1
|
Sathiya K, Ganesamoorthi S, Mohan S, Shanmugavadivu A, Selvamurugan N. Natural polymers-based surface engineering of bone scaffolds - A review. Int J Biol Macromol 2024; 282:136840. [PMID: 39461639 DOI: 10.1016/j.ijbiomac.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Collapse
Affiliation(s)
- K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Fernández-Míguez M, Núñez-Martínez M, Suárez-Picado E, Quiñoá E, Freire F. Optical and Chiroptical Stimuli-Responsive Chiral AgNPs@H-Leu-Poly(phenylacetylene) Nanocomposites in Water. ACS NANO 2024; 18:28822-28833. [PMID: 39382101 PMCID: PMC11503914 DOI: 10.1021/acsnano.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Dynamic macroscopically chiral nanocomposites are prepared by combining silver nanoparticles (AgNPs) and dynamic helical poly(phenylacetylene)s (PPAs) bearing pendants functionalized with amino groups. These amino groups provide the nanocomposite with the ability to disperse in water along with high stability due to the interaction between the ammonium group and the AgNP. Moreover, the equilibrium between NH3+/NH2 produces a "blinking" contact between the PPA and the AgNPs, which allows total control of the dynamic helical behavior of the polymer. The use of acidic or neutral pH allows controlling the morphology of the nanocomposite, which consists of a nanosphere that has trapped inside it a single AgNP (pH = 2) or several AgNPs (pH = 7) with ca. 30 nm of diameter. These nanocomposites combine the optical and chiroptical stimuli-responsive properties of both components, AgNPs and PPAs. Thus, the controlled aggregation of the nanocomposite produced variations in the LSPR band of the AgNPs in a reversible manner. In turn, given that the chiral coating is selective to Ba2+, the presence of this metal ion caused a helical inversion of the chiral coating of the nanocomposite detected by electronic circular dichroism. Moreover, it is possible to distinguish between three metal ions in different oxidation states, such as Ce4+, Fe3+, and Hg2+, which produce different responses of the nanocomposite when oxidizing the AgNP to Ag+.
Collapse
Affiliation(s)
- Manuel Fernández-Míguez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Esteban Suárez-Picado
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Pan P, Wang J, Wang X, Yu X, Chen T, Jiang C, Liu W. Barrier Membrane with Janus Function and Structure for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47178-47191. [PMID: 39222394 DOI: 10.1021/acsami.4c08737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Guided bone regeneration (GBR) technology has been demonstrated to be an effective method for reconstructing bone defects. A membrane is used to cover the bone defect to stop soft tissue from growing into it. The biosurface design of the barrier membrane is key to the technology. In this work, an asymmetric functional gradient Janus membrane was designed to address the bidirectional environment of the bone and soft tissue during bone reconstruction. The Janus membrane was simply and efficiently prepared by the multilayer self-assembly technique, and it was divided into the polycaprolactone isolation layer (PCL layer, GBR-A) and the nanohydroxyapatite/polycaprolactone/polyethylene glycol osteogenic layer (HAn/PCL/PEG layer, GBR-B). The morphology, composition, roughness, hydrophilicity, biocompatibility, cell attachment, and osteogenic mineralization ability of the double surfaces of the Janus membrane were systematically evaluated. The GBR-A layer was smooth, dense, and hydrophobic, which could inhibit cell adhesion and resist soft tissue invasion. The GBR-B layer was rough, porous, hydrophilic, and bioactive, promoting cell adhesion, proliferation, matrix mineralization, and expression of alkaline phosphatase and RUNX2. In vitro and in vivo results showed that the membrane could bind tightly to bone, maintain long-term space stability, and significantly promote new bone formation. Moreover, the membrane could fix the bone filling material in the defect for a better healing effect. This work presents a straightforward and viable methodology for the fabrication of GBR membranes with Janus-based bioactive surfaces. This work may provide insights for the design of biomaterial surfaces and treatment of bone defects.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, P. R. China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chundong Jiang
- Chongqing Institute of Mesoscopic Medical Porous Materials, Chongqing 401120, P. R. China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Musciacchio L, Mardirossian M, Marussi G, Crosera M, Turco G, Porrelli D. Core-shell electrospun polycaprolactone nanofibers, loaded with rifampicin and coated with silver nanoparticles, for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 166:214036. [PMID: 39276661 DOI: 10.1016/j.bioadv.2024.214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the field of tissue engineering, the use of core-shell fibers represents an advantageous approach to protect and finely tune the release of bioactive compounds with the aim to regulate their efficacy. In this work, core-shell electrospun polycaprolactone nanofiber-based membranes, loaded with rifampicin and coated with silver nanoparticles, were developed and characterized. The membranes are composed by randomly oriented nanofibers with a homogeneous diameter, as demonstrated by scanning electron microscopy (SEM). An air-plasma treatment was applied to increase the hydrophilicity of the membranes as confirmed by contact angle measurements. The rifampicin release from untreated and air-plasma treated membranes, evaluated by UV spectrophotometry, displayed a similar and constant over-time release profile, demonstrating that the air-plasma treatment does not degrade the rifampicin, loaded in the core region of the nanofibers. The presence and the distribution of silver nanoparticles on the nanofiber surface were investigated by SEM and Energy Dispersive Spectroscopy. Moreover, SEM imaging demonstrated that the produced membranes possess a good stability over time, in terms of structure maintenance. The developed membranes showed a good biocompatibility towards murine fibroblasts, human osteosarcoma cells and urotheliocytes, reveling the absence of cytotoxic effects. Moreover, doble-functionalized membranes inhibit the growth of E. coli and S. aureus. Thanks to the possibilities offered by the coaxial electrospinning, the membranes here proposed are promising for several tissue engineering applications.
Collapse
Affiliation(s)
- Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
5
|
Powojska A, Mystkowski A, Gundabattini E, Mystkowska J. Spin-Coating Fabrication Method of PDMS/NdFeB Composites Using Chitosan/PCL Coating. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1973. [PMID: 38730780 PMCID: PMC11084651 DOI: 10.3390/ma17091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This paper verified the possibility of applying chitosan and/or ferulic acid or polycaprolactone (PCL)-based coatings to polydimethylsiloxane/neodymium-iron-boron (PDMS/NdFeB) composites using the spin-coating method. The surface modification of magnetic composites by biofunctional layers allows for the preparation of materials for biomedical applications. Biofunctional layered magnetic composites were obtained in three steps. The spin-coating method with various parameters (time and spin speed) was used to apply different substances to the surface of the composites. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to analyze the thickness and surface topography. The contact angle of the obtained surfaces was tested. Increasing spin speed and increasing process time for the same speed resulted in decreasing the composite's thickness. The linear and surface roughness for the prepared coatings were approximately 0.2 μm and 0.01 μm, respectively, which are desirable values in the context of biocompatibility. The contact angle test results showed that both the addition of chitosan and PCL to PDMS have reduced the contact angle θ from 105° for non-coated composite to θ~59-88° depending on the coating. The performed modifications gave promising results mainly due to making the surface hydrophilic, which is a desirable feature of projected biomaterials.
Collapse
Affiliation(s)
- Anna Powojska
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Arkadiusz Mystkowski
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland;
| | - Edison Gundabattini
- Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India;
| | - Joanna Mystkowska
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| |
Collapse
|
6
|
Su W, Chang Z, E Y, Feng Y, Yao X, Wang M, Ju Y, Wang K, Jiang J, Li P, Lei F. Electrospinning and electrospun polysaccharide-based nanofiber membranes: A review. Int J Biol Macromol 2024; 263:130335. [PMID: 38403215 DOI: 10.1016/j.ijbiomac.2024.130335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.
Collapse
Affiliation(s)
- Weiyin Su
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeyu Chang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuyu E
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yawen Feng
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Yao
- International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Meng Wang
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Yunshan Ju
- Lanzhou Biotechnique Development Co., Ltd., Lanzhou 730046, China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
7
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
8
|
Menotti F, Scutera S, Maniscalco E, Coppola B, Bondi A, Costa C, Longo F, Mandras N, Pagano C, Cavallo L, Banche G, Malandrino M, Palmero P, Allizond V. Is Silver Addition to Scaffolds Based on Polycaprolactone Blended with Calcium Phosphates Able to Inhibit Candida albicans and Candida auris Adhesion and Biofilm Formation? Int J Mol Sci 2024; 25:2784. [PMID: 38474027 DOI: 10.3390/ijms25052784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Candida spp. periprosthetic joint infections are rare but difficult-to-treat events, with a slow onset, unspecific symptoms or signs, and a significant relapse risk. Treatment with antifungals meets with little success, whereas prosthesis removal improves the outcome. In fact, Candida spp. adhere to orthopedic devices and grow forming biofilms that contribute to the persistence of this infection and relapse, and there is insufficient evidence that the use of antifungals has additional benefits for anti-biofilm activity. To date, studies on the direct antifungal activity of silver against Candida spp. are still scanty. Additionally, polycaprolactone (PCL), either pure or blended with calcium phosphate, could be a good candidate for the design of 3D scaffolds as engineered bone graft substitutes. Thus, the present research aimed to assess the antifungal and anti-biofilm activity of PCL-based constructs by the addition of antimicrobials, for instance, silver, against C. albicans and C. auris. The appearance of an inhibition halo around silver-functionalized PCL scaffolds for both C. albicans and C. auris was revealed, and a significant decrease in both adherent and planktonic yeasts further demonstrated the release of Ag+ from the 3D constructs. Due to the combined antifungal, osteoproliferative, and biodegradable properties, PCL-based 3D scaffolds enriched with silver showed good potential for bone tissue engineering and offer a promising strategy as an ideal anti-adhesive and anti-biofilm tool for the reduction in prosthetic joints of infections caused by Candida spp. by using antimicrobial molecule-targeted delivery.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Eleonora Maniscalco
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Alessandro Bondi
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Cristina Costa
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Claudia Pagano
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Mery Malandrino
- Department of Chemistry, NIS Interdepartmental Centre, University of Torino, 10125 Turin, Italy
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
9
|
Amarjargal A, Cegielska O, Kolbuk D, Kalaska B, Sajkiewicz P. On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:153-165. [PMID: 38150182 DOI: 10.1021/acsami.3c13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-089, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| |
Collapse
|
10
|
Wang D, Zhou X, Cao H, Zhang H, Wang D, Guo J, Wang J. Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Periodontal disease is one of the most common oral diseases with the highest incidence world-wide. In particular, the treatment of periodontal bone defects caused by periodontitis has attracted extensive attention. Guided bone regeneration (GBR) has been recognized as advanced treatment techniques for periodontal bone defects. GBR technique relies on the application of barrier membranes to protect the bone defects. The commonly used GBR membranes are resorbable and non-resorbable. Resorbable GBR membranes are divided into natural polymer resorbable membranes and synthetic polymer resorbable membranes. Each has its advantages and disadvantages. The current research focuses on exploring and improving its preparation and application. This review summarizes the recent literature on the application of GBR membranes to promote the regeneration of periodontal bone defects, elaborates on GBR development strategies, specific applications, and the progress of inducing periodontal bone regeneration to provide a theoretical basis and ideas for the future application of GBR membranes to promote the repair of periodontal bone defects.
Collapse
|
11
|
Zhang Y, Kang J, Chen X, Zhang W, Zhang X, Yu W, Yuan WE. Ag nanocomposite hydrogels with immune and regenerative microenvironment regulation promote scarless healing of infected wounds. J Nanobiotechnology 2023; 21:435. [PMID: 37981675 PMCID: PMC10658971 DOI: 10.1186/s12951-023-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Bacterial infection, complex wound microenvironment and persistent inflammation cause delayed wound healing and scar formation, thereby disrupting the normal function and appearance of skin tissue, which is one of the most problematic clinical issues. Although Ag NPs have a strong antibacterial effect, they tend to oxidize and form aggregates in aqueous solution, which reduces their antibacterial efficacy and increases their toxicity to tissues and organs. Current research on scar treatment is limited and mainly relies on growth factors and drugs to reduce inflammation and scar tissue formation. Therefore, there is a need to develop methods that effectively combine drug delivery, antimicrobial and anti-inflammatory agents to modulate the wound microenvironment, promote wound healing, and prevent skin scarring. RESULTS Herein, we developed an innovative Ag nanocomposite hydrogel (Ag NCH) by incorporating Ag nanoparticles (Ag NPs) into a matrix formed by linking catechol-modified hyaluronic acid (HA-CA) with 4-arm PEG-SH. The Ag NPs serve dual functions: they act as reservoirs for releasing Ag/Ag+ at the wound site to combat bacterial infections, and they also function as cross-linkers to ensure the sustained release of basic fibroblast growth factor (bFGF). The potent antibacterial effect of the Ag NPs embedded in the hydrogel against S.aureus was validated through comprehensive in vitro and in vivo analyses. The microstructural analysis of the hydrogels and the in vitro release studies confirmed that the Ag NCH possesses smaller pore sizes and facilitates a slower, more sustained release of bFGF. When applied to acute and infected wound sites, the Ag NCH demonstrated remarkable capabilities in reshaping the immune and regenerative microenvironment. It induced a shift from M1 to M2 macrophage polarization, down-regulated the expression of pro-inflammatory factors such as IL-6 and TNF-α, and up-regulated the expression of anti-inflammatory IL-10. Furthermore, the Ag NCH played a crucial role in regulating collagen deposition and alignment, promoting the formation of mature blood vessels, and significantly enhancing tissue reconstruction and scarless wound healing processes. CONCLUSIONS We think the designed Ag NCH can provide a promising therapeutic strategy for clinical applications in scarless wound healing and antibacterial therapy.
Collapse
Affiliation(s)
- Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Jian Kang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Xuan Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China.
| |
Collapse
|
12
|
Karbowniczek JE, Berniak K, Knapczyk-Korczak J, Williams G, Bryant JA, Nikoi ND, Banzhaf M, de Cogan F, Stachewicz U. Strategies of nanoparticles integration in polymer fibers to achieve antibacterial effect and enhance cell proliferation with collagen production in tissue engineering scaffolds. J Colloid Interface Sci 2023; 650:1371-1381. [PMID: 37480652 DOI: 10.1016/j.jcis.2023.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Current design strategies for biomedical tissue scaffolds are focused on multifunctionality to provide beneficial microenvironments to support tissue growth. We have developed a simple yet effective approach to create core-shell fibers of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate) (PHBV), which are homogenously covered with titanium dioxide (TiO2) nanoparticles. Unlike the blend process, co-axial electrospinning enabled the uniform distribution of nanoparticles without the formation of large aggregates. We observed 5 orders of magnitude reduction in Escherichia coli survival after contact with electrospun scaffolds compared to the non-material control. In addition, our hybrid cores-shell structure supported significantly higher osteoblast proliferation after 7 days of cell culture and profound generation of 3D networked collagen fibers after 14 days. The organic-inorganic composite scaffold produced in this study demonstrates a unique combination of antibacterial properties and increased bone regeneration properties. In summary, the multifunctionality of the presented core-shell cPHBV+sTiO2 scaffolds shows great promise for biomedical applications.
Collapse
Affiliation(s)
- J E Karbowniczek
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - K Berniak
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - J Knapczyk-Korczak
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
| | - G Williams
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - J A Bryant
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - N D Nikoi
- University of Nottingham, School of Pharmacy, NG7 2RD Nottingham, UK
| | - M Banzhaf
- University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK
| | - F de Cogan
- University of Nottingham, School of Pharmacy, NG7 2RD Nottingham, UK
| | - U Stachewicz
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland.
| |
Collapse
|
13
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
14
|
Gruppuso M, Turco G, Marsich E, Porrelli D. Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. BIOMATERIALS ADVANCES 2023; 154:213613. [PMID: 37666062 DOI: 10.1016/j.bioadv.2023.213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings. Indeed, both the bilayer and coated fibers showed an optimal swelling capacity (3426 ± 492 % and 1435 ± 251 % after 7 days, respectively) and water vapor permeability (160 ± 0.78 g/m2h and 170 ± 12 g/m2h at 7 days, respectively). On the other hand, the polysaccharidic dressings were completely wettable in the presence of various types of fluids. Depending on the preparation method, a different release of both polysaccharides and rifampicin was detected, and the immediate polysaccharide dissolution from the bilayer structure impacted the antibiotic release (42 ± 4 % from the bilayer structure against 25 ± 2 % from the coated fibers in 4 h). All the multilayer matrices, regardless of their production strategy and composition, revealed optimal biocompatibility and bioactivity with human dermal fibroblasts, as the released bioactive polysaccharides induced a faster wound closure in the cell monolayer (100 % in 24 h) compared to the controls (78 ± 8 % for untreated cells and 89 ± 5 % for cells treated with PCL alone, after 24 h). The inhibitory and bactericidal effects of the rifampicin loaded matrices were assessed on S. aureus, S. epidermidis, E. coli, and P. aeruginosa. The antibacterial matrices were found to be highly effective except for E. coli, which was more resistant even at higher amounts of rifampicin, with a bacterial concentration of 6.4 ± 0.4 log CFU/mL and 6.8 ± 0.3 log CFU/mL after 4 h in the presence of the rifampicin-loaded bilayer and coated matrices, respectively.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
15
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
16
|
Mubarak R, Adel-Khattab D, Abdel-Ghaffar KA, Gamal AY. Adjunctive effect of collagen membrane coverage to L-PRF in the treatment of periodontal intrabony defects: a randomized controlled clinical trial with biochemical assessment. BMC Oral Health 2023; 23:631. [PMID: 37667213 PMCID: PMC10476412 DOI: 10.1186/s12903-023-03332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The innovation of leukocyte platelet-rich fibrin (L-PRF) has added enormous impact on wound healing dynamics especially the field of periodontal regeneration. The release of growth factors (GF) is thought to improve the clinical outcomes in infrabony defects. The aim of this study was to evaluate the clinical effect of covering L-PRF contained infrabony defects with collagen membranes (CM), and to compare their GF release profile to uncovered L-PRF defects and open flap debridement (OFD). METHODS Thirty non- smoking patients with infrabony pockets participated to be randomly assigned to OFD group (n = 10), L-PRF group (n = 10), or L-PRF protected CM group (n = 10). Plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL) and the radiographic defect base fill (DBF) were measured at baseline and at 6 month following surgical intervention. Gingival crevicular fluid samples were obtained on days 1, 3, 5, 7, 14, 21 and 30 days following surgery for the Platelet Derived Growth Factor-BB (PDGF-BB) and Vascular Endothelial Growth Factors (VEGF) release profile evaluation. RESULTS For all patients, a statistically significant (P ≤ 0.05) reduction in PI, GI, PD and CAL were reported throughout the study period. Differences between the three treatment modalities were not statistically significant. PRF + CM showed a statistically significant DBF compared to OFD and L-PRF groups at follow up. Quantitative analysis of PDGF-BB and VEGF levels demonstrated a statistically significant (P < 0.001) decline between measurement intervals for all groups with no statistically significant differences between the three groups. CONCLUSION Within the limitations of this study, L-PRF coverage with CM may augment defect base fill through its mechanical protective effect without enhancement in the release profile of VEGF and PDGF. The non-significant intergroup differences question the validity of the claimed extra physiologic concentration of GF offered by L-PRF harvests. TRIAL REGISTRATION The present study was registered at ClinicalTrials.gov (NCT05496608), (11/08/2022).
Collapse
Affiliation(s)
- Ramy Mubarak
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.
| | - Doaa Adel-Khattab
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Khaled A Abdel-Ghaffar
- Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
| | - Ahmed Youssef Gamal
- Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
17
|
Czerniecka-Kubicka A, Skotnicki M, Gonciarz W, Zarzyka I, Jadach B, Lovecká L, Maternia-Dudzik K, Kovářová M, Pyda M, Tutka P, Sedlařík V. The cytisine-enriched poly(3-hydroxybutyrate) fibers for sustained-release dosage form. Int J Biol Macromol 2023; 245:125544. [PMID: 37356682 DOI: 10.1016/j.ijbiomac.2023.125544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.
Collapse
Affiliation(s)
- Anna Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland; Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic.
| | - Marcin Skotnicki
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Iwona Zarzyka
- Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Lenka Lovecká
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| | - Karolina Maternia-Dudzik
- Department of Microbiology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland
| | - Miroslava Kovářová
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| | - Marek Pyda
- Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; Department of Biophysics, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Piotr Tutka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland; National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Vladimír Sedlařík
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| |
Collapse
|
18
|
Tang H, Qi C, Bai Y, Niu X, Gu X, Fan Y. Incorporation of Magnesium and Zinc Metallic Particles in PLGA Bi-layered Membranes with Sequential Ion Release for Guided Bone Regeneration. ACS Biomater Sci Eng 2023. [PMID: 37162308 DOI: 10.1021/acsbiomaterials.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Guided bone regeneration (GBR) membranes are commonly used for periodontal tissue regeneration. Due to the complications of existing GBR membranes, the design of bioactive membranes is still relevant. GBR membranes with an asymmetric structure can accommodate the functional requirements of different interfacial tissues. Here, poly(lactic acid-glycolic acid) (PLGA) was selected as the matrix for preparing a bi-layered membrane with both dense and porous structure. The dense layer for blocking soft tissues was incorporated with zinc (Zn) particles, while the porous layer for promoting bone regeneration was co-incorporated with magnesium (Mg) and Zn particles. Mg/Zn-embedded PLGA membranes exhibited 166% higher mechanical strength in comparison with pure PLGA membranes and showed suitable degradation properties with a sequential ion release behavior of Mg2+ first and continuously Zn2+. More importantly, the release of Zn2+ from bi-layered PLGA endowed GBR membranes with excellent antibacterial activity (antibacterial rate > 69.3%) as well as good cytocompatibility with MC3T3-E1 (mouse calvaria pre-osteoblastic cells) and HGF-1 (human gingival fibroblast cells). Thus, the asymmetric bi-layered PLGA membranes embedded with Mg and Zn particles provide a simple and effective strategy to not only reinforce the PLGA membrane but also endow membranes with osteogenic and antibacterial activity due to the continuous ion release profile, which serves as a promising candidate for use in GBR therapy.
Collapse
Affiliation(s)
- Hongyan Tang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chengkai Qi
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yanjie Bai
- Stomatology Department, Peking University Third Hospital, Beijing 100191, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuenan Gu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
19
|
Chen Z, Zhang Z, Ouyang Y, Chen Y, Yin X, Liu Y, Ying H, Yang W. Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Li M, Wang P, Luo S, Wu Y, Tian X, Pan J. Construction of Anti-Biofouling Imprinted Sorbents Based on Anisotropic Polydopamine Nanotubes for Fast and Selective Capture of 2′-Deoxyadenosine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
22
|
Sharma D, Banerjee A, Bhattacharyya J, Satapathy BK. Structurally stable and surface-textured polylactic acid/copolymer/poly (ε-caprolactone) blend-based electrospun constructs with tunable hydroxyapatite responsiveness. Colloids Surf B Biointerfaces 2023; 221:112969. [DOI: 10.1016/j.colsurfb.2022.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
23
|
Ma Z, Chen Y, Zuo W, Zhu M. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomater Sci Eng 2022; 8:5110-5118. [PMID: 36378953 DOI: 10.1021/acsbiomaterials.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompounds play a significant role in the area of renewable polymers in terms of sustainability, as they can be employed or converted into monomers for polymerization in a manner similar to many petroleum-derived monomers. In this work, betulin, a plant-derived triterpene with antibacterial and antiviral properties, was converted to two kinds of α,ω-diene derivatives with different methylene spacer lengths between the olefin and the ester group via an esterification reaction. Polyolefins were subsequently made by acyclic diene metathesis (ADMET) polymerization of betulin-based α,ω-diene. The polymer consists of rigid betulin and flexible unsaturated aliphatic segments, which was confirmed by NMR spectroscopy and gel permeation chromatography (GPC). The influence of different parameters including temperature, catalysts, and catalyst loading on ADMET polymerization was investigated. These polyolefins with high molar mass (up to 20.0 kg/mol) were obtained in an elevated yield (≥95%). Thermal analysis of these (co)polymers showed excellent thermal stability (up to 360 °C) and tunable glass transition temperatures depending on the nature of betulin and alkene segments. To evaluate the antimicrobial potential of betulin-containing polymers, the fabrication of polyolefin fibrous mats (ca. 400 nm diameter) via the electrospinning technique was successfully achieved. Their morphology and hydrophobicity were studied by scanning electron microscopy (SEM) and water contact angle analyses. The fibrous mats possessed broad-spectrum antibacterial property, providing a feasible strategy to design betulin-based polymeric fibers for many applications in the biomedical field.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yuwen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
24
|
Electrospun Polycaprolactone/ZnO Nanocomposite Membranes with High Antipathogen Activity. Polymers (Basel) 2022; 14:polym14245364. [PMID: 36559729 PMCID: PMC9780843 DOI: 10.3390/polym14245364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The spread of bacterial, fungal, and viral diseases by airborne aerosol flows poses a serious threat to human health, so the development of highly effective antibacterial, antifungal and antiviral filters to protect the respiratory system is in great demand. In this study, we developed ZnO-modified polycaprolactone nanofibers (PCL-ZnO) by treating the nanofiber surface with plasma in a gaseous mixture of Ar/CO2/C2H4 followed by the deposition of ZnO nanoparticles (NPs). The structure and chemical composition of the composite fibers were characterized by SEM, TEM, EDX, FTIR, and XPS methods. We demonstrated high material stability. The mats were tested against Gram-positive and Gram-negative pathogenic bacteria and pathogenic fungi and demonstrated high antibacterial and antifungal activity.
Collapse
|
25
|
Preparation of poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers (Basel) 2022; 14:polym14193994. [PMID: 36235942 PMCID: PMC9571512 DOI: 10.3390/polym14193994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing.
Collapse
|
27
|
Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers (Basel) 2022; 14:polym14173541. [PMID: 36080616 PMCID: PMC9460443 DOI: 10.3390/polym14173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6–3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6–3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6–3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.
Collapse
|
28
|
Mamidi N, García RG, Martínez JDH, Briones CM, Martínez Ramos AM, Tamez MFL, Del Valle BG, Segura FJM. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater Sci Eng 2022; 8:3690-3716. [PMID: 36037103 DOI: 10.1021/acsbiomaterials.2c00786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unique properties and potential applications of nanofibers have emerged as innovative approaches and opportunities in the biomedical, healthcare, environmental, and biosensor fields. Electrospinning and centrifugal spinning strategies have gained considerable attention among all kinds of strategies to produce nanofibers. These techniques produce nanofibers with high porosity and surface area, adequate pore architecture, and diverse chemical compositions. The extraordinary characteristics of nanofibers have unveiled new gates in nanomedicine to establish innovative fiber-based formulations for biomedical use, healthcare, and a wide range of other applications. The present review aims to provide a comprehensive overview of nanofibers and their broad range of applications, including drug delivery, biomedical scaffolds, tissue/bone-tissue engineering, dental applications, and environmental remediation in a single place. The review begins with a brief introduction followed by potential applications of nanofibers. Finally, the future perspectives and current challenges of nanofibers are demonstrated. This review will help researchers to engineer more efficient multifunctional nanofibers with improved characteristics for their effective use in broad areas. We strongly believe this review is a reader's delight and will help in dealing with the fundamental principles and applications of nanofiber-based scaffolds. This review will assist students and a broad range of scientific communities to understand the significance of nanofibers in several domains of nanotechnology, nanomedicine, biotechnology, and environmental remediation, which will set a benchmark for further research.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Rubén Gutiérrez García
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - José Daniel Hernández Martínez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Camila Martínez Briones
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Andrea Michelle Martínez Ramos
- Department of Biotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - María Fernanda Leal Tamez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Braulio González Del Valle
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - Francisco Javier Macias Segura
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
29
|
Xu L, Zhao K, Miao J, Yang Z, Li Z, Zhao L, Su H, Lin L, Hu Y. High-strength and anti-bacterial BSA/carboxymethyl chitosan/silver nanoparticles/calcium alginate composite hydrogel membrane for efficient dye/salt separation. Int J Biol Macromol 2022; 220:267-279. [PMID: 35985394 DOI: 10.1016/j.ijbiomac.2022.08.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
In order to solve the problems of poor mechanical property, non-antibacterial and low flux of calcium alginate (CaAlg) membrane, silver nanoparticles (AgNPs) were synthesized with bovine serum albumin (BSA) and carboxymethyl chitosan (CMCS) for improving CaAlg membrane in this paper. Meanwhile, the dispersion property of silver nanoparticles and the mechanical property, thermal stability, antibacterial property and filtration efficiency of the composite membrane were explored. The results illustrated CMCS observably strengthened the mechanical property and thermal stability of the composite membrane, and AgNPs endowed the composite membrane with excellent antibacterial property. The flux of the BSA/CMCS/AgNPs/CaAlg composite membrane was raised compared to CaAlg membrane. Finally, the viscose fiber/polyethylene terephthalate fiber (VF-PET) nonwoven fabric was introduced as the support layer to further improve the filtration flux and mechanical property of the composite membrane. VF-PET/BSA/CMCS/AgNPs/CaAlg membrane had a rejection rate of over 99.0 % for dye molecules and <9.0 % for salt ions, while the flux maintained 38.5 L·m-2·h-1. Furthermore, VF-PET/BSA/CMCS/AgNPs/CaAlg membrane also had excellent separation effect on actual dye wastewater. The separation of dye and salt by the membrane mainly depended on the screening mechanism of membrane pore size, rather than adsorption. The composite membrane had an outstanding performance on the separation of dye molecules and inorganic salt ions.
Collapse
Affiliation(s)
- Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Junping Miao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Zhenhao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zhiwei Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Lei Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Hongxian Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
30
|
Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. COATINGS 2022. [DOI: 10.3390/coatings12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A good barrier membrane is one of the important factors for effective guided bone/tissue regeneration (GBR/GTR) in the case of periodontal bone defects. Several methods are being discussed to overcome and improve the shortcomings of commercially available membranes. One of the methods is to coat the membrane with bioactive materials. In this study, 41 studies related to coated membranes for GBR/GTR published in the last 5 years were reviewed. These studies reported coating the membrane with various bioactive materials through different techniques to improve osteogenesis, antimicrobial properties, and physical/mechanical properties. The reported studies have been classified and discussed based on the purpose of coating. The goal of the most actively studied research on coating or surface modification of membranes is to improve new bone formation. For this purpose, calcium phosphate, bioactive glass, polydopamine, osteoinduced drugs, chitosan, platelet-rich fibrin, enamel matrix derivatives, amelotin, hyaluronic acid, tantalum, and copper were used as membrane coating materials. The paradigm of barrier membranes is changing from only inert (or biocompatible) physical barriers to bioactive osteo-immunomodulatory for effective guided bone and tissue regeneration. However, there is a limitation that there exists only a few clinical studies on humans to date. Efforts are needed to implement the use of coated membranes from the laboratory bench to the dental chair unit. Further clinical studies are needed in the patients’ group for long-term follow-up to confirm the effect of various coating materials.
Collapse
|
31
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
32
|
Ye J, Gong M, Song J, Chen S, Meng Q, Shi R, Zhang L, Xue J. Integrating Inflammation-Responsive Prodrug with Electrospun Nanofibers for Anti-Inflammation Application. Pharmaceutics 2022; 14:pharmaceutics14061273. [PMID: 35745845 PMCID: PMC9229020 DOI: 10.3390/pharmaceutics14061273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation plays a side effect on tissue regeneration, greatly inhibiting the repair or regeneration of tissues. Conventional local delivery of anti-inflammation drugs through physical encapsulation into carriers face the challenges of uncontrolled release. The construction of an inflammation-responsive prodrug to release anti-inflammation drugs depending on the occurrence of inflammation to regulate chronic inflammation is of high need. Here, we construct nanofiber-based scaffolds to regulate the inflammation response of chronic inflammation during tissue regeneration. An inflammation-sensitive prodrug is synthesized by free radical polymerization of the indomethacin-containing precursor, which is prepared by the esterification of N-(2-hydroxyethyl) acrylamide with the anti-inflammation drug indomethacin. Then, anti-inflammation scaffolds are constructed by loading the prodrug in poly(ε-caprolactone)/gelatin electrospun nanofibers. Cholesterol esterase, mimicking the inflammation environment, is adopted to catalyze the hydrolysis of the ester bonds, both in the prodrug and the nanofibers matrix, leading to the generation of indomethacin and the subsequent release to the surrounding. In contrast, only a minor amount of the drug is released from the scaffold, just based on the mechanism of hydrolysis in the absence of cholesterol esterase. Furthermore, the inflammation-responsive nanofiber scaffold can effectively inhibit the cytokines secreted from RAW264.7 macrophage cells induced by lipopolysaccharide in vitro studies, highlighting the great potential of these electrospun nanofiber scaffolds to be applied for regulating the chronic inflammation in tissue regeneration.
Collapse
Affiliation(s)
- Jingjing Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghan Meng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| |
Collapse
|
33
|
Kara F, Aksoy EA, Aksoy S, Hasirci N. Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles with potential antibacterial properties are included in biomaterials for the production of medical devices, which are used for diagnoses or treatment purposes. The aim of the current study was coating the polyurethane (PU) films with silver nanoparticles (AgNPs) due to their antibacterial efficacy. PU films were first modified by chitosan (CH), treated with AgNO3 to let CH chelate with silver ions, and then treated with vitamin-C (vit C) or glucose (Glu) to reduce the adsorbed ions to atomic silver to form AgNPs. The surfaces of the films were examined by ATR-FTIR, XPS, XRD, and SEM. Chemical bond formation between CH and Ag ions and AgNPs were determined by ATR-FTIR. Meanwhile, XPS and SEM analyses proved the presence of reduced metallic silver and nanoparticles on the film surfaces, respectively. According to the SEM analyses, a homogeneous distribution of AgNPs, with sizes 99–214 nm and 37–54 nm, on the film surfaces were obtained depending on Glu or vit C reduction, respectively. The films presented excellent antibacterial performance against Gram positive Staphylococcus epidermidis ( S. epidermidis). These results suggested that the mentioned green technology can be easily applied to obtain AgNP coated polymeric surfaces with very high antibacterial efficacy. Although there are some studies dealing with AgNP formation on PU sponges or fibers, to the best of our knowledge, this is the first study showing AgNP formation on the CH conjugated PU films.
Collapse
Affiliation(s)
- Filiz Kara
- Department of Industrial Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey
| | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Polymer Science and Technology, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Serpil Aksoy
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Near East University, Tissue Engineering and Biomaterial Research Center, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
34
|
Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells 2022; 11:cells11091582. [PMID: 35563888 PMCID: PMC9103553 DOI: 10.3390/cells11091582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.e., hydroxyapatite and bimetallic nanocomposite of zinc oxide–silver. Thus, within this study, four different variants of biomaterials were evaluated, namely: poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) biomaterial, poly(D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite biomaterial, poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano zinc oxide–silver biomaterial, and poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver biomaterial. First, it was demonstrated that the wettability of biomaterials—a prerequisite property important for ensuring desired biological response—was highly increased after the sonocoating process. Moreover, it was indicated that biomaterials composed of poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) with or without a nano hydroxyapatite layer allowed proper osteoblast growth and proliferation, but did not have antibacterial properties. Addition of a nano zinc oxide–silver layer to the biomaterial inhibited growth of bacterial cells around the membrane, but at the same time induced very high cytotoxicity towards osteoblasts. Most importantly, enrichment of this biomaterial with a supplementary underlayer of nano hydroxyapatite allowed for the preservation of antibacterial properties and also a decrease in the cytotoxicity towards bone cells, associated with the presence of a nano zinc oxide–silver layer. Thus, the final structure of the composite poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver seems to be a promising construct for tissue engineering products, especially guided tissue regeneration/guided bone regeneration membranes. Nevertheless, additional research is needed in order to improve the developed construct, which will simultaneously protect the biomaterial from bacterial colonization and enhance the bone regeneration properties.
Collapse
|
35
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
36
|
Li M, Qiu W, Wang Q, Li N, Liu L, Wang X, Yu J, Li X, Li F, Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15911-15926. [PMID: 35373564 DOI: 10.1021/acsami.1c24131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms on wounds can lead to ongoing inflammation and delayed reepithelialization, which brings a heavy burden to the medical systems. Nitric oxide based treatment has attracted attention because it is a promising strategy to eliminate biofilms and heal infected wounds. Herein, a series of tryptophan-based poly(ester urea)s with good biodegradation and biocompatibility were developed for the preparation of composite mats by electrospinning. Furthermore, the mats were grafted with a nitric oxide donor (nitrosoglutathione, GSNO) to provide one type of NO loading cargo. The mats were found to have a prolonged NO release profile for 408 h with a maximum release of 1.0 μmol/L, which had a significant effect on killing bacteria and destructing biofilms. The designed mats were demonstrated to promote the growth of cells, regulate inflammatory factors, and significantly improve collagen deposition in the wound, eventually accelerating wound-size reduction. Thus, the studies presented herein provide insights into the production of NO-releasing wound dressings and support the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
37
|
Kong N, Yang H, Tian R, Liu G, Li Y, Guan H, Wei Q, Du X, Lei Y, Li Z, Cao R, Zhao Y, Wang X, Wang K, Yang P. An injectable self-adaptive polymer as a drug carrier for the treatment of nontraumatic early-stage osteonecrosis of the femoral head. Bone Res 2022; 10:28. [PMID: 35279673 PMCID: PMC8918325 DOI: 10.1038/s41413-022-00196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022] Open
Abstract
Core decompression (CD) with the elimination of osteonecrotic bone is the most common strategy for treating early-stage nontraumatic osteonecrosis of the femoral head (ONFH). Adjuvant treatments are widely used in combination with CD as suitable methods of therapy. Existing augmentations have to be fabricated in advance. Here, we report a novel injectable glycerin-modified polycaprolactone (GPCL) that can adapt to the shape of the CD cavity. GPCL shows great flowability at 52.6 °C. After solidification, its compressive modulus was 120 kPa at body temperature (37 °C). This excellent characteristic enables the polymer to provide mechanical support in vivo. In addition, GPCL acts as a carrier of the therapeutic agent zoledronic acid (ZA), demonstrating sustained release into the CD region. ZA-loaded GPCL was injected into ONFH lesions to treat early-stage nontraumatic cases. Compared to that in the CD group, CD+ZA-loaded GPCL injection preserved bone density and increased the collagen level in the femoral head. At the interface between the GPCL and CD tunnel wall, osteogenesis was significantly promoted. In addition, morphological evaluations revealed that the femoral heads in the CD+ZA-GPCL group exhibited improved pressure resistance. These results suggest a strategy effective to preserve the bone density of the femoral head, thus decreasing the possibility of femoral head collapse. This novel injectable polymer has, therefore, considerable potential in clinical applications.
Collapse
Affiliation(s)
- Ning Kong
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Hang Yang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Run Tian
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Guanzhi Liu
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Yiyang Li
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Huanshuai Guan
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Qilu Wei
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Xueshan Du
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Yutian Lei
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Zhe Li
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Yiwei Zhao
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Xiaohui Wang
- Department of Spine Surgery, Honghui Hospital of Xi'an Jiaotong University, No. 555 Youyi East Road, Xi'an, 710000, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China.
| | - Pei Yang
- Department of Bone and Joint Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
38
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
39
|
Tang H, Qu X, Zhang W, Chen X, Zhang S, Xu Y, Yang H, Wang Y, Yang J, Yuan WE, Yue B. Photosensitizer Nanodot Eliciting Immunogenicity for Photo-Immunologic Therapy of Postoperative Methicillin-Resistant Staphylococcus aureus Infection and Secondary Recurrence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107300. [PMID: 34865257 DOI: 10.1002/adma.202107300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The treatment of postoperative infection caused by multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has become an intractable clinical challenge owing to its low therapeutic efficacy and high risk of recurrence. Apart from imperfect antibacterial therapies, induction of insufficient immunogenicity, required for the successful clearance of a pathogen, may also contribute to the problem. Herein, an ultra-micro photosensitizer, AgB nanodots, using photothermal therapy, photodynamic therapy, and Ag+ ion sterilization, are utilized to efficiently clear invading MRSA both in vitro and in vivo. AgB nanodots are also found to upregulate host immunogenicity in a murine model and establish immunological memory by promoting the upregulated expression of danger signals that are commonly induced by stress-related responses, including sudden temperature spikes or excess reactive oxygen production. These stimulations boost the antibacterial effects of macrophages, dendritic cells, T cells, or even memory B cells, which is usually defined as infection-related immunogenic cell death. Hence, the proposed AgB nanodot strategy may offer a novel platform for the effective treatment of postoperative infection while providing a systematic immunotherapeutic strategy to combat persistent infections, thereby markedly reducing the incidence of recurrence following recovery from primary infections.
Collapse
Affiliation(s)
- Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Wenkai Zhang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuan Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Yang Xu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongtao Yang
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, 43210, USA
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei-En Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| |
Collapse
|
40
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
41
|
Ul Hassan S, Bilal B, Nazir MS, Naqvi SAR, Ali Z, Nadeem S, Muhammad N, Palvasha BA, Mohyuddin A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem Biol Drug Des 2021; 98:1007-1024. [PMID: 34581497 DOI: 10.1111/cbdd.13959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different non-polymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.
Collapse
Affiliation(s)
- Sadaf Ul Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan.,Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zufiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aysha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
42
|
Sharma D, Satapathy BK. Polymer Substrate-Based Transition Metal Modified Electrospun Nanofibrous Materials: Current Trends in Functional Applications and Challenges. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1972006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K. Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
43
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
44
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|