1
|
Casini A, Casagli M, Poggi G, Chelazzi D, Baglioni P. Tuning Local Order in Starch Nanoparticles Exploiting Nonsolvency with "Green" Solvents. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38610082 DOI: 10.1021/acsami.4c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Starch is a renewable biopolymer that can be sourced from agricultural waste and used to produce nanoparticles (SNPs). In particular, amorphous SNPs have potential application in numerous fields, including the consolidation of weakened paintings in the cultural heritage preservation. Starch dissolution followed by nanoprecipitation in nonsolvents is an advantageous synthetic route, but new methodologies are needed to feasibly control the physicochemical properties of the SNPs. Here, we explored nanoprecipitation by nonsolvency using a set of "green" solvents to obtain amorphous SNPs, rather than starch nanocrystals already reported in the literature. The effect of the nonsolvent on the ordering of polymer chains in the obtained SNPs was studied. The recovery of local order (e.g., isolated V-type helices) after dissolution was shown to depend on the type of solvents used in the dissolution and precipitation steps, while long-range order (extended arrays of helices) is lost. Aqueous dispersions of the SNPs provided effective consolidation of powdery painted layers, showing that the selection of particle synthetic routes can be dictated by sustainability and scalability criteria. These "green" formulations are candidates as new consolidants in art preservation, and the possibility of tuning local order in amorphous starch assemblies might also impact fields like food chemistry, pharmaceutics, and nanocomposites, where SNPs with tunable amorphousness are more advantageous than nanocrystals.
Collapse
Affiliation(s)
- Andrea Casini
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-Sesto Fiorentino, Florence I-50019, Italy
| | - Margherita Casagli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, Florence I-50019, Italy
| | - Giovanna Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, Florence I-50019, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, Florence I-50019, Italy
| | - Piero Baglioni
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-Sesto Fiorentino, Florence I-50019, Italy
| |
Collapse
|
2
|
Mastrangelo R, Chelazzi D, Baglioni P. New horizons on advanced nanoscale materials for Cultural Heritage conservation. NANOSCALE HORIZONS 2024; 9:566-579. [PMID: 38264785 DOI: 10.1039/d3nh00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanomaterials have permeated numerous scientific and technological fields, and have gained growing importance over the past decades also in the preservation of Cultural Heritage. After a critical overview of the main nanomaterials adopted in art preservation, we provide new insights into some highly relevant gels, which constitute valuable tools to selectively remove dirt or other unwanted layers from the surface of works of art. In particular, the recent "twin-chain" gels, obtained by phase separation of two different PVAs and freeze-thawing, were considered as the most performing gel systems for the cleaning of Cultural Heritage. Three factors are crucial in determining the final gel properties, i.e., pore size, pore connectivity, and surface roughness, which belong to the micro/nanodomain. The pore size is affected by the molecular weight of the phase-separating PVA polymer, while pore connectivity and tortuosity likely depend on interconnections formed during gelation. Tortuosity greatly impacts on cleaning capability, as the removal of matter at the gel-target interface increases with the uploaded fluid's residence time at the interface (higher tortuosity produces longer residence). The gels' surface roughness, adaptability and stickiness can also be controlled by modulating the porogen amount or adding different polymers to PVA. Finally, PVA can be partially replaced with different biopolymers yielding gels with enhanced sustainability and effective cleaning capability, where the selection of the biopolymer affects the gel porosity and effectiveness. These results shed new light on the effect of micro/nanoscale features on the cleaning performances of "twin-chain" and composite gels, opening new horizons for advanced and "green"/sustainable gel materials that can impact on fields even beyond art preservation, like drug-delivery, detergency, food industry, cosmetics and tissue engineering.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - David Chelazzi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| |
Collapse
|
3
|
Bandelli D, Casini A, Guaragnone T, Baglioni M, Mastrangelo R, Pensabene Buemi L, Chelazzi D, Baglioni P. Tailoring the properties of poly(vinyl alcohol) "twin-chain" gels via sebacic acid decoration. J Colloid Interface Sci 2024; 657:178-192. [PMID: 38039879 DOI: 10.1016/j.jcis.2023.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
HYPOTHESIS The development of gels capable to adapt and act at the interface of rough surfaces is a central topic in modern science for Cultural Heritage preservation. To overcome the limitations of solvents or polymer solutions, commonly used in the restoration practice, poly(vinyl alcohol) (PVA) "twin-chain" polymer networks (TC-PNs) have been recently proposed. The properties of this new class of gels, that are the most performing gels available for Cultural Heritage preservation, are mostly unexplored. This paper investigates how chemical modifications affect gels' structure and their rheological behavior, producing new gelled systems with enhanced and tunable properties for challenging applications, not restricted to Cultural Heritage preservation. EXPERIMENTS In this study, the PVA-TC-PNs structural and functional properties were changed by functionalization with sebacic acid into a new class of TC-PNs. Functionalization affects the porosity and nanostructure of the network, changing its uptake/release of fluids and favoring the uptake of organic solvents with various polarity, a crucial feature to boost the versatility of TC-PNs in practical applications. FINDINGS The functionalized gels exhibited unprecedented performances during the cleaning of contemporary paintings from the Peggy Gugghenheim collection (Venice), whose restoration with traditional solvents and swabs would be difficult to avoid possible disfigurements to the painted layers. These results candidate the functionalized TC-PNs as a new, highly promising class of gels in art preservation.
Collapse
Affiliation(s)
- Damiano Bandelli
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Andrea Casini
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Teresa Guaragnone
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Michele Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy.
| | - Rosangela Mastrangelo
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | | | - David Chelazzi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy.
| |
Collapse
|
4
|
Bandelli D, Mastrangelo R, Poggi G, Chelazzi D, Baglioni P. New sustainable polymers and oligomers for Cultural Heritage conservation. Chem Sci 2024; 15:2443-2455. [PMID: 38362426 PMCID: PMC10866357 DOI: 10.1039/d3sc03909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
The development of "green" chemistry materials with enhanced properties is a central topic in numerous applicative fields, including the design of polymeric systems for the conservation of works of art. Traditional approaches in art restoration comprise polymer thickeners and viscous dispersions to partially control solvents in the removal of soil or aged varnishes/coatings from artifacts. Alternatively, polymeric gel networks can be specifically designed to grant full control of the cleaning action, yielding safe, time- and cost-effective restorations. The selection of polymers and oligomers in gel design is crucial to tune solvent upload, retention, and controlled release over the sensitive artistic surfaces. Starting from an overview of traditional polymer formulations and state-of-the-art gel systems for cleaning works of art, we provide here the design of a new class of gels, focusing on the selection of oligomers to achieve gels with tailored hydrophilicity/hydrophobicity. We evaluated the oligomers Hydrophilic-Lipophilic Balance (HLB) by developing, for the first time, a novel methodology combining SEC and DOSY NMR analysis, which was tested on a library of "green" oligoesters synthesized by polycondensation and poorly explored in the literature. Oligomers with moderate polydispersity were chosen to validate the new protocol as a robust tool for designing polymeric gels even on industrial scale. The methodology is more time-effective than traditional methods, and gives additional insights on the oligomers physico-chemical nature, evaluating their compatibility with different solvents. Then, we used the selected oligoesters with castor oil to obtain a new class of organogels able to upload solvents with varying polarity, which effectively removed different types of unwanted layers typically found in painting restoration. These results validate the oligomers screening approach and the new class of gels as promising chemical processes/materials in art preservation. The methodology can potentially allow evaluation of HLB also for small molecules (e.g., surfactants), opening for the formulation of polymers solutions/gels beyond Cultural Heritage conservation, as in pharmaceutics, cosmetics, food industry, tissue engineering, agriculture, and others.
Collapse
Affiliation(s)
- Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Giovanna Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Piero Baglioni
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| |
Collapse
|
5
|
Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, Liu L, Farag MA, Xiao J, Liu L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf 2023; 22:4217-4241. [PMID: 37583298 DOI: 10.1111/1541-4337.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
Collapse
Affiliation(s)
- Huanqi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
6
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Synthesis, Characterization, and Soil Burial Degradation of Biobased Polyurethanes. Polymers (Basel) 2022; 14:polym14224948. [PMID: 36433074 PMCID: PMC9698155 DOI: 10.3390/polym14224948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for developing degradable polymeric systems based on bio-derived and sustainable materials. In recent years, polyurethanes derived from castor oil have emerged due to the large availability and sustainable characteristics of castor oil. However, these polymers are normally prepared through tedious and/or energy-intensive procedures or using high volatile and/or toxic reagents such as volatile isocyanates or epoxides. Furthermore, poor investigation has been carried out to design castor oil derived polyurethanes with degradable characteristics or thorough specifically sustainable synthetic procedures. Herein, castor oil-derived polyurethane with more than 90% biomass-derived carbon content and enhanced degradable features was prepared through a simple, eco-friendly (E-factor: 0.2), and scalable procedure, employing a recently developed commercially available biomass-derived (61% bio-based carbon content) low-volatile polymeric isocyanate. The novel material was compared with a castor oil derived-polyurethane prepared with a commercially available fossil-based isocyanate counterpart. The different castor oil-derived polyurethanes were investigated by means of water uptake, soil burial degradation, and disintegration tests in compost. Characterization analyses, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM), were carried out both prior to and after degradation tests. The results suggest potential applications of the degradable castor oil-derived polyurethane in different fields, such as mulch films for agricultural purposes.
Collapse
|
8
|
Queiroz AFDS, da Conceição AS, Chelazzi D, Rollnic M, Cincinelli A, Giarrizzo T, Martinelli Filho JE. First assessment of microplastic and artificial microfiber contamination in surface waters of the Amazon Continental Shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156259. [PMID: 35644394 DOI: 10.1016/j.scitotenv.2022.156259] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The composition and distribution of microplastics (MPs) in the Brazilian Amazon Continental Shelf surface waters are described for the first time. The study was conducted during the 2018 rainy and dry seasons, using 57 water samples collected with aluminum buckets and filtered through a 64-μm mesh. The samples were vacuum-filtered in a still-air box, and the content of each filter was measured, counted, and classified. A total of 12,288 floating MPs were retrieved; particles were present at all 57 sampling points. The mean MP abundance was 3593 ± 2264 items·m-3, with significantly higher values during the rainy season (1500 to 12,967; 4772 ± 2761 items·m-3) than in the dry season (323 to 5733; 2672 ± 1167 items·m-3). Polyamides (PA), polyurethane (PU), and acrylonitrile butadiene styrene (ABS) were the most common polymers identified through Fourier Transform Infrared Spectroscopy (FTIR) analysis. Cellulose-based textile fibers were also abundant (~40%). Our results indicate that the Amazon Continental Shelf is contaminated with moderate to high levels of MPs; the highest abundances were recorded at stations near land-based sources such as river mouths and large coastal cities.
Collapse
Affiliation(s)
- Arnaldo Fabrício Dos Santos Queiroz
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - Amanda Saraiva da Conceição
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marcelo Rollnic
- Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática. Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Guamá, Pará, Brazil; Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Avenida da Abolição, 3207, Fortaleza, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|