1
|
Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable Production of Functional Fibers with Nanoscale Features for Smart Textiles. ACS NANO 2024; 18:29394-29420. [PMID: 39428715 DOI: 10.1021/acsnano.4c10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.
Collapse
Affiliation(s)
- Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Wulong Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jie Pu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shixing Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
2
|
Wang F, Zhao J, Hu X, Su X, Sun F. Robust Treble-Weaving Wearable Textiles for Pressure and Temperature Monitoring in Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48269-48279. [PMID: 39190542 DOI: 10.1021/acsami.4c09471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Wearable sensing textiles with continuous temperature monitoring, tactile feedback, and motion perception are highly desirable for personal safeguarding in extreme environments, such as fire scenes and extreme sports. However, it remains challenging for current wearable sensors to maintain reliable performance and provide point-of-care monitoring in harsh environments, such as high- and low-temperature or high-humidity conditions. Herein, a robust temperature and pressure sensing textile (TPST) with a hierarchical triple-weaving structure is developed using industrial weaving technology. The well-engineered interlacing configuration of the polyimide binding yarns in the triple-weaving structure tightly solidifies the carbon-based sensing yarns between two weaving layers, forming an integrated textile sensing array. The TPST not only exhibits excellent sensing sensitivity, reliability, and rapid response to pressure and temperature stimuli but also shows robust mechanical properties, flame resistance, and wearing comfort. Moreover, we demonstrate the application of the TPST for continuous temperature monitoring, human motion mapping, and vital sign monitoring. This technology offers significant potential for enhancing autonomous rescue operations and defense wearables.
Collapse
Affiliation(s)
- Fameng Wang
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Jieyun Zhao
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Hu
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xuzhong Su
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials and Physics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhan L, Chen S, Xin Y, Lv J, Fu H, Gao D, Jiang F, Zhou X, Wang N, Lee PS. Dual-Responsive MXene-Functionalized Wool Yarn Artificial Muscles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402196. [PMID: 38650164 PMCID: PMC11220689 DOI: 10.1002/advs.202402196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/25/2024]
Abstract
Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.
Collapse
Affiliation(s)
- Liuxiang Zhan
- Shanghai Frontier Science Research Center for Advanced TextilesCollege of TextilesDonghua UniversityShanghai201620China
- Engineering Research Center of Technical TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Shaohua Chen
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yangyang Xin
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Jian Lv
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Hongbo Fu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Dace Gao
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Feng Jiang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Xinran Zhou
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Ni Wang
- Shanghai Frontier Science Research Center for Advanced TextilesCollege of TextilesDonghua UniversityShanghai201620China
- Engineering Research Center of Technical TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
4
|
Wu J, Ai W, Long Y, Song K. MXene-Based Soft Humidity-Driven Actuator with High Sensitivity and Fast Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27650-27656. [PMID: 38747462 DOI: 10.1021/acsami.4c04111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Soft actuators possessing notable mechanical deformations, high sensitivity, and fast response speed play a crucial role in various applications, such as artificial muscles, soft robots, and intelligent devices. In this study, a smart humidity-driven actuator was successfully fabricated by utilizing MXene/cellulose nanofiber (CNF)/LiCl (MCL) through vacuum-assisted filtration with fast response speed and high sensitivity. Utilizing the excellent humidity responsiveness of MXene/CNF and the robust hygroscopicity of LiCl, the synergistic effect of these materials enhances the hygroscopic properties and response speed of the actuator. The MCL actuator demonstrates excellent actuation performance, fast deformation, and reliable cyclic stability. To illustrate the extensive potential of the soft actuator, a range of applications, from bionic devices to soft grippers and crawling actuators, are showcased. Remarkably, the crawling actuator demonstrates sustained crawling motion without necessitating a humidity switch, relying on the humidity gradient from water droplets, and exhibits spontaneous directional motions within a certain range, which makes it a promising prospect in the field of soft robotics.
Collapse
Affiliation(s)
- Jiaxin Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfei Ai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, P. R. China
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, P. R. China
| |
Collapse
|
5
|
Bartz M, Jüttner M, Halmos F, Uhlich E, Klein M, Drumm P, Dreßler E, Martin S, Walter J, Franke J, Wartzack S. Assessment of the Suitability of Selected Linear Actuators for the Implementation of the Load-Adaptive Biological Principle of Redundant Motion Generation. Biomimetics (Basel) 2024; 9:236. [PMID: 38667248 PMCID: PMC11048576 DOI: 10.3390/biomimetics9040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The load-adaptive behavior of the muscles in the human musculoskeletal system offers great potential for minimizing resource and energy requirements in many technical systems, especially in drive technology and robotics. However, the lack of knowledge about suitable technical linear actuators that can reproduce the load-adaptive behavior of biological muscles in technology is a major reason for the lack of successful implementation of this biological principle. In this paper, therefore, the different types of linear actuators are investigated. The focus is particularly on artificial muscles and rope pulls. The study is based on literature, on the one hand, and on two physical demonstrators in the form of articulated robots, on the other hand. The studies show that ropes are currently the best way to imitate the load-adaptive behavior of the biological model in technology. This is especially illustrated in the context of this paper by the discussion of different advantages and disadvantages of the technical linear actuators, where ropes, among other things, have a good mechanical and control behavior, which is very advantageous for use in an adaptive system. Finally, the next steps for future research are outlined to conclude how ropes can be used as linear actuators to transfer load-adaptive lightweight design into technical applications.
Collapse
Affiliation(s)
- Marcel Bartz
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Michael Jüttner
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Fabian Halmos
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Elias Uhlich
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Max Klein
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Patricia Drumm
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Erkan Dreßler
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| | - Sina Martin
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Factory Automation and Production Systems, Egerlandstraße 7, 91058 Erlangen, Germany (J.W.)
| | - Jonas Walter
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Factory Automation and Production Systems, Egerlandstraße 7, 91058 Erlangen, Germany (J.W.)
| | - Jörg Franke
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Factory Automation and Production Systems, Egerlandstraße 7, 91058 Erlangen, Germany (J.W.)
| | - Sandro Wartzack
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany (M.K.)
| |
Collapse
|
6
|
Li X, Guo W, Hsu PC. Personal Thermoregulation by Moisture-Engineered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209825. [PMID: 36751106 DOI: 10.1002/adma.202209825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Personal thermal management can effectively manage the skin microenvironment, improve human comfort, and reduce energy consumption. In personal thermal-management technology, owing to the high latent heat of water evaporation in wet-response textiles, heat- and moisture-transfer coexist and interact with each other. In the last few years, with rapid advances in materials science and innovative polymers, humidity-sensitive textiles have been developed for personal thermal management. However, a large gap exists between the conceptual laboratory-scale design and actual textile. Here, moisture-responsive textiles based on flap opening and closing, those based on yarn/fiber deformation, and sweat-evaporation regulation based on textile design for personal thermoregulation are reviewed, and the corresponding mechanisms and research progress are discussed. Finally, the existing engineering and scientific limitations and future developments are considered to resolve the existing issues and accelerate the practical application of moisture-responsive textiles and related technologies.
Collapse
Affiliation(s)
- Xiuqiang Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Zhang X, Wang F, Guo H, Sun F, Li X, Zhang C, Yu C, Qin X. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305228. [PMID: 38140792 PMCID: PMC10933611 DOI: 10.1002/advs.202305228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Indexed: 12/24/2023]
Abstract
High-temperature environments pose significant risks to human health and safety. The body's natural ability to regulate temperature becomes overwhelmed under extreme heat, leading to heat stroke, dehydration, and even death. Therefore, the development of effective personal thermal-moisture management systems is crucial for maintaining human well-being. In recent years, significant advancements have been witnessed in the field of textile-based cooling systems, which utilize innovative materials and strategies to achieve effective cooling under different environments. This review aims to provide an overview of the current progress in textile-based personal cooling systems, mainly focusing on the classification, mechanisms, and fabrication techniques. Furthermore, the challenges and potential application scenarios are highlighted, providing valuable insights for further advancements and the eventual industrialization of personal cooling textiles.
Collapse
Affiliation(s)
- Xueping Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fei Wang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Hanyu Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xiangshun Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chentian Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chongwen Yu
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
8
|
Wu J, Jiang W, Gu M, Sun F, Han C, Gong H. Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59989-60001. [PMID: 38085924 DOI: 10.1021/acsami.3c16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
Collapse
Affiliation(s)
- Jing Wu
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Wenjie Jiang
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Mengshang Gu
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, College of Textiles Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chenchen Han
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Hugh Gong
- University of Manchester, Manchester M139PL, U.K
| |
Collapse
|
9
|
Chen Z, Gao B, Li P, Zhao X, Yan Q, Liu Z, Xu L, Zheng H, Xue F, Ding R, Xiong J, Tang Z, Peng Q, Hu Y, He X. Multistimuli-Responsive Actuators Derived from Natural Materials for Entirely Biodegradable and Programmable Untethered Soft Robots. ACS NANO 2023; 17:23032-23045. [PMID: 37939309 DOI: 10.1021/acsnano.3c08665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Untethered soft robots have attracted growing attention due to their safe interaction with living organisms, good flexibility, and accurate remote control. However, the materials involved are often nonbiodegradable or are derived from nonrenewable resources, leading to serious environmental problems. Here, we report a biomass-based multistimuli-responsive actuator based on cuttlefish ink nanoparticles (CINPs), wood-derived cellulose nanofiber (CNF), and bioderived polylactic acid (PLA). Taking advantage of the good photothermal conversion performance and exceptionally hygroscopic sensitivity of the CINPs/CNF composite (CICC) layer and the opposite thermally induced deformation behavior between the CICC layer and PLA layer, the soft actuator exhibits reversible deformation behaviors under near-infrared (NIR) light, humidity, and temperature stimuli, respectively. By introducing patterned or alignment structures and combining them with a macroscopic reassembly strategy, diverse programmable shape-morphing from 2D to 3D such as letter-shape, coiling, self-folding, and more sophisticated 3D deformations have been demonstrated. All of these deformations can be successfully predicted by finite element analysis (FEA) . Furthermore, this actuator has been further applied as an untethered grasping robot, weightlifting robot, and climbing robot capable of climbing a vertical pole. Such actuators consisting entirely of biodegradable materials will offer a sustainable future for untethered soft robots.
Collapse
Affiliation(s)
- Zhong Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Bo Gao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Pengyang Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zonglin Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Renjie Ding
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zhigong Tang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ying Hu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
10
|
Xu X, Wang Z, Li M, Su Y, Zhang Q, Zhang S, Hu J. Reconstructed Hierarchically Structured Keratin Fibers with Shape-Memory Features Based on Reversible Secondary-Structure Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304725. [PMID: 37417728 DOI: 10.1002/adma.202304725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Biocompatible and biodegradable shape-memory polymers have gained popularity as smart materials, offering a wide range of applications and environmental benefits. Herein, the possibility of fabricating regenerated water-triggered shape-memory keratin fibers from wool and cellulose in a more effective and environmentally friendly manner is investigated. The regenerated keratin fibers exhibit comparable shape-memory performance to other hydration-responsive materials, with a shape-fixity ratio of 94.8 ± 2.15% and a shape-recovery rate of 81.4 ± 3.84%. Owing to their well-preserved secondary structure and cross-linking network, keratin fibers exhibit outstanding water-stability and wet stretchability, with a maximum tensile strain of 362 ± 15.9%. In this system, the reconfiguration of the protein secondary structure between α-helix and β-sheet is investigated as the fundamental actuation mechanism in response to hydration. This responsiveness is studied under force loading and unloading along the fiber axis. Hydrogen bonds act as the "switches" clicked by water molecules to trigger the shape-memory effect, while disulfide bonds and cellulose nanocrystals play the role of "net-points" to maintain the permanent shape of the material. Water-triggered shape-memory keratin fibers are manipulable and exhibit potential in the fabrication of textile actuators, which may be applied in smart apparel and programmable biomedical devices.
Collapse
Affiliation(s)
- Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuang Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Min Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yupei Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
11
|
Li K, Shen H, Xue W. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16232-16243. [PMID: 36942675 DOI: 10.1021/acsami.2c22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nature-similar muscle is one of the ultimate goals of advanced artificial muscle materials. Currently, a variety of chemical and natural materials have been gradually developed for the preparation of artificial muscles. However, due to the scarcity, biological exclusion, and poor flexibility of the abovementioned materials, it is still a challenging process to maximize the imitation of behaviors shown by real muscles and commercial development. Here, this article presents multidimensional wool yarn artificial muscles, and the wet response behavior of fibers is induced in yarn muscles successfully by virtue of weakening the water-repellent effect of wool scales. Wool artificial muscles are cost-effective and widely available and have good biocompatibility. In addition, wool fiber assemblies are structurally stable, soft, and flexible to be processed into artificial muscles with torsional, contractile, and even multilayered structures, enabling various wet-driven behaviors. On the basis of the theoretical model and numerical simulation, we explained and verified the working mechanism employed in wool artificial yarn muscles. Finally, the yarn muscle was integrated into a wool muscle group through the textile technology, followed by the application to robot bionic arms, displaying the great potential of wool artificial yarn muscles in bionic drivers and the intelligent textile industry.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Wenliang Xue
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
12
|
Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev 2023; 52:2377-2390. [PMID: 36919405 DOI: 10.1039/d2cs00489e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Twisted-fiber artificial muscles, a new type of soft actuator, exhibit significant potential for use in applications related to lightweight smart devices and soft robotics. Fiber twisting generates internal torque and a spiral architecture, exhibiting rotation, contraction, or elongation as a result of fiber volume change. Untethering a twisted fiber often results in fiber untwisting and loss of stored torque energy. Preserving the torque in twisted fibers during actuation is necessary to realize a reversible and stable artificial muscle performance; this is a key issue that has not yet been systematically discussed and reviewed. This review summarizes the mechanisms for preserving the torque within twisted fibers and the potential applications of such systems. The potential challenges and future directions of research related to twisted-fiber artificial muscles are also discussed.
Collapse
Affiliation(s)
- Xueqi Leng
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Lin B, Yuan L, Gao B, He B. Patterned Duplex Fabric Based on Genetically Modified Spidroin for Smart Wound Management. Adv Healthc Mater 2023; 12:e2202213. [PMID: 36349744 DOI: 10.1002/adhm.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Collapse
Affiliation(s)
- Baoyang Lin
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
14
|
Wu J, Yang M, Sheng N, Peng Y, Sun F, Han C. Moisture-Sensitive Response and High-Reliable Cycle Recovery Effectiveness of Yarn-Based Actuators with Tether-Free, Multi-Hierarchical Hybrid Construction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53274-53284. [PMID: 36379058 DOI: 10.1021/acsami.2c15619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Yarn-based muscle actuators are highly desired for applications in soft robotics, flexible sensors, and other related applications due to their actuation properties. Although the tethering avoiding release of inserted twist, the complex preparation process and harsh experimental conditions make tether-free structures yarn actuator with reliable cycle recovery effectiveness is needed. Herein, a tether-free, multi-hierarchical hybrid construction of a moisture-sensitive responsive yarn-based actuator with the viscose/PET ratio (VPR) = 0.9 exhibited a contraction stroke of 83.15%, a work capacity of 52.98 J·kg-1, and an exerting force of 0.15 MPa. Additionally, the maximum cycle recovery rate of 99% is comparable to that of human skeletal muscles, confirming the advantages of a two-component hybrid structure. The underlying mechanism is discussed based on geometric characterization and energy conversion analysis between the actuation source and the spring frame. The mechanical manufacturing process makes it simple to expand the structurally stable yarn muscles into fabric muscles, opening up new opportunities to advance the usage of yarn-based actuators in smart textiles, medical materials, intelligent plants, and other versatile fields.
Collapse
Affiliation(s)
- Jing Wu
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Mengxin Yang
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Nan Sheng
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Yangyang Peng
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Fengxin Sun
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
- Laboratory of Soft Fibrous Materials, College of Textile Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Chenchen Han
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
15
|
Guo M, Peng Y, Chen Z, Sheng N, Sun F. Smart Humidly Adaptive Yarns and Textiles from Twisted and Coiled Viscose Fiber Artificial Muscles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8312. [PMID: 36499808 PMCID: PMC9739715 DOI: 10.3390/ma15238312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The self-adaptive nature of smart textiles to the ambient environment has made them an indispensable part of emerging wearable technologies. However, current advances generally suffer from complex material preparation, uncomfortable fitting feeling, possible toxicity, and high cost in fabrication, which hinder the real-world application of smart materials in textiles. Herein, humidity-response torsional and tensile yarn actuators from twisted and coiled structures are developed using commercially available, cost-effective, and biodegradable viscose fibers based on yarn-spinning and weaving technologies. The twisted yarn shows a reversible torsional stroke of 1400° cm-1 in 5 s when stimulated by water fog with a spraying speed of 0.05 g s-1; the coiled yarn exhibits a peak tensile stroke of 900% upon enhancing the relative humidity. Further, textile manufacturing allows for the scalable fabrication to create fabric artificial muscles with high-dimensional actuation deformations and human-touch comfort, which can boost the potential applications of the humidly adaptive yarns in smart textile and advanced textile materials.
Collapse
Affiliation(s)
- Mingrui Guo
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
| | - Yangyang Peng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Zihan Chen
- College of Fashion Design, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Nan Sheng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Iqbal MI, Lin K, Sun F, Chen S, Pan A, Lee HH, Kan CW, Lin CSK, Tso CY. Radiative Cooling Nanofabric for Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23577-23587. [PMID: 35562190 DOI: 10.1021/acsami.2c05115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A wearable textile that is engineered to reflect incoming sunlight and allow the transmission of mid-infrared radiation simultaneously would have a great impact on the human body's thermal regulation in an outdoor environment. However, developing such a textile is a tough challenge. Using nanoparticle-doped polymer (zinc oxide and polyethylene) materials and electrospinning technology, we have developed a nanofabric with the desired optical properties and good applicability. The nanofabric offers a cool fibrous structure with outstanding solar reflectivity (91%) and mid-infrared transmissivity (81%). In an outdoor field test under exposure of direct sunlight, the nanofabric was demonstrated to reduce the simulated skin temperature by 9 °C when compared to skin covered by a cotton textile. A heat-transfer model is also established to numerically assess the cooling performance of the nanofabric as a function of various climate factors, including solar intensity, ambient air temperature, atmospheric emission, wind speed, and parasitic heat loss rate. The results indicate that the nanofabric can completely release the human body from unwanted heat stress in most conditions, providing an additional cooling effect as well as demonstrating worldwide feasibility. Even in some extreme conditions, the nanofabric can also reduce the human body's cooling demand compared with traditional cotton textile, proving this material as a feasible solution for better thermoregulation of the human body. The facile fabrication of such textiles paves the way for the mass adoption of energy-free personal cooling technology in daily life, which meets the growing demand for healthcare, climate change, and sustainability.
Collapse
Affiliation(s)
- Mohammad Irfan Iqbal
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Kaixin Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Fengxin Sun
- Key Laboratory of Eco-textiles of Ministry of Education and Laboratory of Soft Fibrous Materials, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Siru Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Hau Him Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
17
|
Clothing Insulation Rate and Metabolic Rate Estimation for Individual Thermal Comfort Assessment in Real Life. SENSORS 2022; 22:s22020619. [PMID: 35062580 PMCID: PMC8779511 DOI: 10.3390/s22020619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
Satisfactory indoor thermal environments can improve working efficiencies of office staff. To build such satisfactory indoor microclimates, individual thermal comfort assessment is important, for which personal clothing insulation rate (Icl) and metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes a vision-based method. Specifically, a human tracking-by-detection framework is implemented to acquire each person’s clothing status (short-sleeved, long-sleeved), key posture (sitting, standing), and bounding box information simultaneously. The clothing status together with a key body points detector locate the person’s skin region and clothes region, allowing the measurement of skin temperature (Ts) and clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The key posture and the bounding box change across time can category the person’s activity intensity into a corresponding level, from which the M value is estimated. Moreover, we have collected a multi-person thermal dataset to evaluate the method. The tracking-by-detection framework achieves a mAP50 (Mean Average Precision) rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The M estimation module obtains a classification rate of 95.6% in categorizing activity level. All of these prove the usefulness of the proposed method in a multi-person scenario of real-life applications.
Collapse
|