1
|
Divya D, Mishra H, Jangir R. Covalent organic frameworks and their composites as enhanced energy storage materials. Chem Commun (Camb) 2025. [PMID: 39807040 DOI: 10.1039/d4cc04688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications. These findings are significant for meeting the demand for reliable and sustainable energy storage materials in order to save energy for a better future of mankind. As the demand for reliable and sustainable energy storage materials is increasing, the scientific community is more focussed towards the development of covalent organic frameworks (COFs). The high surface area, thermal and chemical stability, structural tunability, porosity, and low density of COFs make them appropriate for energy storage applications. Their potential to produce advanced energy storage devices with better performance and durability is further reinforced by their ability to be customized for specific applications and amplified for conductive materials. This review covers the designs and synthetic techniques of COFs and their composites specifically suitable for energy storage uses. It further highlights their use as cathode and anode materials in supercapacitors, COF based electrolytes and batteries. The review further includes the flexibility and efficiency of COFs in energy storage applications. Furthermore, it addresses the challenges and their potential solutions regarding the use of COFs in energy storage devices. By providing a comprehensive understanding of the advantages and limitations of COFs, this review aims to inform and inspire future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Divya Divya
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Harshit Mishra
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
2
|
Periyasamy T, Asrafali SP, Kim SC, Lee J. Fabrication of Sandwiched NiCo-Layered Double Hydroxides/Carbon Nanoballs for Sustainable Energy Storage. Polymers (Basel) 2024; 16:2005. [PMID: 39065322 PMCID: PMC11281234 DOI: 10.3390/polym16142005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study presents a promising method for creating high-performance supercapacitor electrodes. The approach involves crafting a unique composite material-nickel-cobalt-layered double hydroxides (NiCo-LDH) grown on carbon nanoballs (CNBs). This is achieved by first creating a special carbon material rich in oxygen and nitrogen from a polybenzoxazine source. At first, eugenol, ethylene diamine and paraformaldehyde undergo Mannich condensation to form the benzoxazine monomer, which undergoes self-polymerization in the presence of heat to produce polybenzoxazine. This was then carbonized and activated to produce CNBs containing heteroatoms. Then, through a hydrothermal technique, NiCo-LDH nanocages are directly deposited onto the CNBs, eliminating the need for complicated templates. The amount of CNBs used plays a crucial role in performance. By optimizing the CNB content to 50%, a remarkable specific capacitance of 1220 F g-1 was achieved, along with excellent rate capability and impressive cycling stability, retaining 86% of its capacitance after 5000 cycles. Furthermore, this NiCo-LDH/CNB composite, when combined with active carbon in a supercapacitor configuration, delivered outstanding overall performance. The exceptional properties of this composite, combined with its simple and scalable synthesis process, position it as a strong contender for next-generation sustainable energy storage devices. The ease of fabrication also opens doors for its practical application in advancing energy storage technologies.
Collapse
Affiliation(s)
- Thirukumaran Periyasamy
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Shakila Parveen Asrafali
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| |
Collapse
|
3
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
4
|
Zhu Y, Wang Z, Zhu X, Feng Z, Tang C, Wang Q, Yang Y, Wang L, Fan L, Hou J. Optimizing Performance in Supercapacitors through Surface Decoration of Bismuth Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16927-16935. [PMID: 38506726 DOI: 10.1021/acsami.3c17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.
Collapse
Affiliation(s)
- Yiyu Zhu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Zhen Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Xinyuan Zhu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Ziyu Feng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Chaoyang Tang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Qian Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Ying Yang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lei Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lele Fan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jiwei Hou
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
5
|
Karatayeva U, Al Siyabi SA, Brahma Narzary B, Baker BC, Faul CFJ. Conjugated Microporous Polymers for Catalytic CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308228. [PMID: 38326090 PMCID: PMC11005716 DOI: 10.1002/advs.202308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/09/2024]
Abstract
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
Collapse
|
6
|
Chernysheva DV, Smirnova NV, Ananikov VP. Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials. CHEMSUSCHEM 2024; 17:e202301367. [PMID: 37948061 DOI: 10.1002/cssc.202301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Supercapacitors (SCs) have emerged as critical components in applications ranging from transport to wearable electronics due to their rapid charge-discharge cycles, high power density, and reliability. This review offers an analysis of recent strides in supercapacitor research, emphasizing pivotal developments in sustainability, electrode materials, electrolytes, and 'smart SCs' designed for modern microelectronics with attributes such as flexibility, stretchability, and biocompatibility. Central to this discourse are two dominant electrode materials: carbon materials (CMs), primarily in electric double layer capacitors (EDLCs), and pseudocapacitive materials, involving oxides/hydroxides, chalcogenides, metal-organic frameworks, conductive polymers and metal nitrides such as MXene. Despite EDLCs' historical use, challenges such as low energy density persist, with heteroatom introduction into the carbon lattice seen as a solution. Concurrently, pseudocapacitive materials dominate recent studies, with efficiency enhancement strategies, such as the creation of hybrids based on different types of materials, surface structural engineering and doping, under exploration. Electrolyte innovation, especially the shift towards gel polymer electrolytes for flexible SCs, and the harmonization of electrode materials with SC designs are highlighted. Emphasis is given to smart SCs with novel attributes such as self-charging, self-healing, biocompatibility, and environmentally conscious designs. In summary, the article underscores the drive in sustainable supercapacitor research to achieve high energy and power density, steering towards SCs that are efficient and versatile and involving bioderived/biocompatible SC materials. This brief review is based on selected recent references, offering depth combined with an accessible overview of the SC landscape.
Collapse
Affiliation(s)
- Daria V Chernysheva
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Nina V Smirnova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
7
|
Periyasamy T, Asrafali SP, Kim SC, Kumar DR, Lee J. Polybenzoxazine-Based Nitrogen-Containing Porous Carbon and Their Composites with NiCo Bimetallic Oxides for Supercapacitor Applications. Polymers (Basel) 2024; 16:430. [PMID: 38337318 DOI: 10.3390/polym16030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz., HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at 800 °C (HC/NiCo@800) exhibits a hierarchical 3D flower-like morphology. The electrochemical measurement of the prepared materials was performed in a three-electrode system showing an enhanced specific capacitance for HC/NiCo@600 (Cs = 1515 F g-1) in 1 M KOH, at a current density of 1 A g-1, among others. An asymmetric SC device was also fabricated using HC/NiCo@800 as anode and HC as cathode (HC/NiCo@600//HC). The fabricated device had the ability to operate at a high voltage window (~1.6 V), exhibiting a specific capacitance of 142 F g-1 at a current density of 1 A g-1; power density of 743.11 W kg-1 and energy density of 49.93 Wh kg-1. Altogether, a simple strategy of hetero-atom doping and bimetallic inclusion into the carbon framework enhances the energy density of SCs.
Collapse
Affiliation(s)
- Thirukumaran Periyasamy
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Deivasigamani Ranjith Kumar
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Zhang T, Li J. Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules 2023; 28:8136. [PMID: 38138624 PMCID: PMC10745835 DOI: 10.3390/molecules28248136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Biomass-derived carbon materials have broad application prospects in energy storage, but still face problems such as complex synthesis paths and the massive use of corrosive activators. In this study, we proposed a mild and efficient pathway to prepare nitrogen-doped porous carbon material (N-YAC) using one-step pyrolysis with solid K2CO3, tobacco straw, and melamine. The optimized material (N-YAC0.5) was not only enriched with nitrogen, but also exhibited a high specific surface area (2367 m2/g) and a reasonable pore size distribution (46.49% mesopores). When utilized in electrodes, N-YAC0.5 exhibited an excellent capacitance performance (338 F/g at 1 A/g) in the three-electrode system, and benefitted from a high mesopore distribution that maintained a capacitance of 85.2% (288 F/g) at high current densities (20 A/g). Furthermore, the composed symmetric capacitor achieved an energy density of 14.78 Wh/kg at a power density of 400 W/kg. In summary, our work provides a novel and eco-friendly approach for converting biomass into high-performance energy-storage materials.
Collapse
Affiliation(s)
| | - Jun Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| |
Collapse
|
9
|
Mousa AO, Chuang CH, Kuo SW, Mohamed MG. Strategic Design and Synthesis of Ferrocene Linked Porous Organic Frameworks toward Tunable CO 2 Capture and Energy Storage. Int J Mol Sci 2023; 24:12371. [PMID: 37569744 PMCID: PMC10419241 DOI: 10.3390/ijms241512371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
10
|
Qiu X, Lin Z, Zhao Y, Zhang J, Hu X, Bai H. Self-Compositing: A Efficient Method of Improving the Electrical Conductivity of Graphene Nanoplatelet/Thermosetting Resin Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300931. [PMID: 37093183 DOI: 10.1002/smll.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Conductive composites based on thermosetting resins have broad applications in various fields. In this paper, a new self-compositing strategy is developed for improving the conductivity of graphene nanoplatelet/thermosetting resin composites by optimizing the transport channels. To implement this strategy, conventional graphene nanoplatelet/thermosetting resin is crushed into micron-sized composite powders, which are mixed with graphene nanoplatelets to form novel complex fillers to prepare the self-composited materials with thermosetting resins. A highly conductive compact graphene layer is formed on the surface of the crushed composite powders, while the addition of the micron-sized powder induces the orientation of graphene nanoplatelets in the resin matrix. Therefore, a highly conductive network is constructed inside the self-composited material, significantly enhancing the electrical conductivity. The composite materials based on epoxy resin, cyanate resin, and unsaturated polyester are prepared with this method, reflecting that the method is universal for preparing composites based on thermosetting resins. The highest electrical conductivity of the self-composited material based on unsaturated polyester is as high as 25.9 S m-1 . This self-compositing strategy is simple, efficient, and compatible with large-scale industrial production, thus it is a promising and general way to enhance the conductivity of thermosetting resin matrix composites.
Collapse
Affiliation(s)
- Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
11
|
Mousa AO, Lin ZI, Chuang CH, Chen CK, Kuo SW, Mohamed MG. Rational Design of Bifunctional Microporous Organic Polymers Containing Anthracene and Triphenylamine Units for Energy Storage and Biological Applications. Int J Mol Sci 2023; 24:ijms24108966. [PMID: 37240313 DOI: 10.3390/ijms24108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
12
|
Mohamed MG, Chang SY, Ejaz M, Samy MM, Mousa AO, Kuo SW. Design and Synthesis of Bisulfone-Linked Two-Dimensional Conjugated Microporous Polymers for CO2 Adsorption and Energy Storage. Molecules 2023; 28:molecules28073234. [PMID: 37049996 PMCID: PMC10096630 DOI: 10.3390/molecules28073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
We have successfully synthesized two types of two-dimensional conjugated microporous polymers (CMPs), Py-BSU and TBN-BSU CMPs, by using the Sonogashira cross-coupling reaction of BSU-Br2 (2,8-Dibromothianthrene-5,5′,10,10′-Tetraoxide) with Py-T (1,3,6,8-Tetraethynylpyrene) and TBN-T (2,7,10,15-Tetraethynyldibenzo[g,p]chrysene), respectively. We characterized the chemical structure, morphology, physical properties, and potential applications of these materials using various analytical instruments. Both Py-BSU and TBN-BSU CMPs showed high thermal stability with thermal decomposition temperatures (Td10) up to 371 °C and char yields close to 48 wt%, as determined by thermogravimetric analysis (TGA). TBN-BSU CMPs exhibited a higher specific surface area and porosity of 391 m2 g−1 and 0.30 cm3 g−1, respectively, due to their large micropore and mesopore structure. These CMPs with extended π-conjugated frameworks and high surface areas are promising organic electroactive materials that can be used as electrode materials for supercapacitors (SCs) and gas adsorption. Our experimental results demonstrated that the TBN-BSU CMP electrode had better electrochemical characteristics with a longer discharge time course and a specific capacitance of 70 F g−1. Additionally, the electrode exhibited an excellent capacitance retention rate of 99.9% in the 2000-cycle stability test. The CO2 uptake capacity of TBN-BSU CMP and Py-BSU CMP were 1.60 and 1.45 mmol g−1, respectively, at 298 K and 1 bar. These results indicate that the BSU-based CMPs synthesized in this study have potential applications in electrical testing and CO2 capture.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Siang-Yi Chang
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Moshin Ejaz
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Aya Osama Mousa
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Ultrastable Two-Dimensional Fluorescent Conjugated Microporous Polymers Containing Pyrene and Fluorene Units for Metal Ion Sensing and Energy Storage. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Yang HC, Chen YY, Suen SY, Lee RH. Triazine-based covalent organic framework/carbon nanotube fiber nanocomposites for high-performance supercapacitor electrodes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage. Polymers (Basel) 2023; 15:polym15051095. [PMID: 36904335 PMCID: PMC10007016 DOI: 10.3390/polym15051095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1'-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g-1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g-1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics.
Collapse
|
16
|
Samy MM, Mohamed MG, Sharma SU, Chaganti SV, Lee JT, Kuo SW. An Ultrastable Tetrabenzonaphthalene-Linked conjugated microporous polymer functioning as a high-performance electrode for supercapacitors. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Structure, morphology and energy storage properties of imide conjugated microporous polymers with different cores and the corresponding composites with CNT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Mohamed MG, Elsayed MH, Ye Y, Samy MM, Hassan AE, Mansoure TH, Wen Z, Chou HH, Chen KH, Kuo SW. Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water. Polymers (Basel) 2022; 15:polym15010182. [PMID: 36616530 PMCID: PMC9824186 DOI: 10.3390/polym15010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g-1 and a large pore volume of 0.69 cm3 g-1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g-1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g-1 h-1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g-1 h-1), based on photocatalytic experimental results.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.G.M.); (S.-W.K.)
| | - Mohamed Hammad Elsayed
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Yunsheng Ye
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed E. Hassan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.G.M.); (S.-W.K.)
| |
Collapse
|
19
|
Constructing conjugated microporous polymers containing triphenylamine moieties for high-performance capacitive energy storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Lu Q, zhang D, Xu F, He G, Qian J, Xia J. Porous fluorescent polyaminocarbazole synthesis and their sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
An Ultrastable Porous Polyhedral Oligomeric Silsesquioxane/Tetraphenylthiophene Hybrid as a High-Performance Electrode for Supercapacitors. Molecules 2022; 27:molecules27196238. [PMID: 36234775 PMCID: PMC9572779 DOI: 10.3390/molecules27196238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic–inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g−1) at 0.5 A g−1 was higher than those of the POSS-Th (213 F g−1) and POSS-OXD (119 F g−1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.
Collapse
|
22
|
Mohamed MG, Hu HY, Madhu M, Ejaz M, Sharma SU, Tseng WL, Samy MM, Huang CW, Lee JT, Kuo SW. Construction of Ultrastable Conjugated Microporous Polymers Containing Thiophene and Fluorene for Metal Ion Sensing and Energy Storage. MICROMACHINES 2022; 13:mi13091466. [PMID: 36144089 PMCID: PMC9505267 DOI: 10.3390/mi13091466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
In this study, we have used the one-pot polycondensation method to prepare novel 2D conjugated microporous polymers (Th-F-CMP) containing thiophene (Th) and fluorene (Fl) moieties through the Suzuki cross-coupling reaction. The thermogravimetric analysis (TGA) data revealed that Th-F-CMP (Td10 = 418 °C, char yield: 53 wt%). Based on BET analyses, the Th-F-CMP sample displayed a BET specific surface area of 30 m2 g-1, and the pore size was 2.61 nm. Next, to show the effectiveness of our study, we utilized Th-F-CMP as a fluorescence probe for the selective detection of Fe3+ ions at neutral pH with a linear range from 2.0 to 25.0 nM (R2 = 0.9349). Furthermore, the electrochemical experimental studies showed that the Th-F-CMP framework had a superior specific capacity of 84.7 F g-1 at a current density of 0.5 A g-1 and outstanding capacitance retention (88%) over 2000 cycles.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Huan-Yu Hu
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Mohsin Ejaz
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Santosh U Sharma
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Jyh-Tsung Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
|
24
|
Mohamed MG, Kuo SW. Progress in the self-assembly of organic/inorganic polyhedral oligomeric silsesquioxane (POSS) hybrids. SOFT MATTER 2022; 18:5535-5561. [PMID: 35880446 DOI: 10.1039/d2sm00635a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Review describes recent progress in the self-assembly of organic/inorganic POSS hybrids derived from mono-, di-, and multi-functionalized POSS cages. We highlight the self-assembled structures and physical properties of giant surfactants and chain-end- and side-chain-type hybrids derived from mono-functionalized POSS cages; main-chain-type hybrids derived from di-functionalized POSS cages; and star-shaped hybrids derived from multi-functionalized POSS cages; with various polymeric attachments, including polystyrene, poly(methyl methacrylate), phenolic, PVPh, and polypeptides.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
25
|
|
26
|
Polymethyl(1-Butyric acidyl)silane-Assisted Dispersion and Density Gradient Ultracentrifugation Separation of Single-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12122094. [PMID: 35745430 PMCID: PMC9227055 DOI: 10.3390/nano12122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Individual single–walled carbon nanotubes (SWNTs) with distinct electronic types are crucial for the fabrication of SWNTs–based electronic and magnetic devices. Herein, the water–soluble polymethyl(1–butyric acidyl)silane (BA–PMS) was synthesized via the hydrosilylation reaction between 3–butenoic acid and polymethylsilane catalyzed by 2,2′–azodibutyronitrile. As a new dispersant, BA–PMS displayed a quite good dispersing capacity to arc–discharged SWNTs and moderate selectivity for metallic species. The application of sucrose–DGU, the density gradient ultracentrifugation with sucrose as the gradient medium, to the co–surfactants (BA–PMS and sodium dodecyl sulfonate) individually dispersed SWNTs yielded metallic SWNTs of 85.6% purity and semiconducting SWNTs of 99% purity, respectively. This work paves a path to the DGU separation of the SWNTs dispersed by polymer–based dispersants with hydrophobic alkyl chains.
Collapse
|
27
|
Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Weng MT, Elsyed AFN, Yang PC, Mohamed MG, Kuo SW, Lin KS. Fluorescent and thermoresponsive tetraphenylethene-based cross-linked poly(N-isopropylacrylamide)s: Synthesis, thermal/AIE properties, and cell viability. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 2022; 51:3181-3225. [PMID: 35348147 DOI: 10.1039/d2cs00065b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Cheng-Fang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shihao Xu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
30
|
Mohamed MG, Mansoure TH, Samy MM, Takashi Y, Mohammed AAK, Ahamad T, Alshehri SM, Kim J, Matsagar BM, Wu KCW, Kuo SW. Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 2022; 27:2025. [PMID: 35335388 PMCID: PMC8952824 DOI: 10.3390/molecules27062025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g-1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tharwat Hassan Mansoure
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Maha Mohamed Samy
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Yasuno Takashi
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
| | - Ahmed A. K. Mohammed
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| |
Collapse
|
31
|
Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Int J Mol Sci 2022; 23:ijms23063174. [PMID: 35328595 PMCID: PMC8951433 DOI: 10.3390/ijms23063174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption–desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406–751 m2·g−1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g−1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g−1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.
Collapse
|
32
|
Samy MM, Mohamed MG, Mansoure TH, Meng TS, Khan MAR, Liaw CC, Kuo SW. Solid state chemical transformations through ring-opening polymerization of ferrocene-based conjugated microporous polymers in host–guest complexes with benzoxazine-linked cyclodextrin. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Li N, Jiang K, Rodríguez‐Hernández F, Mao H, Han S, Fu X, Zhang J, Yang C, Ke C, Zhuang X. Polyarylether-Based 2D Covalent-Organic Frameworks with In-Plane D-A Structures and Tunable Energy Levels for Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104898. [PMID: 34957678 PMCID: PMC8867148 DOI: 10.1002/advs.202104898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Indexed: 05/31/2023]
Abstract
The robust fully conjugated covalent organic frameworks (COFs) are emerging as a novel type of semi-conductive COFs for optoelectronic and energy devices due to their controllable architectures and easily tunable the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) levels. However, the carrier mobility of such materials is still beyond requirements due to limited π-conjugation. In this study, a series of new polyarylether-based COFs are rationally synthesized via a direct reaction between hexadecafluorophthalocyanine (electron acceptor) and octahydroxyphthalocyanine (electron donor). These COFs have typical crystalline layered structures, narrow band gaps as low as ≈0.65 eV and ultra-low resistance (1.31 × 10-6 S cm-1 ). Such COFs can be composed of two different metal-sites and contribute improved carrier mobility via layer-altered staking mode according to density functional theory calculation. Due to the narrow pore size of 1.4 nm and promising conductivity, such COFs and electrochemically exfoliated graphene based free-standing films are fabricated for in-plane micro-supercapacitors, which demonstrate excellent volumetric capacitances (28.1 F cm-3 ) and excellent stability of 10 000 charge-discharge cycling in acidic electrolyte. This study provides a new approach toward dioxin-linked COFs with donor-acceptor structure and easily tunable energy levels for versatile energy storage and optoelectronic devices.
Collapse
Affiliation(s)
- Nana Li
- School of Chemistry and Chemical EngineeringShihezi UniversityShiheziXinjiang832003China
- The Meso‐Entropy Matter LabSchool of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Key Laboratory of Electrical Insulation and Thermal AgingFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Kaiyue Jiang
- The Meso‐Entropy Matter LabSchool of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Key Laboratory of Electrical Insulation and Thermal AgingFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
- College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | | | - Haiyan Mao
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Sheng Han
- School of Chemistry and Chemical EngineeringShihezi UniversityShiheziXinjiang832003China
- School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghai201418China
| | - Xiaobin Fu
- Department of Molten Salt Chemistry and EngineeringShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation FacilityZhangjiang LaboratoryShanghai Advanced Research Institute Chinese Academy of SciencesShanghai201204China
| | - Chongqing Yang
- The Meso‐Entropy Matter LabSchool of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Key Laboratory of Electrical Insulation and Thermal AgingFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Changchun Ke
- Institute of Fuel CellsSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Xiaodong Zhuang
- The Meso‐Entropy Matter LabSchool of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Key Laboratory of Electrical Insulation and Thermal AgingFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
34
|
The Role of Phase Migration of Carbon Nanotubes in Melt-Mixed PVDF/PE Polymer Blends for High Conductivity and EMI Shielding Applications. Molecules 2022; 27:molecules27030933. [PMID: 35164197 PMCID: PMC8839367 DOI: 10.3390/molecules27030933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the “Slim-Fast-Mechanism” is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends.
Collapse
|
35
|
Zhang Y, Zhang B, Chen L, Wang T, Di M, Jiang F, Xu X, Qiao S. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. J Colloid Interface Sci 2022; 606:1534-1542. [PMID: 34500156 DOI: 10.1016/j.jcis.2021.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023]
Abstract
A series of covalent triazine frameworks (CTFs) are prepared via ionothermal synthesis for supercapacitors. Due to the feature of adjustable pore structure and rich nitrogen, CTFs with regular structure can be used as a group of model compounds to further investigate the influence of pore size and heteroatom on supercapacitors. By comparing the performance of CTFs with different pore structures and nitrogen contents, the experimental results show that BPY-CTF with high specific surface area of 2278 m2 g-1, mesopores structure, and suitable nitrogen content displays a specific capacitance of 393.6 F g-1 at 0.5 A g-1. According to the results and analysis, the existence of mesopores largely enhance the contact area between the electrode material and electrolyte, and then boost the charge transfer. On the other hand, N-doping has a prominent effect on improving the Faradaic pseudo-capacitance and conductivity for CTF electrode materials. This work will inspire further research on the development of highly efficient electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Boying Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lifang Chen
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ting Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Mengyu Di
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fei Jiang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
36
|
Zhang L, Wang T, Wang W, Wang X, Zhang Z, Cheng C, Liu X. Modulator‐Assisted Photosynthesis: Green and Powerful Approach towards Superstructured π−Conjugated Covalent Organic Frameworks with Enhanced Electrochemical Performances. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lu Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Tianping Wang
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Weiwen Wang
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Xiangnan Wang
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Zhen Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
37
|
Mohamed MG, Samy MM, Mansoure TH, Li CJ, Li WC, Chen JH, Zhang K, Kuo SW. Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO 2 Capture and Energy Storage Applications. Int J Mol Sci 2021; 23:347. [PMID: 35008773 PMCID: PMC8745757 DOI: 10.3390/ijms23010347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
There is currently a pursuit of synthetic approaches for designing porous carbon materials with selective CO2 capture and/or excellent energy storage performance that significantly impacts the environment and the sustainable development of circular economy. In this study we prepared a new bio-based benzoxazine (AP-BZ) in high yield through Mannich condensation of apigenin, a naturally occurring phenol, with 4-bromoaniline and paraformaldehyde. We then prepared a PA-BZ porous organic polymer (POP) through Sonogashira coupling of AP-BZ with 1,3,6,8-tetraethynylpyrene (P-T) in the presence of Pd(PPh3)4. In situ Fourier transform infrared spectroscopy and differential scanning calorimetry revealed details of the thermal polymerization of the oxazine rings in the AP-BZ monomer and in the PA-BZ POP. Next, we prepared a microporous carbon/metal composite (PCMC) in three steps: Sonogashira coupling of AP-BZ with P-T in the presence of a zeolitic imidazolate framework (ZIF-67) as a directing hard template, affording a PA-BZ POP/ZIF-67 composite; etching in acetic acid; and pyrolysis of the resulting PA-BZ POP/metal composite at 500 °C. Powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller (BET) measurements revealed the properties of the as-prepared PCMC. The PCMC material exhibited outstanding thermal stability (Td10 = 660 °C and char yield = 75 wt%), a high BET surface area (1110 m2 g-1), high CO2 adsorption (5.40 mmol g-1 at 273 K), excellent capacitance (735 F g-1), and a capacitance retention of up to 95% after 2000 galvanostatic charge-discharge (GCD) cycles; these characteristics were excellent when compared with those of the corresponding microporous carbon (MPC) prepared through pyrolysis of the PA-BZ POP precursors with a ZIF-67 template at 500 °C.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | | | - Chia-Jung Li
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
| | - Wen-Cheng Li
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan; (W.-C.L.); (J.-H.C.)
| | - Jung-Hui Chen
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan; (W.-C.L.); (J.-H.C.)
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
38
|
Lou X, Chen J, Xiong Z, Tang D, Chen X, Chen S, Dong R, Ye C, Qiu T. Porosity Design on Conjugated Microporous Poly(Aniline)S for Exceptional Mercury(II) Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61653-61660. [PMID: 34905343 DOI: 10.1021/acsami.1c19011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of conjugated microporous polymers (CMPs) in practical wastewater treatment demands further design on the pore structure, otherwise their adsorption capacities toward heavy-metal ions were moderate. Here, we report a rational design approach, which produces hybrid molecular pores in conjugated microporous poly(aniline)s (CMPAs) for mercury removal. It is achieved through a delicate interval introduction of linkers with differential molecular lengths during polymerization, acquiring both diffusion channels and storage pores for radical enhancement of mass transfer and adsorption storage. The resulting CMPA-M featured a large adsorption capacity of 975 mg g-1 and rapid kinetics that could remove 94.8% of 50 mg g-1 of mercury(II) within a very short contact time of 48 s, with a promising initial adsorption rate h as high as 113 mg g-1 min-1, which was 2.54-fold larger in the adsorption capacity and 45.2-fold faster in the adsorption efficiency compared with the undeveloped CMPAs. More importantly, our CMPA-M-2, with robust stability and easy reusability, was able to scavenge over 99.9% of mercury(II) from the actual wastewater in a harsh condition with a very low pH of 0.77, extremely high salinity of 53,157 mg L-1, and complex impurities, featuring exceptional selectivity that allows us to extract and recycle a high purity of 99.1% of mercury from the wastewater. These outcomes demonstrate the unprecedented potential of CMPs for environmental remediation and real-world mercury extraction and present benchmarks for CMP-based mercury adsorbents.
Collapse
Affiliation(s)
- Xiaoyu Lou
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Jie Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhuo Xiong
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Duanlian Tang
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Xiaoyan Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Song Chen
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong Dong
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Changshen Ye
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Ting Qiu
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| |
Collapse
|
39
|
Thermally conducting hybrid polycarbonate composites with enhanced electromagnetic shielding efficiency. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Liu Y, Wen Y, Xu W, Li B, Song Z, Li Y, Xia F. Improving the energy density of P(VDF-HFP)/boron nitride nanosheets nanocomposites by using the third phase filler with high dielectric constant. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02771-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Enhanced dispersion and mechanical properties of hydrophobized graphene oxide/butyl rubber nanocomposites via solution process. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Rajan KP, Gopanna A, Abdelghani EAM, Thomas SP. Halloysite nanotubes (HNT) as reinforcement for compatibilized blends of polypropylene (PP) and polylactic acid (PLA). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02738-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Yan L, Xiong T, Zhang Z, Yang H, Zhang X, He Y, Bian J, Lin H, Chen D. Comparative study on TPU/multi-walled carbon nanotubes conductive nanocomposites for volatile organic compounds sensor applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02717-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Yu C, Youn JR, Song YS. Reversible thermo-electric energy harvesting with phase change material (PCM) composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02642-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Luo B, Chen Y, Zhang Y, Huo J. Nitrogen-rich anthraquinone–triazine conjugated microporous polymer networks as high-performance supercapacitor. NEW J CHEM 2021. [DOI: 10.1039/d1nj03180e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conjugated microporous polymer (CMP) networks are an emerging class of porous organic material composed of pre-designed functional structures and tailored components.
Collapse
Affiliation(s)
- Bingcai Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yubao Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianqiang Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|