1
|
Xin Y, Sun B, Kong Y, Zhao B, Chen J, Shen K, Zhang Y. Advances in integrated power supplies for self-powered bioelectronic devices. NANOSCALE 2025; 17:2423-2437. [PMID: 39844771 DOI: 10.1039/d4nr04645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection. To address these issues, self-powered devices with integrated power supplies have emerged, including triboelectric nanogenerators, piezoelectric nanogenerators, thermoelectric generators, batteries, biofuel cells, solar cells, wireless power transfer, and hybrid energy systems. This mini-review highlights the recent advances in the power supplies utilized in these self-powered devices. A concluding section discusses the subsisting challenges and future perspectives in integrated power supply technologies and design and manufacturing of self-powered devices.
Collapse
Affiliation(s)
- Yu Xin
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Bin Sun
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Yifei Kong
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Bojie Zhao
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| | - Jiayang Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kui Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
2
|
Kil HJ, Kim JH, Lee K, Kang TU, Yoo JH, Lee YH, Park JW. A self-powered and supercapacitive microneedle continuous glucose monitoring system with a wide range of glucose detection capabilities. Biosens Bioelectron 2024; 257:116297. [PMID: 38677020 DOI: 10.1016/j.bios.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Continuous detection of sudden changes in blood glucose is essential for individuals with diabetes who have difficulty in maintaining optimal control of their blood glucose levels. Hypoglycemic shock or a hyperglycemic crisis are likely to occurs in patients with diabetes and poses a significant threat to their lives. Currently, commercial continuous glucose monitoring (CGM) has limits in the glucose concentration detection range, which is 40-500 mg/dL, making it difficult to prevent the risk of hyperglycemic shock. In addition, current CGMs are invasive, cause pain and irritation during usage, and expensive. In this research, we overcome these limitations by introducing a novel mechanism to detect glucose concentration using supercapacitors. The developed CGM, which is self-powered and minimally invasive due to the use of microneedles, can detect a wider range of glucose concentrations than commercial sensors. In addition, efficacy and stability were proven through in vitro and in vivo experiments. Thus, this self-powered, microneedle and supercapacitive-type CGM can potentially prevent both hypoglycemic and complications of hyperglycemia without pain and with less power consumption than current commercial sensors.
Collapse
Affiliation(s)
- Hye-Jun Kil
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jang Hyeon Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kanghae Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae-Uk Kang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju-Hyun Yoo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Piao H, Choi YH, Kim J, Park D, Lee J, Khang DY, Choi HJ. Impedance-based polymer microneedle patch sensor for continuous interstitial fluid glucose monitoring. Biosens Bioelectron 2024; 247:115932. [PMID: 38113695 DOI: 10.1016/j.bios.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Early detection and effective blood glucose control are critical for preventing and managing diabetes-related complications. Conventional glucometers provide point-in-time measurements but are painful and cannot facilitate continuous monitoring. Continuous glucose monitoring systems are comfortable but face challenges in terms of accuracy, cost, and sensor lifespan. This study aimed to develop a microneedle-based sensor patch for minimally invasive, painless, and continuous glucose monitoring in the interstitial fluid to address these limitations. Experimental results confirm painless and minimally invasive penetration of the skin tissue with cylindrical microneedles (3 × 3 array) to a depth of approximately 520 μm with minimal loading. The microneedle sensors fabricated with precision using the complementary metal-oxide semiconductor process were immobilized with glucose oxidase, as confirmed through phase angle analysis. Long-term tests confirmed the effective operation of the sensor for up to seven days. Glucose concentrations determined from the fitted concentration-impedance curves correlated well with those measured using commercial glucometers, indicating the reliability and precision of the microneedle sensor. The flexible and minimally invasive sensor developed in this study facilitates painless and continuous glucose monitoring.
Collapse
Affiliation(s)
- Honglin Piao
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Ho Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Daerl Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jia Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Liu W, Lewis SE, di Lorenzo M, Squires AM. Development of Redox-Active Lyotropic Lipid Cubic Phases for Biosensing Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:170-178. [PMID: 38113389 PMCID: PMC10786026 DOI: 10.1021/acs.langmuir.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Enzyme-based electrochemical biosensors play an important role in point-of-care diagnostics for personalized medicine. For such devices, lipid cubic phases (LCP) represent an attractive method to immobilize enzymes onto conductive surfaces with no need for chemical linking. However, research has been held back by the lack of effective strategies to stably co-immobilize enzymes with a redox shuttle that enhances the electrical connection between the enzyme redox center and the electrode. In this study, we show that a monoolein (MO) LCP system doped with an amphiphilic redox mediator (ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) can be used for enzyme immobilization to generate an effective biosensing platform. Small-angle X-ray scattering (SAXS) showed that MO LCP can incorporate Fc12 while maintaining the Pn3m symmetry morphology. Cyclic voltammograms of Fc12/MO showed quasi-reversible behavior, which implied that Fc12 was able to freely diffuse in the lipid membrane of LCP with a diffusion coefficient of 1.9 ± 0.2 × 10-8 cm2 s-1 at room temperature. Glucose oxidase (GOx) was then chosen as a model enzyme and incorporated into 0.2%Fc12/MO to evaluate the activity of the platform. GOx hosted in 0.2%Fc12/MO followed Michaelis-Menten kinetics toward glucose with a KM and Imax of 8.9 ± 0.5 mM and 1.4 ± 0.2 μA, respectively, and a linearity range of 2-17 mM glucose. Our results therefore demonstrate that GOx immobilized onto 0.2% Fc12/MO is a suitable platform for the electrochemical detection of glucose.
Collapse
Affiliation(s)
- Wanli Liu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Mirella di Lorenzo
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Yasmeen A, Afzal AM, Iqbal MW, Mumtaz S, Munnaf SA, Islam MS, Dastgeer G, Liaqat M, Shahzadi A, Kanwal J, Ahmad Z. High-performance and stable CoSrS@rGO nanocomposite based electrode material for supercapattery device and electrochemical glucose sensor. PHYSICA SCRIPTA 2024; 99:015957. [DOI: 10.1088/1402-4896/ad1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Abstract
Two-dimensional (2D) materials possess excellent electrical conductivity, notable pore size, and exceptional stability. In this research, the cobalt strontium sulfide (CoSrS) nanocomposite is synthesized using the hydrothermal process. The CoSrS@rGO nanocomposite electrode material showed much greater specific capacity of 1050 C g−1 compared to the undoped sample (300 C g−1), as determined by a three-electrode measuring setup. Moreover, the results obtained from the electrochemical impedance spectroscopy (EIS) and Brunauer–Emmett–Teller (BET) analyses indicated a noticeable enhancement in both surface area and conductivity. Further, the hybrid device (CoSrS@rGO//AC@PANI) showed power and energy densities of 39.5 Wh kg−1 and 3793 W kg−1, respectively. The hybrid device exhibited a retention rate of 70% of its initial capacity over 2000 cycles. Besides, the CoSrS@rGO nanocomposite electrode material was effectively used as an electrode for the electrochemical glucose sensor. The device showed high sensitivity and stability against the glucose. The CoSrS@rGO nanocomposite electrode exhibited a sensitivity with an R2 value of 0.99. This study offers valuable insights into the influence of temperature and conducting polymers on the performance of CoSrS@rGO nanocomposite electrode materials for multiple applications.
Collapse
|
6
|
Ma X, Zhou Q, Gao B. Recent advances of biosensors on microneedles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5711-5730. [PMID: 37873722 DOI: 10.1039/d3ay01745a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu Province, People's Republic of China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Meng S, Wang N, Cao X. Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6916. [PMID: 37959515 PMCID: PMC10647822 DOI: 10.3390/ma16216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Energy storage devices such as supercapacitors (SCs), if equipped with built-in energy harvesters such as piezoelectric nanogenerators, will continuously power wearable electronics and become important enablers of the future Internet of Things. As wearable gadgets become flexible, energy items that can be fabricated with greater compliance will be crucial, and designing them with sustainable and flexible strategies for future use will be important. In this review, flexible supercapacitors designed with built-in nanogenerators, mainly piezoelectric nanogenerators, are discussed in terms of their operational principles, device configuration, and material selection, with a focus on their application in flexible wearable electronics. While the structural design and materials selection are highlighted, the current shortcomings and challenges in the emerging field of nanogenerators that can be integrated into flexible supercapacitors are also discussed to make wearable devices more comfortable and sustainable. We hope this work may provide references, future directions, and new perspectives for the development of electrochemical power sources that can charge themselves by harvesting mechanical energy from the ambient environment.
Collapse
Affiliation(s)
- Shuchang Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
8
|
Han Y, Li J, Chen T, Gao B, Wang H. Modern microelectronics and microfluidics on microneedles. Analyst 2023; 148:4591-4615. [PMID: 37664954 DOI: 10.1039/d3an01045g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Possessing the attractive advantages of moderate invasiveness and high compliance, there is no doubt that microneedles (MNs) have been a gradually rising star in the field of medicine. Recent evidence implies that microelectronics technology based on microcircuits, microelectrodes and other microelectronic elements combined with MNs can realize mild electrical stimulation, drug release and various types of electrical sensing detection. In addition, the combination of microfluidics technology and MNs makes it possible to transport fluid drugs and access a small quantity of body fluids which have shown significant untapped potential for a wide range of diagnostics. Of particular note is that combining both technologies and MNs is more difficult, but is promising to build a modern healthcare platform with more comprehensive functions. This review introduces the properties of MNs that can form integrated systems with microelectronics and microfluidics, and summarizes these systems and their applications. Furthermore, the future challenges and perspectives of the integrated systems are conclusively proposed.
Collapse
Affiliation(s)
- Yanzhang Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tingting Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Huili Wang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Wang Y, Wu Y, Lei Y. Microneedle-based glucose monitoring: a review from sampling methods to wearable biosensors. Biomater Sci 2023; 11:5727-5757. [PMID: 37431216 DOI: 10.1039/d3bm00409k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Blood glucose (BG) monitoring is critical for diabetes management. In recent years, microneedle (MN)-based technology has attracted emerging attention in glucose sensing and detection. In this review, we summarized MN-based sampling for glucose collection and glucose analysis in detail. First, different principles of MN-based biofluid extraction were elaborated, including external negative pressure, capillary force, swelling force and iontophoresis, which would guide the shape design and material optimization of MNs. Second, MNs coupled with different analysis approaches, including Raman methods, colorimetry, fluorescence, and electrochemical sensing, were emphasized to exhibit the trend towards highly integrated wearable sensors. Finally, the future development prospects of MN-based devices were discussed.
Collapse
Affiliation(s)
- Yan Wang
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - You Wu
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - Yifeng Lei
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Multifunctional bio-films based on silk nanofibres/peach gum polysaccharide for highly sensitive temperature, flame, and water detection. Int J Biol Macromol 2023; 231:123472. [PMID: 36736982 DOI: 10.1016/j.ijbiomac.2023.123472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Given their environment friendliness, light weight, and availability, bio-films have attracted wide interest for various applications in sensor materials. However, obtaining sensors with good environmental stability, excellent flame retardancy, and high wet strength remains a challenge. Herein, we prepared sensitive water, temperature and flame-responsive multi-function bio-films (named as PSCG bio-films) by combining peach gum polysaccharide, silk nanofibres, citric acid, and graphene. The PSCG bio-films demonstrated good flexibility, rapid and consistent water absorption, and stable wet strength at different temperatures. The bio-films showed excellent water sensitivity and rapid fire responsiveness within a short time frame (2 s); moreover, the response and recovery times of the bio-films in the temperature range of 50-150 °C were 0.1 and 0.3 s, respectively. In addition, the bio-films can be applied to micro-sized fire early warning devices and personalized breath monitoring. Our work presents a facile and green approach (without toxic solvent) to fabricate multi-function sensors with applications in various industries.
Collapse
|
11
|
Yuan M, Zhang X, Wang J, Zhao Y. Recent Progress of Energy-Storage-Device-Integrated Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040645. [PMID: 36839014 PMCID: PMC9964226 DOI: 10.3390/nano13040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
With the rapid prosperity of the Internet of things, intelligent human-machine interaction and health monitoring are becoming the focus of attention. Wireless sensing systems, especially self-powered sensing systems that can work continuously and sustainably for a long time without an external power supply have been successfully explored and developed. Yet, the system integrated by energy-harvester needs to be exposed to a specific energy source to drive the work, which provides limited application scenarios, low stability, and poor continuity. Integrating the energy storage unit and sensing unit into a single system may provide efficient ways to solve these above problems, promoting potential applications in portable and wearable electronics. In this review, we focus on recent advances in energy-storage-device-integrated sensing systems for wearable electronics, including tactile sensors, temperature sensors, chemical and biological sensors, and multifunctional sensing systems, because of their universal utilization in the next generation of smart personal electronics. Finally, the future perspectives of energy-storage-device-integrated sensing systems are discussed.
Collapse
|
12
|
Li Y, Luo S, Wang X, He Y, Yu H. CDs-Peroxyfluor Conjugation for Ratiometric Fluorescence Detection of Glucose and Shortening Its Detection Time from Reaction Dynamic Perspective. BIOSENSORS 2023; 13:222. [PMID: 36831988 PMCID: PMC9953814 DOI: 10.3390/bios13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
A ratiometric fluorescence probe based on the conjugation of peroxyfluor-NHS (PF) and carbon dots (CDs) was designed for selective and rapid detection of glucose. When glucose was catalytically oxidized by glucose oxidase (GOx), the product H2O2 would react with colorless and non-fluorescent peroxyfluor moiety to give the colored and fluorescent fluorescein moiety which would absorb the energy of CDs emission at 450 nm due to the Förster Resonance Energy Transfer (FRET) and generate a new emission peak at 517 nm. The reaction between PF and H2O2 was slow with a rate constant of about 2.7 × 10-4 s-1 under pseudo-first-order conditions (1 uM PF, 1 mM H2O2), which was unconducive to rapid detection. Given this, a short time detection method was proposed by studying the kinetics of the reaction between PF and H2O2. In this method, the detection time was fixed at three minutes. The linear detection of glucose could be well realized even if the reaction was partially done. As glucose concentration increased from 0.05 mM to 5 mM, the fluorescence intensity ratio (I517/I450) after 3 minutes' reaction of CDs-PF and glucose oxidation products changed linearly from 0.269 to 1.127 with the limit of detection (LOD) of 17.19 μM. In addition, the applicability of the probe in blood glucose detection was verified.
Collapse
|
13
|
Ma S, Li J, Pei L, Feng N, Zhang Y. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects. J Pharm Anal 2023; 13:111-126. [PMID: 36908860 PMCID: PMC9999301 DOI: 10.1016/j.jpha.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Similar to blood, interstitial fluid (ISF) contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis. However, current ISF extraction techniques require bulky instruments and are both time-consuming and complicated, which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles. Currently, microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis. The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring, while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification. Herein, we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.
Collapse
Affiliation(s)
- Shuwen Ma
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
14
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Wang L, Zhu W, Zhang J, Zhu JJ. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell. BIOSENSORS 2023; 13:175. [PMID: 36831941 PMCID: PMC9953942 DOI: 10.3390/bios13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors, in which enzymatic biofuel cells simultaneously work as energy power and signal generators, have become a research hotspot. They display the merits of power self-support, a simplified structure, in vivo operational feasibility, online and timely monitoring, etc. Since the concept of enzymatic biofuel cell-powered biosensors (EBFC-SPBs) was first proposed, its applications in health monitoring have scored tremendous achievements. However, the creation and practical application of portable EBFC-SPBs are still impeded by the difficulty in their miniaturization. In recent years, the booming microfluidic technology has powerfully pushed forward the progress made in miniaturized and portable EBFC-SPBs. This brief review recalls and summarizes the achievements and progress made in miniaturized EBFC-SPBs. In addition, we also discuss the advantages and challenges that microfluidic and screen-printing technologies provide to wearable and disposable EBFC-SPBs.
Collapse
Affiliation(s)
- Linlin Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenlei Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155670. [PMID: 35957227 PMCID: PMC9371187 DOI: 10.3390/s22155670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 05/12/2023]
Abstract
As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
Collapse
|