI: 10.1021/acsnano.2c07260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial nitrogen conversion reactions, such as the production of ammonia via dinitrogen or nitrate reduction and the synthesis of organonitrogen compounds via C-N coupling, play a pivotal role in the modern life. As alternatives to the traditional industrial processes that are energy- and carbon-emission-intensive, electrocatalytic nitrogen conversion reactions under mild conditions have attracted significant research interests. However, the electrosynthesis process still suffers from low product yield and Faradaic efficiency, which highlight the importance of developing efficient catalysts. In contrast to the transition-metal-based catalysts that have been widely studied, the p-block-element-based catalysts have recently shown promising performance because of their intriguing physiochemical properties and intrinsically poor hydrogen adsorption ability. In this Perspective, we summarize the latest breakthroughs in the development of p-block-element-based electrocatalysts toward nitrogen conversion applications, including ammonia electrosynthesis from N2 reduction and nitrate reduction and urea electrosynthesis using nitrogen-containing feedstocks and carbon dioxide. The catalyst design strategies and the underlying reaction mechanisms are discussed. Finally, major challenges and opportunities in future research directions are also proposed.
Collapse
Affiliation(s)
- Chade Lv
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| |
Collapse
|
14
|
Shi L, Bi S, Qi Y, He R, Ren K, Zheng L, Wang J, Ning G, Ye J. Anchoring Mo Single-Atom Sites on B/N Codoped Porous Carbon Nanotubes for Electrochemical Reduction of N 2 to NH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ruifang He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ke Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Jiaou Wang
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
15
|
|
16
|
Liu H, Shi S, Wang Z, Han Y, Huang W. Recent Advances in Metal-Gas Batteries with Carbon-Based Nonprecious Metal Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103747. [PMID: 34859956 DOI: 10.1002/smll.202103747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-gas batteries draw a lot of attention due to their superiorities in high energy density and stable performance. However, the sluggish electrochemical reactions and associated side reactions in metal-gas batteries require suitable catalysts, which possess high catalytic activity and selectivity. Although precious metal catalysts show a higher catalytic activity, high cost of the precious metal catalysts hinders their commercial applications. In contrast, nonprecious metal catalysts complement the weakness of cost, and the gap in activity can be made up by increasing the amount of the nonprecious metal active centers. Herein, recent work on carbon-based nonprecious metal catalysts for metal-gas batteries is summarized. This review starts with introducing the advantages of carbon-based nonprecious metal catalysts, followed by a discussion of the synthetic strategy of carbon-based nonprecious metal catalysts and classification of active sites, and finally a summary of present metal-gas batteries with the carbon-based nonprecious metal catalysts is presented. The challenges and opportunities for carbon-based nonprecious metal catalysts in metal-gas batteries are also explored.
Collapse
Affiliation(s)
- Haoran Liu
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuangrui Shi
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|