1
|
Li J, Shen J, Zheng X, Zhang TC, Wang Y, Yuan S. Boosted direct electrochemical reduction of As(III) from arsenic wastewater via Cu(II)-assisted codeposition on a CuIn alloy electrode. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136246. [PMID: 39461296 DOI: 10.1016/j.jhazmat.2024.136246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Arsenic contamination is a severe environmental problem. A promising strategy for addressing this issue is the direct conversion of highly toxic As(III) to less toxic elemental arsenic (As(0)) using electrochemical reduction technology. In this study, a novel CuIn alloy nanoparticles-modified copper foam (CuIn NPs/CF) was prepared as an efficient cathode for the electrocatalytic reduction of highly mobile As(III) to solid As(0). Density functional theory (DFT) results revealed that the Cu-In bimetallic system exhibited weaker H atom bonding, and the Cu-ln surface was more favorable for the adsorption of *AsO₃ species than the Cu surface. Compared to the pristine CF electrode, CuIn NPs/CF was demonstrated to effectively suppressed the hydrogen evolution reaction with an enlarged hydrogen evolution potential of 1.45 V, and displayed a superior As(0) recovery yield. The conversion of As(III) to As(0) was further enhanced by adding Cu²⁺ to the electrolyte, facilitating a Cu-As co-deposition process. Notably, the CuIn NPs/CF electrode achieved an As(0) recovery yield of 5.38 mg cm⁻² after eight successive recycling tests. This work not only presents a green and sustainable strategy for As(III) removal, but also provides valuable insights into the rational design of Cu-based alloy cathodes for electrocatalytic reduction.
Collapse
Affiliation(s)
- Jiacheng Li
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiao Shen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xuelian Zheng
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Liu S, Zhang Q, Liu J, Li J, Liu W, Wang Y, Yuan S. Nitrogen-Doped Porous Carbons Derived from Peanut Shells as Efficient Electrodes for High-Performance Supercapacitors. Int J Mol Sci 2024; 25:7583. [PMID: 39062827 PMCID: PMC11277184 DOI: 10.3390/ijms25147583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The doping of porous carbon materials with nitrogen is an effective approach to enhance the electrochemical performance of electrode materials. In this study, nitrogen-doped porous carbon derived from peanut shells was prepared as an electrode for supercapacitors. Melamine, urea, urea phosphate, and ammonium dihydrogen phosphate were employed as different nitrogen dopants. The optimized electrode material PA-1-1 prepared by peanut shells, with ammonium dihydrogen phosphate as a nitrogen dopant, exhibited a N content of 3.11% and a specific surface area of 602.7 m2/g. In 6 M KOH, the PA-1-1 electrode delivered a high specific capacitance of 208.3 F/g at a current density of 1 A/g. Furthermore, the PA-1-1 electrode demonstrated an excellent rate performance with a specific capacitance of 170.0 F/g (retention rate of 81.6%) maintained at 20 A/g. It delivered a capacitance of PA-1-1 with a specific capacitance retention of 98.8% at 20 A/g after 5000 cycles, indicating excellent cycling stability. The PA-1-1//PA-1-1 symmetric supercapacitor exhibited an energy density of 17.7 Wh/kg at a power density of 2467.0 W/kg. This work not only presents attractive N-doped porous carbon materials for supercapacitors but also offers a novel insight into the rational design of biochar carbon derived from waste peelings.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Z.); (J.L.); (J.L.); (W.L.)
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Z.); (J.L.); (J.L.); (W.L.)
| |
Collapse
|
3
|
Chen H, Hu W, Ma T, Pu Y, Wang S, Wang Y, Yuan S. Molybdenum-Modified Titanium Dioxide Nanotube Arrays as an Efficient Electrode for the Electroreduction of Nitrate to Ammonia. Molecules 2024; 29:2782. [PMID: 38930847 PMCID: PMC11206489 DOI: 10.3390/molecules29122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Electrochemical nitrate reduction (NO3-RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3-RR reaction involves an eight-electron coupled proton transfer process with many by-products and low Faraday efficiency. In this work, a molybdenum oxide (MoOx)-decorated titanium dioxide nanotube on Ti foil (Mo/TiO2) was prepared by means of an electrodeposition and calcination process. The structure of MoOx can be controlled by regulating the concentration of molybdate during the electrodeposition process, which can further influence the electron transfer from Ti to Mo atoms, and enhance the binding energy of intermediate species in NO3-RR. The optimized Mo/TiO2-M with more Mo(IV) sites exhibited a better activity for NO3-RR. The Mo/TiO2-M electrode delivered a NH3 yield of 5.18 mg h-1 cm-2 at -1.7 V vs. Ag/AgCl, and exhibited a Faraday efficiency of 88.05% at -1.4 V vs. Ag/AgCl. In addition, the cycling test demonstrated that the Mo/TiO2-M electrode possessed a good stability. This work not only provides an attractive electrode material, but also offers new insights into the rational design of catalysts for NO3-RR.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Labaratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (H.C.); (W.H.); (T.M.); (Y.P.); (S.W.)
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Labaratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (H.C.); (W.H.); (T.M.); (Y.P.); (S.W.)
| |
Collapse
|
4
|
Cao Y, Li S, Zhong J, Cao Y, Qiu W. CNT@SrTiO 3 Nanocomposites Synthesized by In Situ Reaction for a High-Performance Flexible Supercapacitor. ACS OMEGA 2024; 9:22423-22435. [PMID: 38799353 PMCID: PMC11112693 DOI: 10.1021/acsomega.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
This study presents the in situ synthesis of CNT@SrTiO3 nanocomposite films for the development of high-performance flexible supercapacitors. The synthesis process involved the use of organic-inorganic hybrid polymers containing metal elements as precursors for thermal decomposition reaction under a reducing atmosphere. Due to the formation of chemical bonding between Ti elements and the CNTs, the interface between STO and CNT surface could provide additional active sites for ion transport and storage. Thereby, the incorporation of SrTiO3 nanoparticles into CNTs enhanced the electrochemical performance of the resulting nanocomposite membranes. To further investigate the influence of STO content and synthesis temperature, we conducted a detailed analysis. The findings indicated that the CNT@STO film with 25% STO content, synthesized at 700 °C, and possessed optimal performance with an areal capacitance of 6682 mF·cm-2 at 5 mV·s-1. Furthermore, a symmetrical flexible supercapacitor assembled by two CNT@STO-25 electrodes demonstrated strong application potential in wearable devices, owing to its long cycle life, excellent flexibility, and high energy density of 430.2 μWh·cm-2 (corresponding power density of 4.5 mW·cm-2). Based on these results, we believe that this study provides a fresh idea for the development of novel flexible energy storage materials.
Collapse
Affiliation(s)
- Yue Cao
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shijingmin Li
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jinhua Zhong
- HXF
SAW CO. LTD, Metallurgical Geology Bureau, Yichang 443005, China
| | - Yi Cao
- Hubei
Key Laboratory of Photoelectric Materials and Devices, School of Materials
Science and Engineering, Hubei Normal University, Huangshi 435002, China
- National
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfeng Qiu
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Zhao P, Liu Q, Yang X, Zhu J, Yang S, Chen L, Zhang Q. High-performance flexible asymmetric supercapacitor based on hierarchical MnO 2/PPy nanocomposites covered MnOOH nanowire arrays cathode and 3D network-like Fe 2O 3/PPy hybrid nanosheets anode. J Colloid Interface Sci 2024; 662:322-332. [PMID: 38354559 DOI: 10.1016/j.jcis.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
6
|
Adalati R, Sharma S, Sharma M, Kumar P, Bansal A, Kumar A, Chandra R. Li Salt Assisted Highly Flexible Carbonaceous Ni 3N@polyimide Electrode for an Efficient Asymmetric Supercapacitor. NANO LETTERS 2024; 24:362-369. [PMID: 38157323 DOI: 10.1021/acs.nanolett.3c04128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
This work used a highly flexible, sustainable polyimide tape as a substrate to deposit ductile-natured carbonaceous Ni3N (C/Ni3N@polyimide) material for supercapacitor application. C/Ni3N was prepared using a co-sputtering technique, and this method also provided better adhesion of the electrode material over the substrate, which is helpful in improving bending performance. The ductile behavior of the sputter-grown electrode and the high flexibility of the polyimide tape provide ultimate flexibility to the C/Ni3N@polyimide-based supercapacitor. To achieve optimum electrochemical performance, a series of electrochemical tests were done in the presence of various electrolytes. Further, a flexible asymmetric supercapacitor (NC-FSC) (C/Ni3N//carbon@polyimide) was assembled by using C/Ni3N as a cathode and a carbon thin film as an anode, separated by a GF/C-glass microfiber soaked in optimized 1 M Li2SO4 aqueous electrolyte. The NC-FSC offers a capacitance of 324 mF cm-2 with a high areal energy density of 115.26 μWh cm-2 and a power density of 811 μW cm-2, with ideal bending performance.
Collapse
Affiliation(s)
- Ravikant Adalati
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Siddharth Sharma
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pramod Kumar
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ananya Bansal
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ashwani Kumar
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Physics, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| | - Ramesh Chandra
- Thin Film Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Wang Y, Zhang T, Zheng X, Tian X, Yuan S. Enhancing Energy Storage via Confining Sulfite Anions onto Iron Oxide/Poly(3,4-Ethylenedioxythiophene) Heterointerface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59413-59421. [PMID: 38102077 DOI: 10.1021/acsami.3c13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Multiple oxidation-state metal oxide has presented a promising charge storage capability for aqueous supercapacitors (SCs); however, the ion insert/deinsert behavior in the bulk phase generally gives a sluggish reaction kinetic and considerable volume effect. Herein, iron oxide/poly(3,4-ethylenedioxythiophene) (Fe2O3/PEDOT) heterointerface was constructed and enabled boosted Faradaic pseudocapacitance by dual-ion-involved redox reactions in Na2SO3 electrolytes. The Fe2O3/PEDOT interface served as a "bridge" to couple electrode and anion SO32- and exhibited a strong force and stable bonding with SO32-, thus providing an additional Faradaic charge storage contribution for SCs. Significantly, the PEDOT-capsulated Fe2O3 nanorod array (Fe2O3@PEDOT) electrode presented a specific capacitance of 338 mF cm-2 at 1 mA cm-2 with 1 M Na2SO3 electrolyte, which was twice that of the pristine Fe2O3 nanorod electrode. The boosted interfaced Faradaic reaction of SO32- partially hindered the intercalation of Na+ in the Fe2O3 bulk phase, efficiently favoring the electrochemical stability.
Collapse
Affiliation(s)
- Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Xuelian Zheng
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobao Tian
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Wang S, Wang Y, Zhang TC, Ji X, Yuan S. Ti-doped iron phosphide nanoarrays grown on carbon cloth as a self-supported electrode for enhanced electrocatalytic nitrogen reduction. NANOSCALE 2023; 15:16219-16226. [PMID: 37781913 DOI: 10.1039/d3nr03388k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (eNRR) has been widely recognized as a promising method for green ammonia synthesis. However, the inert NN bond, inferior catalytic activity and small electrochemically active area impede its practical application. To circumvent these problems, we proposed self-supported Ti-doped iron phosphide (FeP) nanorod arrays grown on carbon cloth (Ti-FeP/CC) as an electrode for eNRR. The introduction of Ti doping sites regulated the electron structure of FeP, leading to electron migration from Fe to P, which facilitated N2-to-NH3 conversion. The as-prepared Ti-FeP/CC showed an enhancement of electrochemical surface area (ECSA), high electrical conductivity and well-exposed active sites. Ti-FeP/CC was capable of producing a high NH3 yield of 10.93 μg h-1 cm-2 and faradaic efficiency of 10.77% at an optimal voltage of -0.3 V (vs. RHE) in a 0.1 M Na2SO4 solution with excellent stability and durability during the eNRR process. This work not only presents a promising electrode material for eNRR, but also provides a new insight into rational heteroatom doping for electrocatalysis.
Collapse
Affiliation(s)
- Senhao Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Xu Ji
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
9
|
Qi Y, Lv T, Chen Z, Duan Y, Li X, Tang W, Sun Q, Zhai D, Chen T. A novel catalyst derived from Co-ZIFs to grow N-doped carbon nanotubes for all-solid-state supercapacitors with high performance. NANOSCALE 2023; 15:13280-13288. [PMID: 37545477 DOI: 10.1039/d3nr01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Carbon nanotubes (CNTs) have been widely used as electrode materials for electrochemical energy storage devices (e.g., supercapacitors) due to their excellent chemical and physical properties. However, conventional approaches (e.g., electron-beam vapor deposition and atomic layer deposition) to fabricate catalysts for the growth of CNTs are complex and demand high energy consumption. Herein, we report a facile method to synthesize catalysts derived from cobalt-containing zeolitic imidazolate frameworks (Co-ZIFs), which is exploited to in situ construct the three-dimensional (3D) CNT hybrid materials for all-solid-state supercapacitors. In brief, Co-ZIFs with a controllable structure is first grown on the inner porous surface of carbon foams pyrolyzed from commercial melamine foams, followed by thermal annealing and chemical vapor deposition to grow CNTs, achieving 3D free-standing CNT-based hybrids. The well-distributed Co-ZIFs in the carbon foam enable the grown CNTs with uniform structures and morphologies. Using the fabricated CNT-based hybrid as electrodes, the assembled all-solid-state supercapacitors show a high specific capacitance of 19.4 mF cm-2 at a current density of 0.5 mA cm-2, which could be further optimized to as high as 871.8 mF cm-2 by incorporating the pseudocapacitive material of manganese dioxide in CNT-based hybrids. This study provides a facile solution approach to fabricate the catalyst for the growth of a CNT inner porous substrate; the resultant 3D free-standing hybrids could be used as efficient electrodes for high-performance energy storage devices beyond supercapacitors.
Collapse
Affiliation(s)
- Yunlong Qi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yu Duan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiao Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Weiyang Tang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Quanhu Sun
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Dongmei Zhai
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Li L, Xie F, Wu H, Zhu Y, Zhang P, Li Y, Li H, Zhao L, Zhu G. N-Doped Porous Carbon-Nanofiber-Supported Fe 3C/Fe 2O 3 Nanoparticles as Anode for High-Performance Supercapacitors. Molecules 2023; 28:5751. [PMID: 37570722 PMCID: PMC10421154 DOI: 10.3390/molecules28155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Exploring anode materials with an excellent electrochemical performance is of great significance for supercapacitor applications. In this work, a N-doped-carbon-nanofiber (NCNF)-supported Fe3C/Fe2O3 nanoparticle (NCFCO) composite was synthesized via the facile carbonizing and subsequent annealing of electrospinning nanofibers containing an Fe source. In the hybrid structure, the porous carbon nanofibers used as a substrate could provide fast electron and ion transport for the Faradic reactions of Fe3C/Fe2O3 during charge-discharge cycling. The as-obtained NCFCO yields a high specific capacitance of 590.1 F g-1 at 2 A g-1, superior to that of NCNF-supported Fe3C nanoparticles (NCFC, 261.7 F g-1), and NCNFs/Fe2O3 (NCFO, 398.3 F g-1). The asymmetric supercapacitor, which was assembled using the NCFCO anode and activated carbon cathode, delivered a large energy density of 14.2 Wh kg-1 at 800 W kg-1. Additionally, it demonstrated an impressive capacitance retention of 96.7%, even after 10,000 cycles. The superior electrochemical performance can be ascribed to the synergistic contributions of NCNF and Fe3C/Fe2O3.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Fengting Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Heyu Wu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023, China
| | - Pinghua Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hengzheng Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Litao Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| |
Collapse
|
11
|
Liao Y, Shang Z, Ju G, Wang D, Yang Q, Wang Y, Yuan S. Biomass Derived N-Doped Porous Carbon Made from Reed Straw for an Enhanced Supercapacitor. Molecules 2023; 28:4633. [PMID: 37375187 DOI: 10.3390/molecules28124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Developing advanced carbon materials by utilizing biomass waste has attracted much attention. However, porous carbon electrodes based on the electronic-double-layer-capacitor (EDLC) charge storage mechanism generally presents unsatisfactory capacitance and energy density. Herein, an N-doped carbon material (RSM-0.33-550) was prepared by directly pyrolyzing reed straw and melamine. The micro- and meso-porous structure and the rich active nitrogen functional group offered more ion transfer and faradaic capacitance. X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) measurements were used to characterize the biomass-derived carbon materials. The prepared RSM-0.33-550 possessed an N content of 6.02% and a specific surface area of 547.1 m2 g-1. Compared with the RSM-0-550 without melamine addition, the RSM-0.33-550 possessed a higher content of active nitrogen (pyridinic-N) in the carbon network, thus presenting an increased number of active sites for charge storage. As the anode for supercapacitors (SCs) in 6 M KOH, RSM-0.33-550 exhibited a capacitance of 202.8 F g-1 at a current density of 1 A g-1. At a higher current density of 20 A g-1, it still retained a capacitance of 158 F g-1. Notably, it delivered excellent stability with capacity retention of 96.3% at 20 A g-1 after 5000 cycles. This work not only offers a new electrode material for SCs, but also gives a new insight into rationally utilizing biomass waste for energy storage.
Collapse
Affiliation(s)
- Yuyi Liao
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongtao Shang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guangrui Ju
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dingke Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qiao Yang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Park OK, Kim NH, Lee JH. Single-step fabrication of surface morphology tuned iron oxide anchored highly porous carbon nanotube hybrid foam for a highly stable supercapacitor electrode. J Colloid Interface Sci 2023; 641:479-491. [PMID: 36948103 DOI: 10.1016/j.jcis.2023.03.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The pseudocapacitive metal oxide anchored nanocarbon-based three-dimensional (3D) materials are considered attractive electrode materials for high-performance supercapacitor applications. However, the complex multistep synthesis approaches raise production costs and act as a major barrier to the practical real-world field. To overcome this limitation, in this study, an easily scalable and effective fabrication approach for the development of iron oxide (Fe3O4) anchored highly porous carbon nanotube hybrid foam (f-Fe3O4/O-CNTF) with micro/mesoporous structure was suggested to improve the durability and energy storage performance. The surface morphology-tuned f-Fe3O4/O-CNTF (f-Fe3O4/O-CNTF(M)) was fabricated through electromagnetic interaction between the anchored magnetic Fe3O4 on the CNT surface and the applied magnetic field. The obtained results clearly demonstrated that the changed surface morphology of the f-Fe3O4/O-CNTF(M) strongly affected the meso- and micropore structure, electrochemical performance, and durability. Consequently, the f-Fe3O4/O-CNTF(M) showed an almost 120% enhanced specific surface area and nearly 1.9 times increased specific capacitance compared to that of the f-Fe3O4/O-CNTF. Furthermore, the changed surface morphology successfully prevented the re-aggregation of the initial structure and significantly improved durability. As a result, f-Fe3O4/O-CNTF(M) showed outstanding cycling stability, maintaining almost 100% capacitance retention after 14,000 cycles. Consequently, the assembled symmetric supercapacitor device delivered an energy density of 20.1 Wh·kg-1 at a power density of 0.37 kW·kg-1 with good cycling stability. These results suggest that the f-Fe3O4/O-CNTF(M) can potentially be used as an electrode for supercapacitors with good durability.
Collapse
Affiliation(s)
- Ok-Kyung Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
13
|
Tang F, Xiao Q, Zhu W, Pezzotti G, Zhu J. Facile syntheses of Fe 2O 3-rGO and NiCo-LDH-rGO nanocomposites for high-performance electrochemical capacitors. J Colloid Interface Sci 2023; 634:357-368. [PMID: 36542966 DOI: 10.1016/j.jcis.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Faraday-type electrode materials and devices for electrochemical capacitors have been widely investigated. However, their applications are severely limited by the preparation method and cost of electrode materials. In this work, high-performance electrochemical capacitors were successfully assembled using Fe2O3-decorated reduced graphene oxide (rGO) nanocomposites and NiCo-Layered Double Hydroxides (LDH) as the anode and cathode, respectively. An easy and efficient approach (the modified precipitation method) for the large-scale fabrication was used to prepare Fe2O3 and NiCo-LDH, supported by rGO sheets, respectively. The anode material, Fe2O3-rGO, exhibited an excellent specific capacitance (Csp) of 1073 F g-1 at a current density of 1 A g-1 and a retention rate of 92 % at 10 A g-1, while the NiCo-LDH-rGO cathode material provided a Csp of 1850 F g-1 at 1 A g-1 and maintained 84 % at 10 A g-1. The effective combination of these electrodes for the NiCo-LDH-rGO//Fe2O3-rGO electrochemical capacitors resulted in an excellent energy density of 108 Wh/kg at a power density of 884 W/kg, with remarkable cycling stability (80 % after 1000 cycles at 10 A g-1). We believe that this work, including the proposed method and electrode materials, will advance the further development and commercialization of electrochemical capacitors.
Collapse
Affiliation(s)
- Fan Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Qindan Xiao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan.
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Jiliang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Guo G, Su Q, Zhou W, Wei M, Wang Y. Cycling stability of Fe 2O 3 nanosheets as supercapacitor sheet electrodes enhanced by MgFe 2O 4 nanoparticles. RSC Adv 2023; 13:3643-3651. [PMID: 36756600 PMCID: PMC9890865 DOI: 10.1039/d2ra07383h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The Fe2O3 material is a common active material for supercapacitor electrodes and has received much attention due to its cheap and easy availability and high initial specific capacitance. In the present study, we prepared adhesive-free Fe2O3 sheet electrodes for supercapacitors by growing Fe2O3 material on nickel foam by hydrothermal method. The sheet electrode exhibited a high initial specific capacitance of 863 F g-1, but we found that the sheet lost its specific capacitance too quickly through cyclic stability tests. To solve this problem, Fe2O3/MgFe2O4 composites were grown on nickel foam (NF). It was found through testing that the cycling stability of the sheet electrode gradually increased as the content of MgFe2O4 material increased. When the molar ratio of Fe2O3 to MgFe2O4 material was 1 : 1, the initial specific capacitance of the sheet electrode was 815 F g-1 and the capacitance remained at 81.25% of the initial specific capacitance after 1000 cycles. The better cycling stability results from the more stable structure of the composite, the synergistic effect leading to better reversibility of the reaction.
Collapse
Affiliation(s)
- Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology Wuhan 430070 China
| | - Qiwei Su
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology Wuhan 430070 China
| | - Wei Zhou
- Institute of Electronic Engineering, Chinese Academy of Engineering Physics Mianyang 621000 China
| | - Mingrui Wei
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology Wuhan 430070 China
| | - Yun Wang
- Hubei University of Arts and Science, Xiangyang 441053 China
| |
Collapse
|
15
|
Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010434. [PMID: 36615623 PMCID: PMC9823998 DOI: 10.3390/molecules28010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
It is highly attractive to design pseudocapacitive metal oxides as anodes for supercapacitors (SCs). However, as they have poor conductivity and lack active sites, they generally exhibit an unsatisfied capacitance under high current density. Herein, polypyrrole-coated low-crystallinity Fe2O3 supported on carbon cloth (D-Fe2O3@PPy/CC) was prepared by chemical reduction and electrodeposition methods. The low-crystallinity Fe2O3 nanorod achieved using a NaBH4 treatment offered more active sites and enhanced the Faradaic reaction in surface or near-surface regions. The construction of a PPy layer gave more charge storage at the Fe2O3/PPy interface, favoring the limitation of the volume effect derived from Na+ transfer in the bulk phase. Consequently, D-Fe2O3@PPy/CC displayed enhanced capacitance and stability. In 1 M Na2SO4, it showed a specific capacitance of 615 mF cm-2 (640 F g-1) at 1 mA cm-2 and still retained 79.3% of its initial capacitance at 10 mA cm-2 after 5000 cycles. The design of low-crystallinity metal oxides and polymer nanocomposites is expected to be widely applicable for the development of state-of-the-art electrodes, thus opening new avenues for energy storage.
Collapse
|
16
|
Niu J, Chen Y, Li X, Lin J, Cheng J, Hu Y. A “sandwich layer” of N-doped carbon nanotubes coated on the surface of oxidized iron-foam is used to drive peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Direct Growth of TiO2–MoO2/MnO2–MoO2 on Plasma-Treated Carbon-Cloth Surface for High-Performance Supercapacitor and Oxygen Evolution Reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Tang J, Yuan H, Duan Q, Liu Y, Wang Y, Yuan S. Phosphorus-functionalized low-crystallinity transition-metal oxide nanorod arrays grown on carbon cloth for high-performance asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zheng Y, Liu Q, Guan X, Liu Y, Nie S, Wang Y. Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. MICROMACHINES 2022; 13:1747. [PMID: 36296100 PMCID: PMC9611783 DOI: 10.3390/mi13101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A new synthetic strategy has been developed for the facile fabrication of a N-doped porous carbon (NC-800) material via a facile carbonization of functionalized poly(vinylidene fluoride) (PVDF). The prepared NC-800 exhibits good specific capacitance of 205 F/g at 1 A/g and cycle stability (95.2% retention after 5000 cycles at 1 A/g). The adsorption capacity of NC-800 on methylene blue and methyl orange was 780 mg/g and 800 mg/g, respectively. The facile and economical method and good performance (supercapacitor and adsorption) suggest that the NC-800 is a promising material for energy storage and adsorption.
Collapse
Affiliation(s)
- Yantao Zheng
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- Xifeng Phosphorite Mine Co., Ltd., Guiyang 551100, China
| | - Qifei Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Xingyu Guan
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- College of Material Engineering, Saint Petersburg State Technical University, 190013 Saint Petersburg, Russia
| | - Yuan Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Shengqiang Nie
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Yi Wang
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
20
|
Shaikh NS, Lokhande VC, Ji T, Ubale S, Mane VJ, Lokhande CD, Shaikh HM, Shaikh JS, Praserthdam S, Sabale S, Kanjanaboos P. Rational La-doped hematite as an anode and hydrous cobalt phosphate as a battery-type electrode for a hybrid supercapacitor. Dalton Trans 2022; 51:6378-6389. [PMID: 35388825 DOI: 10.1039/d1dt04164a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, modern appliances require high energy density with a burst power supply. Hybrid supercapacitors show high performance based on high energy density without compromising power density and stability over thousands of charge-discharge cycles. In this work, the optimized hybrid electrodes using lanthanum-doped hematite (lanthanum-doped iron oxide) noted as 7.5%La-HMT as a negative electrode and hydrous cobalt phosphate (CoPO) as a battery-type positive electrode have been successfully fabricated via a simple hydrothermal method and a facile co-precipitation method, respectively. The 7.5%La-HMT showed excellent electrochemical performance due to doping of rare-earth La3+ metal ions, resulting in improvised active sites and reduction in the equivalent resistance. The 7.5%La-HMT operated at a high potential window (0 to -1.2 V) with an ultra-high specific capacitance (Sp) of 1226.7 F g-1 at 1 A g-1 with capacitance retention of 89.3% over 1000 cycles. CoPO could be operated at a high working window (0 to 0.45 V) with a specific capacity of 121.7 mA h g-1 at a current density of 2 A g-1 with capacitance retention of 85.4% over 1000 cycles. The configured CoPO//KOH//10%La-HMT aqueous hybrid capacitor device (Aq-HSC) could be operated at a potential window of 1.6 V and delivered a maximum energy density (E.D) of 83.6 W h kg-1 at a power density (P.D) of 3.2 kW kg-1 with Sp of 235.0 F g-1 at 2 A g-1 and 89.0% Sp retention over 5000 cycles. The simplicity of the synthesis methods for CoPO and 7.5%La-HMT along with their superior super-capacitive properties make them suitable for advanced electrical devices and hybrid vehicles.
Collapse
Affiliation(s)
- Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, Maharashtra, 416006, India
| | - Vaibhav C Lokhande
- Department of Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea. .,Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Taeksoo Ji
- Department of Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea. .,Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Shivaji Ubale
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, Maharashtra, 416006, India
| | - Vikas J Mane
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, Maharashtra, 416006, India
| | - Chandrakant D Lokhande
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, Maharashtra, 416006, India
| | - Haseen M Shaikh
- Sardar Patel College of Engineering, Andheri West Mumbai, Maharashtra, 400053, India
| | - Jasmin S Shaikh
- Deparment of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Deparment of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sandip Sabale
- Jaysingpur College, P.G. Department of Chemistry, Jaysingpur, Maharashtra, 416101, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| |
Collapse
|