1
|
Liang Z, Wang X, Song Z, Wang Q, Tang X, Wu J, Bu L, Lu G. Organic Optoelectronic Synaptic Transistor with Enhanced UV Light Response Based on Insulating Polymer-Assisted p-n Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65091-65099. [PMID: 39531408 DOI: 10.1021/acsami.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Optoelectronic synaptic transistors possess the capability to simultaneously accomplish perception and process functions within a single device, thereby not only addressing the limitations of von Neumann architectures but also serving as a promising candidate for emulating neural vision systems. The extensive range of organic semiconductor materials offers a plethora of possibilities for device fabrication; however, the severe recombination of photogenerated carriers imposes limitations on the utilization of organic p-n bulk heterostructures in synaptic transistor construction. By incorporating an insulating polymer and implementing a p-n planar heterojunction architecture, the 30% PCBM@PAN-DPPDTT transistor was constructed using the PCBM/DPPDTT heterojunction and the PCBM@PAN photoresponsive charge trapping layer. Due to the effect of the photoresponsive charge trapping layer and interface traps, the device not only overcomes the shortcomings of p-n bulk heterojunction and exhibits typical synaptic properties but also demonstrates a significantly enhanced response to ultraviolet (UV) light, exhibiting nearly four times more excitatory postsynaptic current (ΔEPSC) compared to the device lacking PCBM. The transistor matrix was employed to simulate the image perception and memory functions of the human neural vision system. Furthermore, an artificial neural network with high recognition accuracy (∼95%) of handwritten numbers was constructed. This study proposes an additional approach for mitigating the issue of rapid recombination of photogenerated charge carriers in the construction of optoelectronic synaptic transistors by utilizing p-n heterojunction.
Collapse
Affiliation(s)
- Zechen Liang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zhicheng Song
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingyu Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xian Tang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingpeng Wu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
2
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
3
|
Sadhukhan R, Pradhan A, Rani P, Mondal S, Verma SP, Das A, Banerjee R, Bansal A, Banerjee M, Goswami DK. Bioinspired Flexible and Low-Voltage Organic Synaptic Transistors for UV Light-Driven Vision Systems. ACS APPLIED BIO MATERIALS 2024; 7:6405-6413. [PMID: 39279649 DOI: 10.1021/acsabm.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.
Collapse
Affiliation(s)
- Riya Sadhukhan
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Asima Pradhan
- Department of Zoology, Midnapore College, Midnapore 721101, India
| | - Priyanka Rani
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sovanlal Mondal
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shiv Prakash Verma
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Das
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajdeep Banerjee
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anshika Bansal
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Dipak K Goswami
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Kang S, Sohn S, Kim H, Yun HJ, Jang BC, Yoo H. Imitating Synapse Behavior: Exploiting Off-Current in TPBi-Doped Small Molecule Phototransistors for Broadband Wavelength Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11758-11766. [PMID: 38391255 DOI: 10.1021/acsami.3c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Phototransistors have gained significant attention in diverse applications such as photodetectors, image sensors, and neuromorphic devices due to their ability to control electrical characteristics through photoresponse. The choice of photoactive materials in phototransistor research significantly impacts its development. In this study, we propose a novel device that emulates artificial synaptic behavior by leveraging the off-current of a phototransistor. We utilize a p-type organic semiconductor, dinaphtho[2,3-b:2',3'- f]thieno[3,2-b]thiophene (DNTT), as the channel material and dope it with the organic semiconductor 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) on the DNTT transistor. Under light illumination, the general DNTT transistor shows no change in off-current, except at 400 nm wavelength, whereas the TPBi-doped DNTT phototransistor exhibits increased off-current across all wavelength bands. Notably, DNTT phototransistors demonstrate broad photoresponse characteristics in the wavelength range of 400-1000 nm. We successfully simulate artificial synaptic behavior by differentiating the level of off-current and achieving a recognition rate of over 70% across all wavelength bands.
Collapse
Affiliation(s)
- Seungme Kang
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Sunyoung Sohn
- Department of Semiconductor Energy Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Hyeran Kim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hyung Joong Yun
- Advance Nano Research Group, Korea Basic Science Institute (KBSI), Daejeon 34126, Republic of Korea
| | - Byung Chul Jang
- School of Electronics and Electrical Engineering, Kyungpook National University, Bukgu 41566, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
Chen H, Cai Y, Han Y, Huang H. Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices. Angew Chem Int Ed Engl 2024; 63:e202313634. [PMID: 37783656 DOI: 10.1002/anie.202313634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinghui Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Jiang T, Wang Y, Huang W, Ling H, Tian G, Deng Y, Geng Y, Ji D, Hu W. Retina-inspired organic neuromorphic vision sensor with polarity modulation for decoding light information. LIGHT, SCIENCE & APPLICATIONS 2023; 12:264. [PMID: 37932276 PMCID: PMC10628194 DOI: 10.1038/s41377-023-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The neuromorphic vision sensor (NeuVS), which is based on organic field-effect transistors (OFETs), uses polar functional groups (PFGs) in polymer dielectrics as interfacial units to control charge carriers. However, the mechanism of modulating charge transport on basis of PFGs in devices is unclear. Here, the carboxyl group is introduced into polymer dielectrics in this study, and it can induce the charge transfer process at the semiconductor/dielectric interfaces for effective carrier transport, giving rise to the best device mobility up to 20 cm2 V-1 s-1 at a low operating voltage of -1 V. Furthermore, the polarity modulation effect could further increase the optical figures of merit in NeuVS devices by at least an order of magnitude more than the devices using carboxyl group-free polymer dielectrics. Additionally, devices containing carboxyl groups improved image sensing for light information decoding with 52 grayscale signals and memory capabilities at an incredibly low power consumption of 1.25 fJ/spike. Our findings provide insight into the production of high-performance polymer dielectrics for NeuVS devices.
Collapse
Affiliation(s)
- Ting Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Wanxin Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Wenping Hu
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
7
|
Jiang L, Yang L, Wu X, Wang X, Zheng L, Xu W, Qiu L. Helical Nanofiber Photoelectric Synaptic Devices for an Artificial Vision Nervous System. NANO LETTERS 2023; 23:8146-8154. [PMID: 37579217 DOI: 10.1021/acs.nanolett.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Inspired by the helical structure and the resultant exquisite functions of biomolecules, helical polymers have received increasing attention. Here, a series of poly(3-hexylthiophene)-block-poly(phenyl isocyanide) (P3HT-b-PPI) copolymers were prepared using a simple one-pot living polymerization method. Interestingly, the P3HT80-b-PPI30 films were found to have a helical nanofiber structure. The corresponding device has superior optoelectronic properties, such as a broadened spectral response range from the visible band to the deep ultraviolet (DUV) and an approximately 5-fold longer carrier decay time after DUV light stimulation. An energy consumption of 1.44 fJ per synaptic event was obtained, which is the lowest energy consumption achieved so far with DUV light stimulation. The encryption and decryption of images are implemented using an array of devices. Finally, a photoreceptor neural pathway was constructed to achieve early warning for the recognition of the display of harmful light. This research provides an effective strategy for the development of a novel optoelectronic synaptic device.
Collapse
Affiliation(s)
- Longlong Jiang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaocheng Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
8
|
Shi H, Wang B, Wang X, Qiu L, Zheng L. Optically Readable Electrochromic-Based Microfiber Synaptic Device for Photonic Neuromorphic Systems. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9705-9713. [PMID: 36763963 DOI: 10.1021/acsami.2c20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical synaptic devices possess great potential in both artificial intelligence and neuromorphic photonics. In this work, an optically readable electrochromic-based microfiber synaptic device was designed by the combination of a multimode fiber and an electrochromic device and using an external voltage to control the transmission of light in the fiber. The proposed synaptic device has the ability to imitate various basic functions of the biological synapses, such as synaptic plasticity, and paired-pulse facilitation (PPF), as well as the transition from short-term memory to long-term memory. Moreover, the proposed device decodes the output optical signal with the international Morse code to express the signal "HFUT" in two ways, and a 3 × 3 array composed of this device can simulate the perceptual learning process. The device can be easily prepared for a wide range of applications, and the incorporated microfibers can be replaced by planar optical waveguides, making it easy to be integrated into a more complex and versatile photonic neuromorphic system.
Collapse
Affiliation(s)
- Hui Shi
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Banghu Wang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Jiang L, Huang H, Zhang C, Yuan Y, Wang X, Qiu L. One-Step Preparation of Semiconductor/Dielectric Bilayer Structures for the Simulation of Flexible Bionic Photonic Synapses. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7227-7235. [PMID: 36700528 DOI: 10.1021/acsami.2c22223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible synaptic devices with information sensing, processing, and storage functions are indispensable in the development of wearable artificial intelligence electronic systems. Here, a semiconductor/dielectric bilayer structure was prepared by a one-step deposition method and used for the first time in a flexible biomimetic photonic synaptic transistor device. Specifically, poly(3-hexylthiophene)-block-poly(phenyl isocyanide) with pentafluorophenyl ester (P3HT-b-PPI(5F)) was prepared as the device active layer, where the P3HT segment served as a carrier transport channel and optical gate and the PPI(5F) segment was used for charge trapping. Various biomimetic synaptic behaviors, such as excitatory postsynaptic currents, paired-pulse facilitation, and short-term/long-term memory, were successfully simulated under green light stimulation. An ultra-low energy consumption of 1.82 fJ was achieved with a greatly reduced operating voltage. Further, the "Morse-code" optical decoding was simulated using the excellent synaptic plasticity of the device. In addition, flexible synaptic devices were prepared by a one-step deposition method and can be well-affixed to arbitrary substrates. This has promising applications in the field of wearable bionic electronics.
Collapse
Affiliation(s)
- Longlong Jiang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
| | - Hua Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
| | - Can Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
| | - Ye Yuan
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei230009, China
| |
Collapse
|
10
|
Takamure K, Sakamoto Y, Iwatani Y, Amano H, Yagi T, Uchiyama T. Characteristics of collection and inactivation of virus in air flowing inside a winding conduit equipped with 280 nm deep UV-LEDs. ENVIRONMENT INTERNATIONAL 2022; 170:107580. [PMID: 36252438 DOI: 10.1016/j.envint.2022.107580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A general-purpose virus inactivation unit that can inactivate viruses was developed using deep ultraviolet (DUV) LEDs that emit DUV rays with a wavelength of 280 nm. The inside of the virus inactivation unit is a rectangular conduit with a sharp turn of 180° (sharp-turned rectangular conduit). Virus inactivation is attempted by directly irradiating the air passing through the conduit with DUV rays. The flow characteristics of air and virus particles inside the virus inactivation unit were investigated using numerical simulations. The air was locally accelerated at the sharp turn parts and flowed along the partition plate in the sharp-turned rectangular conduit. The aerosol particles moving in the sharp-turned rectangular conduit were greatly bent in orbit at the sharp turn parts, and then rapidly approached the partition plate at the lower part of the conduit. Consequently, many particles collided with the partition plates behind the sharp-turn parts. SARS-CoV-2 virus was nebulized in the virus inactivation unit, and the RNA concentration and virus inactivation rate with and without the emission of DUV-LEDs were measured in the experiment. The concentration of SARS-CoV-2 RNA was reduced to 60% through DUV-LED irradiation. In addition, SARS-CoV-2 passing through the virus inactivation unit was inactivated below the detection limit by the emission of DUV-LEDs. The virus inactivation rate and the value of the detection limit corresponded to 99.38% and 35.36 TCID50/mL, respectively.
Collapse
Affiliation(s)
- Kotaro Takamure
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yasuaki Sakamoto
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan.
| | - Hiroshi Amano
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya 466-0065, Japan.
| | - Tomomi Uchiyama
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
11
|
Yang R, Yin L, Lu J, Lu B, Pi X, Li S, Zhuge F, Lu Y, Shao W, Ye Z. Optoelectronic Artificial Synaptic Device Based on Amorphous InAlZnO Films for Learning Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46866-46875. [PMID: 36194768 DOI: 10.1021/acsami.2c14029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neuromorphic computing, which mimics brain function, can address the shortcomings of the "von Neumann" system and is one of the critical components of next-generation computing. The use of light to stimulate artificial synapses has the advantages of low power consumption, low latency, and high stability. We demonstrate amorphous InAlZnO-based light-stimulated artificial synaptic devices with a thin-film transistor structure. The devices exhibit fundamental synaptic properties, including excitatory postsynaptic current, paired-pulse facilitation (PPF), and short-term plasticity to long-term plasticity conversion under light stimulation. The PPF index stimulated by 375 nm light is 155.9% when the time interval is 0.1 s. The energy consumption of each synaptic event is 2.3 pJ, much lower than that of ordinary MOS devices and other optical-controlled synaptic devices. The relaxation time constant reaches 277 s after only 10 light spikes, which shows the great synaptic plasticity of the device. In addition, we simulated the learning-forgetting-relearning-forgetting behavior and learning efficiency of human beings under different moods by changing the gate voltage. This work is expected to promote the development of high-performance optoelectronic synaptic devices for neuromorphic computing.
Collapse
Affiliation(s)
- Ruqi Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Lei Yin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhoum, Zhejiang University, Wenzhou325006, China
| | - Bojing Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Siqin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
| | - Yangdan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Wenyi Shao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhoum, Zhejiang University, Wenzhou325006, China
| |
Collapse
|