1
|
Lu CJ, Shi WJ, Gong YN, Zhang JH, Wang YC, Mei JH, Ge ZM, Lu TB, Zhong DC. Modulating the Microenvironments of Robust Metal Hydrogen-Bonded Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405451. [PMID: 39031893 DOI: 10.1002/anie.202405451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12 M HCl) and strong base (5 M NaOH) for at least 10 days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8 mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.
Collapse
Affiliation(s)
- Chong-Jiu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ji-Hong Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu-Chen Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jian-Hua Mei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Ming Ge
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
3
|
Liu L, Guan D, Lu Y, Sun M, Liu Y, Zhao J, Yang L. A Molecular Dynamics Study on Xe/Kr Separation Mechanisms Using Crystal Growth Method. ACS OMEGA 2024; 9:25822-25831. [PMID: 38911791 PMCID: PMC11191100 DOI: 10.1021/acsomega.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
The separation of xenon/krypton gas mixtures is a valuable but challenging endeavor in the gas industry due to their similar physical characteristics and closely sized molecules. To address this, we investigated the effectiveness of the hydrate-based gas separation method for mixed Xe-Kr gas via molecular dynamics (MD) simulations. The formation process of hydrates facilitates the encapsulation of guest molecules within hydrate cages, offering a potential strategy for gas separation. Higher temperatures and pressures are advantageous for accelerating the hydrate growth rate. The final occupancy of guest molecules and empty cages within 512, 51264, and all hydrate cages were thoroughly examined. An increase in the pressure and temperature enhanced the occupancy rates of Xe in both 512 and 51264 cages, whereas elevated pressure alone improved the occupancy of Kr in 51264 cages. However, the impact of temperature and pressure on Kr occupancy within 512 cages was found to be minimal. Elevated temperature and pressure resulted in a reduced occupancy of empty cages. Predominantly, 51264 cages were occupied by Xe, whereas Kr showed a propensity to occupy the 512 cages. With increasing simulated pressure, the final occupancy of Xe molecules in all cages rose from 0.37 to 0.41 for simulations at 260 K, while the final occupancy of empty cages decreased from 0.24 to 0.2.
Collapse
Affiliation(s)
- Liangliang Liu
- Shenyang
Aircraft Design Institute Shenyang 110042, China
| | - Dawei Guan
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Yi Lu
- Shenyang
Aircraft Design Institute Shenyang 110042, China
| | - Mingrui Sun
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Yu Liu
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Jiafei Zhao
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Lei Yang
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
5
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
6
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
8
|
Huang J, Li Y, Zhang H, Yuan Z, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen-Bonded Organic Framework Based on Hydrogen-Bonding Tetramers for Efficient Xe/Kr Separation. Angew Chem Int Ed Engl 2023; 62:e202315987. [PMID: 37961032 DOI: 10.1002/anie.202315987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g-1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g-1 ) and Xe uptake (1.29 mmol g-1 ), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C-H⋅⋅⋅Xe interactions with Xe atoms.
Collapse
Affiliation(s)
- Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
9
|
Xie Y, Ding X, Wang J, Ye G. Hydrogen-Bonding Assembly Meets Anion Coordination Chemistry: Framework Shaping and Polarity Tuning for Xenon/Krypton Separation. Angew Chem Int Ed Engl 2023; 62:e202313951. [PMID: 37877955 DOI: 10.1002/anie.202313951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F- , Cl- , Br- , and I- , with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl- , Br- , and I- , are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2 -containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
10
|
Li Y, Wang X, Zhang H, He L, Huang J, Wei W, Yuan Z, Xiong Z, Chen H, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen Bonded Organic Framework for Highly Selective Separation of Carbon Dioxide over Acetylene. Angew Chem Int Ed Engl 2023; 62:e202311419. [PMID: 37563095 DOI: 10.1002/anie.202311419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2 -selective porous materials are superior to the C2 H2 -selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2 -selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g-1 ) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2 /C2 H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.
Collapse
Affiliation(s)
- Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xue Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Wuji Wei
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Huadan Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Liang M, Hu S, Han Y, Liu Z, Li CP, Hao J, Xue P. A Multistimuli Responsive, Flexible Luminescent Framework and Its Applicability in Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37855-37866. [PMID: 37506392 DOI: 10.1021/acsami.3c08486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A linear distyrylanthracene derivative (DDATAn) with two diaminotriazine (DAT) groups acting as the hydrogen bond (H-bond) units was designed and synthesized in order to construct flexible organic porous crystals. H-bonds between the DAT moieties helped the molecules to construct a double interpenetrated two-dimensional layer, and the stacking between layers provided a H-bonded organic framework (X-HOF-3) with one-dimensional solvent channels. When X-HOF-3 was placed in contact with methanol, the fluorescent colors of the HOF exhibited an apparent bathochromic shift. More interestingly, the methanol-activated HOF was able to rapidly adsorb water from the air, which was accompanied by a change in fluorescent color from yellow to red. Under heating, water was released from the HOF and the fluorescent color returned to yellow. Water molecules in the pores were also able to be released after an applied mechanical force disrupted the ordered structure of the HOF. Based on these stimuli-responsive properties, these HOFs can be used as advanced functional materials in anticounterfeiting applications.
Collapse
Affiliation(s)
- Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Siwen Hu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yanning Han
- College of Politics and Public Administration, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhongyi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
12
|
Song X, Huang Q, Liu J, Xie H, Idrees KB, Hou S, Yu L, Wang X, Liu F, Qiao Z, Wang H, Chen Y, Li Z, Farha OK. Reticular Chemistry in Pore Engineering of a Y-Based Metal-Organic Framework for Xenon/Krypton Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18229-18235. [PMID: 36996577 DOI: 10.1021/acsami.3c01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fine-tuning of metal-organic framework (MOF) pore structures is of critical importance in developing energy-efficient xenon/krypton (Xe/Kr) separation techniques. Capitalizing on reticular chemistry, we constructed a robust Y-based MOF (NU-1801) that is isoreticular to NPF-500 with a shortened organic ligand and a larger metal radius while maintaining the 4,8-connected flu topology, giving rise to a narrowed pore structure for the efficient separation of a Xe/Kr mixture. At 298 K and 1 bar, NU-1801 possessed a moderate Xe uptake of 2.79 mmol/g but exhibited a high Xe/Kr selectivity of 8.2 and an exceptional Xe/Kr uptake ratio of about 400%. NU-1801 could efficiently separate a Xe/Kr mixture (20:80, v/v), as validated by breakthrough experiments, due to the outstanding discrimination in van der Waals interactions of Xe and Kr toward the framework confirmed by grand canonical Monte Carlo simulations. This work highlights the importance of reticular chemistry in designing structure-specific MOFs for gas separation.
Collapse
Affiliation(s)
- Xiyu Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qiuhong Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shujing Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
14
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
15
|
Deng Z, Liu Y, Wan M, Ge S, Zhao Z, Chen J, Chen S, Deng S, Wang J. Breaking trade-off effect of Xe/Kr separation on microporous and heteroatoms-rich carbon adsorbents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation. Molecules 2023; 28:molecules28052173. [PMID: 36903421 PMCID: PMC10004400 DOI: 10.3390/molecules28052173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of -NH- bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m-2 h-1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs.
Collapse
|
17
|
Boosting Xe/Kr separation by a Mixed-linker strategy in Radiation-Resistant Aluminum-Based Metal−Organic Frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Lin ZJ, Mahammed SAR, Liu TF, Cao R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS CENTRAL SCIENCE 2022; 8:1589-1608. [PMID: 36589879 PMCID: PMC9801510 DOI: 10.1021/acscentsci.2c01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zu-Jin Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- College
of Life Science, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shaheer A. R. Mahammed
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
| | - Tian-Fu Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
19
|
Zhang Z, Ye Y, Xiang S, Chen B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc Chem Res 2022; 55:3752-3766. [PMID: 36454588 DOI: 10.1021/acs.accounts.2c00686] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.
Collapse
Affiliation(s)
- Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
20
|
Chen L, Yuan Z, Zhang H, Ye Y, Yang Y, Xiang F, Cai K, Xiang S, Chen B, Zhang Z. A Flexible Hydrogen-Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole N-H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angew Chem Int Ed Engl 2022; 61:e202213959. [PMID: 36259375 DOI: 10.1002/anie.202213959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.
Collapse
Affiliation(s)
- Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Lu ML, Huang W, Gao S, Zhang JL, Liang WB, Li Y, Yuan R, Xiao DR. Pyrene-Based Hydrogen-Bonded Organic Frameworks as New Emitters with Porosity- and Aggregation-Induced Enhanced Electrochemiluminescence for Ultrasensitive MicroRNA Assay. Anal Chem 2022; 94:15832-15838. [DOI: 10.1021/acs.analchem.2c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mei-Ling Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Wei Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shuzhen Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jia-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yan Li
- Analytical and Testing Center, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
22
|
Aluminum-based microporous metal-organic framework for noble gas separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Yang Z, Hashimoto T, Oketani R, Nakamura T, Hisaki I. Geometrically Mismatched Hydrogen‐bonded Framework Composed of Tetratopic Carboxylic Acid. Chemistry 2022; 28:e202201571. [DOI: 10.1002/chem.202201571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuxi Yang
- Division of Environmental Materials Science Graduate School of Environmental Science Hokkaido University 060-0810 Sapporo Hokkaido Japan
| | - Taito Hashimoto
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Ryusei Oketani
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Takayoshi Nakamura
- Division of Environmental Materials Science Graduate School of Environmental Science Hokkaido University 060-0810 Sapporo Hokkaido Japan
- Research Institute for Electronic Science Hokkaido University 001-0020 Sapporo Hokkaido Japan
| | - Ichiro Hisaki
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| |
Collapse
|
24
|
Di Z, Liu C, Pang J, Zou S, Ji Z, Hu F, Chen C, Yuan D, Hong M, Wu M. A Metal‐Organic Framework with Nonpolar Pore Surfaces for the One‐Step Acquisition of C
2
H
4
from a C
2
H
4
and C
2
H
6
Mixture. Angew Chem Int Ed Engl 2022; 61:e202210343. [DOI: 10.1002/anie.202210343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyi Di
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 China
| | - Caiping Liu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiandong Pang
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shuixiang Zou
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhenyu Ji
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Falu Hu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Cheng Chen
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
25
|
Di Z, Liu C, Pang J, Zou S, Ji Z, Hu F, Chen C, Yuan D, Hong M, Wu M. A Metal‐Organic Framework with Nonpolar Pore Surfaces for the One‐step Acquisition of C2H4 from a C2H4 and C2H6 Mixture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhengyi Di
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Caiping Liu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Jiandong Pang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Shuixiang Zou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Zhenyu Ji
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Falu Hu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Cheng Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Daqiang Yuan
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Mingyan Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| |
Collapse
|
26
|
Xiong XH, Zhang L, Wang W, Zhu NX, Qin LZ, Huang HF, Meng LL, Xiong YY, Barboiu M, Fenske D, Hu P, Wei ZW. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO 2) for Selective Separation of C 2H 4 from a C 2H 2/C 2H 4/CO 2 Mixture and CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32105-32111. [PMID: 35791739 DOI: 10.1021/acsami.2c08338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A nitro-decorated microporous covalent organic framework, TpPa-NO2, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate C2H4 from a C2H2/C2H4/CO2 mixture and capture CO2 from CO2/N2 based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward C2H2 and CO2, playing vital roles in efficient separation.
Collapse
Affiliation(s)
- Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huan-Feng Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yang-Yang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mihail Barboiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes (IEM), University of Montpellier, Montpellier 34000, France
| | - Dieter Fenske
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Peng Hu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
28
|
|
29
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|