1
|
Li S, Yang K, Quan Y, Wang H, Hu L, Li B, Zhao D. Precycling Strategy in Suitable Voltage to Improve the Stability of Interfacial Film and Suppress the Decline of LiNi 0.6Mn 0.2Co 0.2O 2 Cathode at Elevated Temperatures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26245-26256. [PMID: 38739838 DOI: 10.1021/acsami.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Layered ternary oxide LiNixMnyCo1-x-yO2 is a promising cathode candidate for high-energy lithium-ion batteries (LIBs). However, the capacity of LIBs is significantly restricted by several factors, including the repeated dissolution-regeneration of the interfacial film at high temperatures, the dissolution of transition metals, and the increase of impedance. Herein, a new precycling strategy in suitable voltage scope at room temperature is proposed to construct a uniform, thermally stable, and insoluble cathode-electrolyte interface (CEI), which helps to maintain stable cycling performances at high temperatures. Specifically, after 5 precycles in the range of 3.85-4.3 V at room temperature, a CEI layer containing numerous inorganic components and oligomers is formed on the surface of LiNi0.6Mn0.2Co0.2O2. Subsequently, the harmful side reactions are effectively suppressed, endowing the cell with an excellent capacity retention of 84.67% after 50 cycles at 0.5C and 55 °C, much higher than that of 65.61% under the conventional film-forming process conditions. This work emphasizes the crucial role of the precycling strategy in regulating the characteristics of CEI layer on the surface of cathode electrode, opening up a new avenue for the high-temperature application of positive electrodes of LIBs.
Collapse
Affiliation(s)
- Shiyou Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
- Gansu Engineering Laboratory of Electrolyte Material for Lithium-Ion Battery, Baiyin 730900, P. R. China
| | - Kerong Yang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
| | - Yin Quan
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
| | - Hui Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
| | - Ling Hu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
| | - Baoqiang Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
| | - Dongni Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, P. R. China
- Gansu Engineering Laboratory of Electrolyte Material for Lithium-Ion Battery, Baiyin 730900, P. R. China
| |
Collapse
|
2
|
He Y, Wang L, Wang A, Zhang B, Pham H, Park J, He X. Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode. EXPLORATION (BEIJING, CHINA) 2024; 4:20230114. [PMID: 38855613 PMCID: PMC11022620 DOI: 10.1002/exp.20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 06/11/2024]
Abstract
Multi-scale simulation is an important basis for constructing digital batteries to improve battery design and application. LiF-rich solid electrolyte interphase (SEI) is experimentally proven to be crucial for the electrochemical performance of lithium metal batteries. However, the LiF-rich SEI is sensitive to various electrolyte formulas and the fundamental mechanism is still unclear. Herein, the structure and formation mechanism of LiF-rich SEI in different electrolyte formulas have been reviewed. On this basis, it further discussed the possible filming mechanism of LiF-rich SEI determined by the initial adsorption of the electrolyte-derived species on the lithium metal anode (LMA). It proposed that individual LiF species follow the Volmer-Weber mode of film growth due to its poor wettability on LMA. Whereas, the synergistic adsorption of additive-derived species with LiF promotes the Frank-Vander Merwe mode of film growth, resulting in uniform LiF deposition on the LMA surface. This perspective provides new insight into the correlation between high LiF content, wettability of LiF, and highperformance of uniform LiF-rich SEI. It disclosed the importance of additive assistant synergistic adsorption on the uniform growth of LiF-rich SEI, contributing to the reasonable design of electrolyte formulas and high-performance LMA, and enlightening the way for multi-scale simulation of SEI.
Collapse
Affiliation(s)
- Yufang He
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Li Wang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Aiping Wang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Bo Zhang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Hiep Pham
- Department of Mechanical Engineering and Aerospace EngineeringMissouri University of Science and TechnologyRolla, MOUSA
| | - Jonghyun Park
- Department of Mechanical Engineering and Aerospace EngineeringMissouri University of Science and TechnologyRolla, MOUSA
| | - Xiangming He
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| |
Collapse
|
3
|
Gao Y, Zhang B. Probing the Mechanically Stable Solid Electrolyte Interphase and the Implications in Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205421. [PMID: 36281818 DOI: 10.1002/adma.202205421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Indexed: 05/05/2023]
Abstract
The inevitable volume expansion of secondary battery anodes during cycling imposes forces on the solid electrolyte interphase (SEI). The battery performance is closely related to the capability of SEI to maintain intact under the cyclic loading conditions, which basically boils down to the mechanical properties of SEI. The volatile and complex nature of SEI as well as its nanoscale thickness and environmental sensitivity make the interpretation of its mechanical behavior many roadblocks. Widely varied approaches are adopted to investigate the mechanical properties of SEI, and diverse opinions are generated. The lack of consensus at both technical and theoretical levels has hindered the development of effective design strategies to maximize the mechanical stability of SEIs. Here, the essential and desirable mechanical properties of SEI, the available mechanical characterization methods, and important issues meriting attention for higher test accuracy are outlined. Previous attempts to optimize battery performance by tuning SEI mechanical properties are also scrutinized, inconsistencies in these efforts are elucidated, and the underlying causes are explored. Finally, a set of research protocols is proposed to accelerate the achievement of superior battery cycling performance by improving the mechanical stability of SEI.
Collapse
Affiliation(s)
- Yao Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Biao Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|