1
|
Wang C, Li W, Li D, Zhao X, Li Y, Zhang Y, Qi X, Wu M, Fan LZ. High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways. ACS NANO 2024. [PMID: 39511944 DOI: 10.1021/acsnano.4c11205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li+ between the polymer chain segments. These specific coordination clusters significantly "constrained" the interaction between anions and Li+, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li+ deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm-2 for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g-1, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.
Collapse
Affiliation(s)
- Chao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxin Li
- School of Future Technologies, Beijing Institute of Technology, Beijing 100081, China
| | - Dabing Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoxue Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanling Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Li-Zhen Fan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Zhou X, Liu J, Ouyang Z, Liu F, Zhang Z, Lai Y, Li J, Jiang L. In-Situ Construction of Electronically Insulating and Air-Stable Ionic Conductor Layer on Electrolyte Surface and Grain Boundary to Enable High-Performance Garnet-Type Solid-State Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402086. [PMID: 38607305 DOI: 10.1002/smll.202402086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 04/13/2024]
Abstract
Lithophobic Li2CO3/LiOH contaminants and high-resistance lithium-deficient phases produced from the exposure of garnet electrolyte to air leads to a decrease in electrolyte ion transfer ability. Additionally, garnet electrolyte grain boundaries (GBs) with narrow bandgap and high electron conductivity are potential channels for current leakage, which accelerate Li dendrites generation, ultimately leading to short-circuiting of all-solid-state batteries (ASSBs). Herein, a stably lithiophilic Li2ZO3 is in situ constructed at garnet electrolyte surface and GBs by interfacial modification with ZrO2 and Li2CO3 (Z+C) co-sintering to eliminate the detrimental contaminants and lithium-deficient phases. The Li2ZO3 formed on the modified electrolyte (LLZTO-(Z+C)) surface effectively improves the interfacial compatibility and air stability of the electrolyte. Li2ZO3 formed at GBs broadens the energy bandgaps of LLZTO-(Z+C) and significantly inhibits lithium dendrite generation. More Li+ transport paths found in LLZTO-Z+C by first-principles calculations increase Li+ conductivity from 1.04×10-4 to 7.45×10-4 S cm-1. Eventually, the Li|LLZTO-(Z+C)|Li symmetric cell maintains stable cycling for over 2000 h at 0.8 mA cm-2. The capacity retention of LiFePO4|LLZTO-(Z+C)|Li battery retains 70.5% after 5800 ultralong cycles at 4 C. This work provides a potential solution to simultaneously enhance the air stability and modulate chemical characteristics of the garnet electrolyte surface and GBs for ASSBs.
Collapse
Affiliation(s)
- Xiaoming Zhou
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Jin Liu
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Zejian Ouyang
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Fangyang Liu
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Zongliang Zhang
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Yanqing Lai
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Jie Li
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Liangxing Jiang
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
3
|
Wang S, Zeng T, Wen X, Xu H, Fan F, Wang X, Tian G, Liu S, Liu P, Wang C, Zeng C, Shu C. Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309874. [PMID: 38453676 DOI: 10.1002/smll.202309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Indexed: 03/09/2024]
Abstract
Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2- sites with Cl- anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35La3Zr1.4Ta0.6O11.85-Cl0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21×10-6 S cm-1. When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.
Collapse
Affiliation(s)
- Shuhan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Ting Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Sheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chenrui Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| |
Collapse
|
4
|
You X, Chen N, Xie G, Xu S, Sayed SY, Sang L. Dual-Component Interlayer Enables Uniform Lithium Deposition and Dendrite Suppression for Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35761-35770. [PMID: 38904288 DOI: 10.1021/acsami.4c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
β-Lithium thiophosphate (LPS) exhibits high Li+ conductivity and has been identified as a promising ceramic electrolyte for safe and high-energy-density all-solid-state batteries. Integrating LPS into solid-state lithium (Li) batteries would enable the use of a Li electrode with the highest deliverable capacity. However, LPS-based batteries operate at a limited current density before short-circuiting, posing a major challenge for the development of application-relevant batteries. In this work, we designed a dual-component interfacial protective layer called LiSn-LiN that forms in situ between the Li electrode and LPS electrolyte. The LiSn component, Li22Sn5, exhibits enhanced Li diffusivity compared with the metallic lithium and facilitates a more uniform lithium deposition across the electrode surface, thus eliminating Li dendrite formation. Meanwhile, the LiN component, Li3N, shows enhanced mechanical stiffness compared with LPS and functions to suppress dendrite penetration. This chemically robust LiSn-LiN interlayer provides a more than doubled deliverable critical current density compared to systems without interfacial protection. Through combined XPS and XAFS analyses, we determined the local structure and the formation kinetics of the key functional Li22Sn5 phase formed via the electrochemical reduction of a Sn3N4 precursor. This work demonstrates an example of the structural-specific design of a protective interlayer with a desired function - dendrite suppression. The structure of a functional protective layer for a given solid-state battery should be tailored based on the given battery configuration and its unique interfacial chemistry.
Collapse
Affiliation(s)
- Xiang You
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| | - Ning Chen
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Geng Xie
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| | - Shihong Xu
- nanoFAB Fabrication and Characterization Centre, University of Alberta, Edmonton, Alberta T6G 2N4, Canada
| | | | - Lingzi Sang
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| |
Collapse
|
5
|
Chen B, Zhang J, Wong D, Wang T, Li T, Liu C, Sun L, Liu X. Achieving the High Capacity and High Stability of Li-Rich Oxide Cathode in Garnet-Based Solid-State Battery. Angew Chem Int Ed Engl 2024; 63:e202315856. [PMID: 37985233 DOI: 10.1002/anie.202315856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Solid-state batteries (SSBs) based on Li-rich Mn-based oxide (LRMO) cathodes attract much attention because of their high energy density as well as high safety. But their development was seriously hindered by the interfacial instability and inferior electrochemical performance. Herein, we design a three-dimensional foam-structured GaN-Li composite anode and successfully construct a high-performance SSB based on Co-free Li1.2 Ni0.2 Mn0.6 O2 cathode and Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) solid electrolyte. The interfacial resistance is considerably reduced to only 1.53 Ω cm2 and the assembled Li symmetric cell is stably cycled more than 10,000 h at 0.1-0.2 mA cm-2 . The full battery shows a high initial capacity of 245 mAh g-1 at 0.1 C and does not show any capacity degradation after 200 cycles at 0.2 C (≈100 %). The voltage decay is well suppressed and it is significantly decreased from 2.96 mV/cycle to only 0.66 mV/cycle. The SSB also shows a very high rate capability (≈170 mAh g-1 at 1 C) comparable to a liquid electrolyte-based battery. Moreover, the oxygen anion redox (OAR) reversibility of LRMO in SSB is much higher than that in liquid electrolyte-based cells. This study offers a distinct strategy for constructing high-performance LRMO-based SSBs and sheds light on the development and application of high-energy density SSBs.
Collapse
Affiliation(s)
- Butian Chen
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jicheng Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deniz Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Tenghui Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taiguang Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Sun
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, 102413, China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zaman W, Zhao L, Martin T, Zhang X, Wang Z, Wang QJ, Harris S, Hatzell KB. Temperature and Pressure Effects on Unrecoverable Voids in Li Metal Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37401-37409. [PMID: 37490287 DOI: 10.1021/acsami.3c05886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
All-solid-state batteries (ASSB) can potentially achieve high gravimetric and volumetric energy densities (900 Wh/L) if paired with a lithium metal anode and solid electrolyte. However, there is a lack in critical understanding about how to operate lithium metal cells at high capacities and minimize unwanted degradation mechanisms such as dendrites and voids. Herein, we investigate how pressure and temperature influence the formation and annihilation of unrecoverable voids in lithium metal upon stripping. Stack pressure and temperature are effective means to initiate creep-induced void filling and decrease charge transfer resistances. Applying stack pressure enables lithium to deform and creep below the yield stress during stripping at high current densities. Lithium creep is not sufficient to prevent cell shorting during plating. Three-electrode experiments were employed to probe the kinetic and morphological limitations that occur at the anode-solid electrolyte during high-capacity stripping (5 mAh/cm2). The role of cathode-LLZO interface, which dictates cyclability and capacity retention in full cells, was also studied. This work elucidates the important role that temperature (external or in situ generated) has on reversible operation of solid-state batteries.
Collapse
Affiliation(s)
- Wahid Zaman
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Le Zhao
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Institute of Tribology Research, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Tobias Martin
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhanjiang Wang
- Institute of Tribology Research, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Q Jane Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Harris
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kelsey B Hatzell
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger Center for Energy and Environment, Princeton University, Princeton, New Jersey 37240, United States
| |
Collapse
|
7
|
Zhang L, Fan H, Dang Y, Zhuang Q, Arandiyan H, Wang Y, Cheng N, Sun H, Pérez Garza HH, Zheng R, Wang Z, S Mofarah S, Koshy P, Bhargava SK, Cui Y, Shao Z, Liu Y. Recent advances in in situ and operando characterization techniques for Li 7La 3Zr 2O 12-based solid-state lithium batteries. MATERIALS HORIZONS 2023; 10:1479-1538. [PMID: 37040188 DOI: 10.1039/d3mh00135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuzhen Dang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Quanchao Zhuang
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, China.
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuan Wang
- Institute for Frontier Materials, Deakin University, Melbourne, Vic 3125, Australia
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhua Cui
- Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Liu J, Wang T, Yu J, Li S, Ma H, Liu X. Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2510. [PMID: 36984390 PMCID: PMC10055896 DOI: 10.3390/ma16062510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
All-solid-state lithium-ion batteries (ASSLIBs), with their exceptional attributes, have captured the attention of researchers. They offer a viable solution to the inherent flaws of traditional lithium-ion batteries. The crux of an ASSLB lies in its solid-state electrolyte (SSE) which shows higher stability and safety compared to liquid electrolyte. Additionally, it holds the promise of being compatible with Li metal anode, thereby realizing higher capacity. Inorganic SSEs have undergone tremendous developments in the last few decades; however, their practical applications still face difficulties such as the electrode-electrolyte interface, air stability, and so on. The structural composition of inorganic electrolytes is inherently linked to the advantages and difficulties they present. This article provides a comprehensive explanation of the development, structure, and Li-ion transport mechanism of representative inorganic SSEs. Moreover, corresponding difficulties such as interface issues and air stability as well as possible solutions are also discussed.
Collapse
|
9
|
Zou C, Zhang X, Huang Y, Zhao L, Ren W, Zhao Z, Liu J, Li X, Wang M, Guo B, Lin Y. Constructing artificial solid electrolyte interphase by facile chemical reaction for stable lithium metal anodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Liu M, Xie W, Li B, Wang Y, Li G, Zhang S, Wen Y, Qiu J, Chen J, Zhao P. Garnet Li 7La 3Zr 2O 12-Based Solid-State Lithium Batteries Achieved by In Situ Thermally Polymerized Gel Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43116-43126. [PMID: 36121712 DOI: 10.1021/acsami.2c09028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Garnet Li7La3Zr2O12 (LLZO) is a potential solid electrolyte for solid-state batteries (SSBs) because of its high ionic conductivity, electrochemical stability, and mechanical strength. However, large interface resistances arising from deserted cathodes and rigid garnet/electrode interfaces block its application. In order to deal with this issue, a gel polymer electrolyte (GPE) was introduced into the cathode and both sides of LLZO to achieve a solid-state battery. Especially, the provided GPE could be thermally polymerized and solidified in situ, which would integrate LLZO with both anode and cathode and dramatically simplify the battery manufacturing process. Since the interface from rigid LLZO is improved by the flexible GPE buffer, the inability of flexible GPE to inhibit lithium dendrites is compensated by the rigid LLZO in return. As a result, the interface resistances are reduced from 6880 to 473 Ω, the Li symmetric cell exhibits a flat galvanostatic charge/discharge for 400 h without lithium dendrites, and the solid-state Li|GPE@LLZO|LiCoO2 battery exerts a capacity retention of 82.6% after 100 cycles at 0.5 C at room temperature. Such an interfacial engineering approach represents a promising strategy to address solid-solid interface issues and provides a new design for SSBs with high performance.
Collapse
Affiliation(s)
- Meng Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| | - Wenhao Xie
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Bin Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yibo Wang
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| | - Guangqi Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Songtong Zhang
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| | - Yuehua Wen
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| | - Jingyi Qiu
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| | - Junhong Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengcheng Zhao
- Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
| |
Collapse
|