1
|
Vinciguerra D, Rajalakshmi P S, Yang J, Georgiou PG, Snell K, Pesenti T, Collins J, Tamboline M, Xu S, van Dam RM, Messina KMM, Hevener AL, Maynard HD. A Glucose-Responsive Glucagon-Micelle for the Prevention of Hypoglycemia. ACS CENTRAL SCIENCE 2024; 10:2036-2047. [PMID: 39634211 PMCID: PMC11613347 DOI: 10.1021/acscentsci.4c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024]
Abstract
While glucose-responsive insulin delivery systems are in widespread clinical use to treat insulin insufficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains understudied. A self-regulated glucagon release material is highly desired to mitigate the potential risks of severe insulin-induced hypoglycemia. Here, we describe a glucose-responsive polymeric nanosystem with glucagon covalently grafted to the end-group. Under normoglycemic conditions, phenylboronic acid units in the polymer chain reversibly bind glucose, triggering self-assembly of the conjugate into micelles. During hypoglycemia, however, the micelle disassembles into its original, unimeric state, revealing the active glucagon conjugate. The formulation showed a 5-fold increase in activity compared to native glucagon when tested in vitro. Glucagon-loaded micelles injected into mice prevented or reversed deep hypoglycemia when administered prior to or during an insulin challenge. Glucagon release was only observed at or below the counterregulatory threshold and not during normoglycemia or moderate hypoglycemia. The in vivo acute and chronic toxicity analysis, along with μPET/μCT imaging, established the biosafety profile of this formulation and demonstrated no organ accumulation. This proof-of-concept work is the first step toward development of a translational, stimuli-responsive glucagon delivery platform to control glycemia.
Collapse
Affiliation(s)
- Daniele Vinciguerra
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Rajalakshmi P S
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Jane Yang
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Panagiotis G. Georgiou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Katherine Snell
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Théo Pesenti
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United
States
| | - R. Michael van Dam
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1735, United
States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Andrea L. Hevener
- Department
of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr, Los Angeles, California 90095, United States
- VA
Greater
Los Angeles Healthcare System GRECC, Los Angeles, California 90073, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
2
|
Chen X, Dou X, Qiu W. Promising strategies for smart insulin delivery system: Glucose-sensitive microneedle. Eur J Med Chem 2024; 278:116793. [PMID: 39216380 DOI: 10.1016/j.ejmech.2024.116793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The diabetes treatment landscape is rapidly evolving towards intelligent and precise therapeutic interventions. Among these advancements, glucose-sensitive microneedle patches (GSMPs), which can automatically adjust the transdermal release rate of insulin based on glucose concentrations, are emerging as a promising strategy. In this work, a new classification method has been proposed for GSMPs, categorizing them into integrated, all-in-one, and core-shell structures. The working mechanism and performance of GSMPs are thoroughly analyzed to compare the advantages and disadvantages of these three forms. The correlation between glucose-sensitive performance and normal blood glucose maintenance time (NGT) is further explored. Our findings indicate that all-in-one GSMPs demonstrate a positive correlation between in vitro glucose-sensitive controlled-release performance and NGT, unlike assembled GSMPs, where the performance is influenced by the matrix material and crosslinking factors. Simultaneously, challenges in clinical translation and future development trends are discussed from a patient's perspective. In summary, the new classification method, in-depth explanation of mechanisms, and analysis of challenges in this work contribute to a better understanding of the field of GSMPs and provide guidance for the development of more advanced and efficient GSMPs.
Collapse
Affiliation(s)
- Xiang Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313000, PR China
| | - Xiaojie Dou
- First Affiliated Hospital of Huzhou University, Huzhou, 313000, PR China
| | - Wei Qiu
- Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, PR China.
| |
Collapse
|
3
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
5
|
Varas N, Grabowski R, Jarosinski MA, Tai N, Herzog RI, Ismail-Beigi F, Yang Y, Cherrington AD, Weiss MA. Ultra-stable insulin-glucagon fusion protein exploits an endogenous hepatic switch to mitigate hypoglycemic risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594997. [PMID: 38826486 PMCID: PMC11142066 DOI: 10.1101/2024.05.20.594997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The risk of hypoglycemia and its serious medical sequelae restrict insulin replacement therapy for diabetes mellitus. Such adverse clinical impact has motivated development of diverse glucose-responsive technologies, including algorithm-controlled insulin pumps linked to continuous glucose monitors ("closed-loop systems") and glucose-sensing ("smart") insulins. These technologies seek to optimize glycemic control while minimizing hypoglycemic risk. Here, we describe an alternative approach that exploits an endogenous glucose-dependent switch in hepatic physiology: preferential insulin signaling (under hyperglycemic conditions) versus preferential counter-regulatory glucagon signaling (during hypoglycemia). Motivated by prior reports of glucagon-insulin co-infusion, we designed and tested an ultra-stable glucagon-insulin fusion protein whose relative hormonal activities were calibrated by respective modifications; physical stability was concurrently augmented to facilitate formulation, enhance shelf life and expand access. An N-terminal glucagon moiety was stabilized by an α-helix-compatible Lys 13 -Glu 17 lactam bridge; A C-terminal insulin moiety was stabilized as a single chain with foreshortened C domain. Studies in vitro demonstrated (a) resistance to fibrillation on prolonged agitation at 37 °C and (b) dual hormonal signaling activities with appropriate balance. Glucodynamic responses were monitored in rats relative to control fusion proteins lacking one or the other hormonal activity, and continuous intravenous infusion emulated basal subcutaneous therapy. Whereas efficacy in mitigating hyperglycemia was unaffected by the glucagon moiety, the fusion protein enhanced endogenous glucose production under hypoglycemic conditions. Together, these findings provide proof of principle toward a basal glucose-responsive insulin biotechnology of striking simplicity. The fusion protein's augmented stability promises to circumvent the costly cold chain presently constraining global insulin access. Significance Statement The therapeutic goal of insulin replacement therapy in diabetes is normalization of blood-glucose concentration, which prevents or delays long-term complications. A critical barrier is posed by recurrent hypoglycemic events that results in short- and long-term morbidities. An innovative approach envisions co-injection of glucagon (a counter-regulatory hormone) to exploit a glycemia-dependent hepatic switch in relative hormone responsiveness. To provide an enabling technology, we describe an ultra-stable fusion protein containing insulin- and glucagon moieties. Proof of principle was obtained in rats. A single-chain insulin moiety provides glycemic control whereas a lactam-stabilized glucagon extension mitigates hypoglycemia. This dual-hormone fusion protein promises to provide a basal formulation with reduced risk of hypoglycemia. Resistance to fibrillation may circumvent the cold chain required for global access.
Collapse
|
6
|
Yu X, Wen X, Xu J, Zhou Q, Chen Y, Qu F, He M, Chang H, Zheng C. Rapid Correction of the Hypoglycemia State in Nonhuman Primates Using a Glucagon Long-Dissolving Microneedle Patch. ACS Biomater Sci Eng 2024; 10:3086-3096. [PMID: 38588325 DOI: 10.1021/acsbiomaterials.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The timely administration of glucagon is a standard clinical practice for the treatment of severe hypoglycemia. However, the process involves cumbersome steps, including the reconstitution of labile glucagon and filling of the syringe, which cause considerable delays in emergency situations. Moreover, multiple dosages are often required to prevent the recurrence of the hypoglycemic episode because of the short half-life of glucagon in plasma. Herein, we develop a glucagon-loaded long-dissolving microneedle (GLMN) patch that exhibits the properties of fast onset and sustained activity for the effective treatment of severe hypoglycemia. Three types of MN patches were fabricated with different dimensions (long, medium, and short). The longer MN patch packaged a higher dosage of glucagon and exhibited supreme mechanical strength compared to the shorter one. Additionally, the longer MN patch could insert more deeply into the skin, resulting in higher permeability of glucagon across the skin tissue and more rapid systemic absorption as compared with the shorter MN patch. The GLMN patch was observed to reverse the effects of hypoglycemia within 15 min of application in animal models (specifically, rat and rhesus monkey models) and maintained long-term glycemic control, owing to highly efficient drug permeation and the drug reservoir effect of the MN base. The current study presents a promising strategy for the rapid reversal of severe hypoglycemia that exhibits the desirable properties of easy use, high efficiency, and sustained action.
Collapse
Affiliation(s)
- Xiang Yu
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jianchen Xu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yingrong Chen
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Min He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chao Zheng
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Kumar S, Sanap SN, Pandey P, Khopade A, Sawant KK. Glucagon: Delivery advancements for hypoglycemia management. Int J Pharm 2024; 652:123785. [PMID: 38224759 DOI: 10.1016/j.ijpharm.2024.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
As the 100th anniversary of glucagon's discovery approaches, we reflect on the remarkable journey of understanding its pivotal role in glucose regulation. Advancements in glucagon delivery systems for managing hypoglycemia are unfolding with promise, albeit accompanied by formulation and implementation challenges. Recent developments include non-injectable methods like BAQSIMI® (Nasal glucagon) offers a user-friendly option, but stability, bioavailability, and rapid onset remain formulation hurdles. Closed-loop systems, combining glucagon with insulin, aim to automate glucose control, demanding stable and precise formulations compatible with complex algorithms. However, achieving co-delivery harmony and effective dual-hormone responses poses substantial challenges. Ogluo® and Gvoke HypoPen® are auto-injector pens, a ready-to-use solution that can rapidly control hypoglycemia and eliminate the need for mixing powder and liquid. GlucaGen® Hypokit® and Glucagon Emergency Kits are traditional deliveries that possess complexity during administration and are still widely used in clinical practice. In addition to this advancement, we have covered the recent patents and clinical trials of glucagon delivery. The synergy of patent innovation and clinical validation offers a glimpse into the transformative potential of glucagon delivery yet underscores the intricate path toward widespread adoption and improved diabetes care. Finally, this review will help the formulation scientist, clinicians, healthcare providers, and patient to manage hypoglycemia using glucagon.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India; Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| | - Sachin N Sanap
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, India
| | - Ajay Khopade
- Formulation Research & Development-Non Orals, Sun Pharmaceutical Industries Ltd, Vadodara 390020, Gujrat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
8
|
Liu JF, GhavamiNejad A, Lu B, Mirzaie S, Samarikhalaj M, Giacca A, Wu XY. "Smart" Matrix Microneedle Patch Made of Self-Crosslinkable and Multifunctional Polymers for Delivering Insulin On-Demand. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303665. [PMID: 37718654 PMCID: PMC10602565 DOI: 10.1002/advs.202303665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Indexed: 09/19/2023]
Abstract
A transdermal patch that delivers insulin at high glucose concentrations can offer tremendous advantages to ease the concern of safety and improve the quality of life for people with diabetes. Herein, a novel self-crosslinkable and glucose-responsive polymer-based microneedle patch (MN) is designed to deliver insulin at hyperglycemia. The microneedle patch is made of hyaluronic acid polymers functionalized with dopamine and 4-amino-3-fluorophenylboronic acid (AFBA) that can be quickly crosslinked upon mixing of the polymer solutions in the absence of any chemicalcrosslinking agents or organic solvents. The catechol groups in the dopamine (DA) units form covalent crosslinkages among themselves by auto-oxidation and dynamic crosslink with phenylboronic acid (PBA) via complexation. The reversible crosslinkages between catechol and boronate decrease with increasing glucose concentration leading to higher swelling and faster insulin release at hyperglycemia as compared to euglycemia. Such superior glucose-responsive properties are demonstrated by in vitro analyses and in vivo efficacy studies. The hydrogel polymers also preserve native structure and bioactivity of insulin, attributable to the interaction of hyaluronic acid (HA) with insulin molecules, as revealed by experiments and molecular dynamics simulations. The simplicity in the design and fabrication process, and glucose-responsiveness in insulin delivery impart the matrix microneedle (mMN) patch great potential for clinical translation.
Collapse
Affiliation(s)
- Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| |
Collapse
|
9
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
10
|
Wang Y, Yu H, Wang L, Hu J, Feng J. Progress in the preparation and evaluation of glucose-sensitive microneedle systems and their blood glucose regulation. Biomater Sci 2023; 11:5410-5438. [PMID: 37395463 DOI: 10.1039/d3bm00463e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Glucose-sensitive microneedle systems (GSMSs) as an intelligent strategy for treating diabetes can well solve the problems of puncture pain, hypoglycemia, skin damage, and complications caused by the subcutaneous injection of insulin. According to the various functions of each component, herein, therapeutic GSMSs are reviewed based on three parts (glucose-sensitive models, diabetes medications, and microneedle body). Moreover, the characteristics, benefits, and drawbacks of three types of typical glucose-sensitive models (phenylboronic acid based polymer, glucose oxidase, and concanavalin A) and their drug delivery models are reviewed. In particular, phenylboronic acid-based GSMSs can provide a long-acting drug dose and controlled release rate for the treatment of diabetes. Moreover, their painless, minimally invasive puncture also greatly improves patient compliance, treatment safety, and potential application prospects.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Hu
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|
11
|
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches. Sci Rep 2022; 12:19046. [PMID: 36351935 PMCID: PMC9646737 DOI: 10.1038/s41598-022-21619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.
Collapse
|
12
|
Tavafoghi M, Nasrollahi F, Karamikamkar S, Mahmoodi M, Nadine S, Mano JF, Darabi MA, Jahangiry J, Ahadian S, Khademhosseini A. Advances and challenges in developing smart, multi-functional microneedles for biomedical applications. Biotechnol Bioeng 2022; 119:2715-2730. [PMID: 35854645 DOI: 10.1002/bit.28186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Microneedles (MNs) have been developed as minimally invasive tools for diagnostic and therapeutic applications. However, in recent years, there has been an increasing interest in developing smart multi-functional MN devices to provide automated and closed-loop systems for body fluid extraction, biosensing, and drug delivery in a stimuli-responsive manner. Although this technology is still in its infancy and far from being translated into the clinic, preclinical trials have shown some promise for the broad applications of multi-functional MN devices. The main challenge facing the fabrication of smart MN patches is the integration of multiple modules, such as drug carriers, highly sensitive biosensors, and data analyzers in one miniaturized MN device. Researchers have shown the feasibility of creating smart MNs by integrating stimuli-responsive biomaterials and advanced microscale technologies, such as microsensors and microfluidic systems, to precisely control the transportation of biofluids and drugs throughout the system. These multi-functional MN devices can be envisioned in two distinct strategies. The first type includes individual drug delivery and biosensing MN units with a microfluidic system and a digital analyzer responsible for fluid transportation and communication between these two modules. The second type relies on smart biomaterials that can function as drug deliverers and biosensors by releasing drugs in a stimuli-responsive manner. These smart biomaterials can undergo structural changes when exposed to external stimuli, such as pH and ionic changes, mimicking the biological systems. Studies have demonstrated a high potential of hydrogel-based MN devices for a wide variety of biomedical applications, such as drug and cell delivery, as well as interstitial fluid extraction. Biodegradable hydrogels have also been advantageous for fabricating multi-functional MNs due to their high loading capacity and biocompatibility with the drug of choice. Here, we first review a set of MN devices that can be employed either for biosensing or delivery of multiple target molecules and compare them to the conventional and more simple systems, which are mainly designed for single-molecule sensing or delivery. Subsequently, we expand our insight into advanced MN systems with multiple competencies, such as body fluid extraction, biosensing, and drug delivery at the point of care. The improvement of biomaterials knowledge and biofabrication techniques will allow us to efficiently tune the next generation of smart MNs and provide a realistic platform for more effective personalized therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maryam Tavafoghi
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fatemeh Nasrollahi
- Department of Bioengineering, University of California, Los Angeles, California, USA.,Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | | | - Mahboobeh Mahmoodi
- Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Sara Nadine
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Jamileh Jahangiry
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| |
Collapse
|
13
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|