1
|
Zhang Q, Wu K, Liu R, Luo J. Dual Anticorrosive and Self-healing Coating Based on Multiresponsive Polyaniline Porous Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20906-20917. [PMID: 39323030 DOI: 10.1021/acs.langmuir.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this work, a smart self-healing coating with long-term anticorrosion ability was developed based on multiresponsive polyaniline (PANI) porous microspheres. The polyaniline porous microspheres loaded with corrosion inhibitor (benzotriazole, BTA) was prepared by the emulsion template method and photopolymerization. The BTA loaded in the polyaniline microspheres acted as a corrosion inhibitor, while the polyaniline in the shell performed the multiple functions of corrosion inhibition, pH-responsive and photoresponsive release, and photothermal conversion. Owing to the inherent corrosion-inhibiting nature of BTA and PANI, the BTA-loaded polyaniline microsphere could endow coating with dual anticorrosive properties. The coating with polyaniline microspheres did not show any corrosion product after 700 h of salt spray testing, while obvious pitting corrosion could be observed for the blank coating after 100 h of the salt spray test. Thanks to the photothermal properties of PANI, the composite coating exhibited self-healing behavior under NIR light irradiation. The coating with 10 wt % polyaniline microspheres could achieve rapid closure and recover its barrier properties within 5 s of NIR irradiation. And the release of BTA could form a passivation film on scratches to further repair coating defects. The on-command responsive release, high healing efficiency, and excellent anticorrosion properties of this dual self-healing anticorrosion coating provide perspectives on extending the service life of metals.
Collapse
Affiliation(s)
- Qingqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
2
|
Xu CL, Yuan C, Yang Z, Xu X, Wang G, Yang Z, Cheng Z, Zhang S, Li T, Lv G, Cai J, Qi X. Nonflammable superhydrophobic passive cooling Cellulose-CaCO 3 film. J Colloid Interface Sci 2024; 671:529-542. [PMID: 38815388 DOI: 10.1016/j.jcis.2024.05.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Energy consumption from air cooling systems in summer, water scarcity in hot regions, and the functional reusability of waste paper are emerging environmental problems. Finding solutions to these problems simultaneously remains a significant challenge. Herein, a superhydrophobic passive cooling Cellulose-CaCO3 film with hierarchical nano-sheets was fabricated to realize daytime radiative cooling with a temperature drop of 15-20 °C in summer and water harvesting with harvesting efficiency of 387 mg cm-2h-1 bd utilization of recycled waste paper. The superhydrophobic Cellulose-CaCO3 film demonstrates its self-cleaning properties against inorganic and organic pollutants. Furthermore, the superhydrophobicity of the film was maintained after base/acid corrosions, dynamic water flushing, and thermal treatment at 100 °C for 7 h, exhibiting good durability of the superhydrophobicity. Moreover, the superhydrophobic Cellulose-CaCO3 film is nonflammable after exposure to fire combustion for 1 min. In addition to waste paper, waste maize straws, and pasteboards were also collected to produce superhydrophobic passive cooling films. Results indicate that the above three cellulose-based raw materials can be well used to prepare durable superhydrophobic passive cooling materials. Environmental toxicology assessments confirm the safety of the material. This study not only provides a protocol for preparing superhydrophobic materials; but also demonstrates their potential for passive cooling and water harvesting.
Collapse
Affiliation(s)
- Chang-Lian Xu
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China.
| | - Chongfeng Yuan
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Zelong Yang
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, 211 Huimin Road, Chengdu 611130, China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, 211 Huimin Road, Chengdu 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, 211 Huimin Road, Chengdu 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, 211 Huimin Road, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Xin Qi
- College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| |
Collapse
|
3
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Xavier TP, Piraviperumal M. Self-Cleaning Hydrophobic Coating Composed of Micro/Nano-Imprinted Polydimethylsiloxane with Enhanced Light In-Coupling Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44114-44126. [PMID: 39121340 DOI: 10.1021/acsami.4c10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
In this study, we have optimized optically transparent polydimethylsiloxane (PDMS) hydrophobic coating on glass substrates that exhibit self-cleaning as well as enhanced light in-coupling capabilities. Micro/nano textures on the surface of PDMS were introduced through micro/nanoimprinting to achieve light trapping as well as self-cleaning abilities. Comprehensive studies show that the periodic arrangement of the micro/nanopatterned features has enabled enhanced inward transmission of light in the visible range along with superior hydrophobicity. The water contact angle (WCA) measurements on these coatings demonstrated a superior capacity for self-cleaning with a WCA of about 117°. Subsequently, when these transparent and hydrophobic coatings were deposited on commercial silicon solar cells, they showed a 15.8% increment in efficiency due to enhanced light in-coupling with a nanopatterned PDMS coating.
Collapse
Affiliation(s)
- Thatheyus Peter Xavier
- Thinfilm Photovoltaics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Malar Piraviperumal
- Thinfilm Photovoltaics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
5
|
Hsia HH, Chen YL, Tai YT, Tian HK, Kung CW, Liu WR. Two-Dimensional Metal-Organic Frameworks/Epoxy Composite Coatings with Superior O 2/H 2O Resistance for Anticorrosion Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41421-41434. [PMID: 38994719 PMCID: PMC11310901 DOI: 10.1021/acsami.4c04843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Corrosion protection technology plays a crucial role in preserving infrastructure, ensuring safety and reliability, and promoting long-term sustainability. In this study, we combined experiments and various analyses to investigate the mechanism of corrosion occurring on the epoxy-based anticorrosive coating containing the additive of two-dimensional (2D) and water-stable zirconium-based metal-organic frameworks (Zr-MOFs). By using benzoic acid as the modulator for the growth of the MOF, a 2D MOF constructed from hexazirconium clusters and BTB linkers (BTB = 1,3,5-tri(4-carboxyphenyl)benzene) with coordinated benzoate (BA-ZrBTB) can be synthesized. By coating the BA-ZrBTB/epoxy composite film (BA-ZrBTB/EP) on the surface of cold-rolled steel (CRS), we found the lowest coating roughness (RMS) of BA-ZrBTB/EP is 2.83 nm with the highest water contact angle as 99.8°, which represents the hydrophobic coating surface. Notably, the corrosion rate of the BA-ZrBTB/EP coating is 2.28 × 10-3 mpy, which is 4 orders of magnitude lower than that of the CRS substrate. Moreover, the energy barrier for oxygen diffusion through BA-ZrBTB/EP coating is larger than that for epoxy coating (EP), indicating improved oxygen resistance for adding 2D Zr-MOFs as the additive. These results underscore the high efficiency and potential of BA-ZrBTB as a highly promising agent for corrosion prevention in various commercial applications. Furthermore, this study represents the first instance of applying 2D Zr-MOF materials in anticorrosion applications, opening up new possibilities for advanced corrosion-resistant coatings.
Collapse
Affiliation(s)
- Hao-Hsuan Hsia
- Department
of Chemical Engineering, R&D Center for Membrane Technology, Research
Center for Circular Economy, Chung Yuan
Christian University, Taoyuan 32023, Taiwan
- Department
of Graduate Institude of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - You-Liang Chen
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan
City 70101, Taiwan
| | - Yu-Ting Tai
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan
City 70101, Taiwan
- Program
on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor
and Sustainable Manufacturing, National
Cheng Kung University, Tainan 70101, Taiwan
| | - Hong-Kang Tian
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan
City 70101, Taiwan
- Program
on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor
and Sustainable Manufacturing, National
Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical
Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chung-Wei Kung
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan
City 70101, Taiwan
| | - Wei-Ren Liu
- Department
of Chemical Engineering, R&D Center for Membrane Technology, Research
Center for Circular Economy, Chung Yuan
Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
6
|
Hou Z, Zhou T, Bai L, Wang W, Chen H, Yang L, Yang H, Wei D. Design of Cellulose Nanocrystal-Based Self-Healing Nanocomposite Hydrogels and Application in Motion Sensing and Sweat Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37087-37099. [PMID: 38958653 DOI: 10.1021/acsami.4c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 μmol/L) and low detection limit (0.42 μmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.
Collapse
Affiliation(s)
- Zehua Hou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tianjun Zhou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Baoyuan Biotechnology Co., Ltd., Yantai 264006, China
| | - Wenxiang Wang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
7
|
Jiang H, Chen X, Fang Z, Xiong Y, Wang H, Tang X, Ren J, Tang P, Li J, Wang G, Li Z. NIR-Driven Self-Healing Phase-Change Solid Slippery Surface with Stability and Promising Antifouling and Anticorrosion Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34089-34099. [PMID: 38888573 DOI: 10.1021/acsami.4c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have great potential to replace traditional antifouling coatings due to their efficient, green, and broad-spectrum antifouling performance. However, the lubricant dissipation problem of SLIPS severely restricts its further development and application, and the robust SLIPS continues to be extremely challenging. Here, a composite phase-change lubricant layer consisting of paraffin, silicone oil, and MXene is designed to readily construct a stable and NIR-responsive self-healing phase-change solid slippery surface (PCSSS). Collective results showed that PCSSS could rapidly achieve phase-change transformation and complete self-healing under NIR irradiation and keep stable after high-speed water flushing, centrifugation, and ultrasonic treatment. The antifouling performance of PCSSS evaluated by protein, bacteria, and algae antiadhesion tests demonstrated the adhesion inhibition rate was as high as 99.99%. Moreover, the EIS and potentiodynamic polarization experiments indicated that PCSSS had stable and exceptional corrosion resistance (|Z|0.01Hz = 3.87 × 108 Ω·cm2) and could effectively inhibit microbiologically influenced corrosion. The 90 day actual marine test reveals that PCSSS has remarkable antifouling performance. Therefore, PCSSS presents a novel, facile, and effective strategy to construct a slippery surface with the prospect of facilitating its application in marine antifouling and corrosion protection.
Collapse
Affiliation(s)
- Hao Jiang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaotong Chen
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Fang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yangkai Xiong
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haomin Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuewei Tang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiahao Ren
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Panpan Tang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jipeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Guoqing Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zheng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Wei J, Rao L, Huang M, Xiao X, Wang J. "Honeycomb" Photothermal Lubricated Porous Foam with Low-Temperature, Weak-Light, Anti-Icing/Deicing, and Long-Lasting Lubrication Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13728-13738. [PMID: 38904776 DOI: 10.1021/acs.langmuir.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The prevalence of icing in nature has become a significant threat to human work and life, prompting the development of more energy-efficient active/passive combination anti-icing/deicing technologies. In order to overcome the disadvantage of the poor durability of superhydrophobic surfaces, lubricated surfaces inspired by nepenthes have been preferred. In this study, a paraffin and silicone oil-infused photothermal foam (PSIPF) with excellent overall performance was prepared using polypyrrole (PPy) as a photothermal conversion material, a mixture of silicone oil and paraffin as a lubricating fluid, and melamine foam (MF) as a carrier. The surface adhesive strength is less than 20 kPa at -20 °C, the melting time is only 1018 s at an irradiance of 200 W/m2 and -20 °C (0.2 sun), and surface droplets do not freeze within 1 h at -10 °C. Furthermore, the surface exhibits excellent mechanical durability and stability, maintaining optimal lubrication properties following repeated cycles of icing/deicing, water rinsing, and immersion for 2 days in acid and alkaline conditions. This photothermal lubricated surface with excellent anti-icing/deicing properties at low temperatures and in weak-light environments provides a wider range of applications for equipment at high latitudes and high altitudes.
Collapse
Affiliation(s)
- Jue Wei
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Li Rao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Min Huang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
9
|
Hassan N, Ajmal Z, Liang Heng S, Fahmi Fawy K, Mahmood S, Mushtaq F, Albaqami MD, Mohammad S, Rasool RT, Ashraf GA. Fabrication of a sustainable superhydrophobic surface of Ag-NPs@SA on copper alloy for corrosion resistance, photocatalysis, and simulated distribution of Ag atoms. Analyst 2024; 149:3245-3262. [PMID: 38687206 DOI: 10.1039/d3an02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Artificial superhydrophobic surfaces that do not absorb water, like the lotus leaf, show tremendous promise in numerous applications. However, superhydrophobic surfaces are rarely used because of their low stability and endurance. A stable organic superhydrophobic surface (SHS) composed of novel morphology Ag-nanoparticles (NPs) has been fabricated on a copper alloy via etching, immersion, spraying, and annealing treatment, along with a static water contact angle (WCA) of 158 ± 1° and sliding angle (SA) less than 2°. The surface texture, composition, and morphology of the substrate surfaces were explored by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and DFT-based Ag atom distribution. The anti-corrosion study of non-coated and Ag-NP-coated copper alloy was undertaken using electrochemical impedance spectroscopy. Ag-NPs +SA@SHS enhanced the corrosion resistance as compared with bare Cu alloy. The water droplet rolled down the coated Cu alloy, removed the chalk powder from the surface, and indicated an excellent self-cleaning function. Photodegradation of Congo red (CR) and methylene blue (MB) dye samples was assessed by measuring the absorbance through UV-Visible spectrophotometry, where the Ag-NPs coated on the copper alloy were used as a catalyst. The performance of the SHS@Ag-NPs in the aqueous solution was 99.31% and 98.12% for industrial pollutants (CR and MB), with degradation rates of 5.81 × 10-2 s-1 and 5.89 × 10-2 s-1, respectively. These findings demonstrated a simple, rapid, and low-energy fabrication technique for SHS@Ag-NPs. This research reveals a valuable approach for the fabrication of SHS@Ag-NPs on various substrates to extend the superhydrophobic surfaces with ultra-fast self-healing properties, for outdoor applications such as anti-corrosion, for an innovative approach for the remediation of polluted water treatment, and for industrial applications.
Collapse
Affiliation(s)
- Noor Hassan
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Sun Liang Heng
- Rail Transit College, Chengdu Industry and Trade College, Chengdu, 611730, China.
| | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sajid Mahmood
- Green Chemicals & Energy Process Development Laboratory, China Beacons Institute, University of Nottingham Ningbo, Ningbo 315040, China
| | - Fazila Mushtaq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raqiqa Tur Rasool
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Ghulam Abbas Ashraf
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
10
|
Li X, Li H, Su H, Tan X, Lin X, Wu Y, Jiang L, Xiao T, Tan X. Substrate-Independent Superhydrophobic Coating Capable of Photothermal-Induced Repairability for Multiple Damages Fabricated via Simple Blade Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9449-9461. [PMID: 38659090 DOI: 10.1021/acs.langmuir.3c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Repairable superhydrophobic surfaces have promising application potential in many fields. However, so far, it is still a challenge to develop a superhydrophobic surface with repairability for multiple types of damage through a simple method. In this paper, a repairable superhydrophobic coating was obtained on various substrates by blade-coating mixtures of polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), and multiwalled carbon nanotubes (MWCNTs) modified with dopamine (PDA) and octadecylamine (ODA). The obtained coating has a good liquid-repellent property with a water contact angle above 150° and a water sliding angle of ∼6° and possesses an excellent absorbance (∼97%) in the wavelength range of 250-2500 nm. Due to its high absorbance, the coating displays an outstanding photothermal effect with a temperature rise of ∼65 °C under irradiation by 1.0 kW/m2 of simulated sunlight. Furthermore, after being degraded by multiple stimuli, including plasma treatment, acid/alkali/oil immersion, sand impact, and the icing-thawing cycle, the coating can recover superhydrophobicity via sunlight irradiation, demonstrating the good photothermal-induced repairability of the coating. It can be expected that the good water-repellent property, photothermal effect, and repairability give this coating a promising prospect in practical applications.
Collapse
Affiliation(s)
- Xinyi Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Hao Li
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Haoqiang Su
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xin Tan
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xiang Lin
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Yahui Wu
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Lihua Jiang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Ting Xiao
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xinyu Tan
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| |
Collapse
|
11
|
Li H, Xin L, Gao J, Shao Y, Zhang Z, Ren L. Underwater Bionic Self-Healing Superhydrophobic Coating with the Synergetic Effect Of Hydrogen Bonds and Self-Formed Bubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309012. [PMID: 38178643 DOI: 10.1002/smll.202309012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Indexed: 01/06/2024]
Abstract
The self-healing ability of superhydrophobic surfaces in air has attracted tremendous additions in recent years. Once the superhydrophobic surface is damaged underwater, water seeps into gaps among micro/nano structures. The air film diffuses into water and eventually disappears during immersion without actively replenishing the gas, which results in the impossible of self-healing. Here, an underwater self-healing superhydrophobic coating with the synergetic effect of hydrogen bonds and self-formed bubbles via the spraying method is fabricated. The movement of hydrogen bonds of the prepared polyurethane enables microstructures to reconstruct at room temperature and self-formed bubbles of effervescent materials underwater actively replenish gas before microstructures completely self-healing, achieving the self-healing property of the superhydrophobic coating. Moreover, the hydrophilic effervescent material is sprayed along with unmodified micron-scaled particles because modified nano-scale particles are key factors for the realization of superhydrophobic coating. An underwater stable superhydrophobic surface with pressure resistance (4.9 kPa) is demonstrated. This superhydrophobic coating also shows excellent drag reduction, anti-icing, and anti-corrosion properties. This facile and scalable method offers a new route that an underwater self-healing superhydrophobic coating executes the gas film recovery.
Collapse
Affiliation(s)
- Hao Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
- Key Laboratory of Bionic Engineering, (Ministry of Education) and College of Bionic Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P.R. China
| | - Lei Xin
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Jian Gao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Yanlong Shao
- Key Laboratory of Bionic Engineering, (Ministry of Education) and College of Bionic Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P.R. China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, (Ministry of Education) and College of Bionic Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P.R. China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, (Ministry of Education) and College of Bionic Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P.R. China
| |
Collapse
|
12
|
Guo R, Wang J, Zhao W, Cui S, Qian S, Chen Q, Li X, Liu Y, Zhang Q. A novel strategy for specific sensing and inactivation of Escherichia coli: Constructing a targeted sandwich-type biosensor with multiple SERS hotspots to enhance SERS detection sensitivity and near-infrared light-triggered photothermal sterilization performance. Talanta 2024; 269:125466. [PMID: 38008021 DOI: 10.1016/j.talanta.2023.125466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Human health is greatly threatened by bacterial infection, which raises the risk of serious illness and death in humans. For early screening and accurate treatment of bacterial infection, there is a strong desire to undertake ultrasensitive detection and effective killing of pathogenic bacteria. Herein, a novel surface-enhanced Raman scattering (SERS) biosensor based on sandwich structure consisting of capture probes/bacteria/SERS tags was established for specific identification, capture and photothermal killing of Escherichia coli (E. coli). Finite-difference time-domain (FDTD) technique was used to simulate the electromagnetic field distribution of capture probes, SERS tags and sandwich-type SERS substrate, and a possible SERS enhancement mechanism based on sandwich structure was presented and discussed. Sandwich-type SERS biosensor successfully achieved distinctive identification and magnetic beneficiation of E. coli. In addition, a single SERS substrate, including capture probes and SERS tags, could also achieve outstanding photothermal effects as a consequence of localized surface plasmon resonance (LSPR) effect. Intriguingly, sandwich-type SERS biosensor demonstrated a higher photothermal conversion efficiency (50.03 %) than the single substrate, which might be attributed to the formation of target bacterial clusters. The superior biocompatibility and the low toxicity of the sandwich-type biosensor were confirmed. Our approach offers a fresh method for constructing sandwich-type biosensor with multiple SERS hotspots based on extremely effective hybrid plasmonic nanoparticles, and has a wide range of potential applications in the recognition and treatment of bacteria.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Jingru Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Qiuxu Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Xue Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| |
Collapse
|
13
|
Cui X, Zhang L, Yang Y, Tang P. Understanding the application of covalent adaptable networks in self-repair materials based on molecular simulation. SOFT MATTER 2024; 20:1486-1498. [PMID: 38264848 DOI: 10.1039/d3sm01364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covalent adaptable networks (CANs) are widely used in the field of self-repair materials. They are a group of covalently cross-linked associative polymers that undergo reversible chemical reactions, and can be further divided into dissociative CANs (Diss-CANs) and associative CANs (Asso-CANs). Self-repair refers to the ability of a material to repair itself without external intervention, and can be classified into self-adhesion and self-healing according to the utilization of open stickers. Unlike conventional materials, the viscoelastic properties of CANs are influenced by both the molecular structure and reaction kinetics, ultimately affecting their repair performance. To gain deeper insight into the repair mechanism of CANs, we conducted simulations by using the hybrid MC/MD algorithm, as previously proposed in our research. Interestingly, we observed a significant correlation between reaction kinetics and repair behavior. Asso-CANs exhibited strong mechanical strength and high creep resistance, rendering them suitable as self-adhesion materials. On the other hand, Diss-CANs formed open stickers that facilitated local relaxation, aligning perfectly with self-healing processes. Moreover, the introduction of crosslinkers in the form of small molecules enhanced the repair efficiency. Theoretically, it was found that the repair timescale of Asso-CANs is slower than that of Diss-CANs with identical molecular structures. Our study not only clarifies the similarities and differences between Diss-CANs and Asso-CANs in terms of their self-repairing capabilities, but more importantly, it provides valuable insights guiding the effective utilization of CANs in the development of self-repair materials.
Collapse
Affiliation(s)
- Xiang Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
14
|
Xiang B, Gong J, Sun Y, Li J. Robust PVA/GO@MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132803. [PMID: 37866141 DOI: 10.1016/j.jhazmat.2023.132803] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The poor mechanical durability and weak fouling resistance of oil/water separation membranes severely restrict their applications in industry. Herein, a robust PVA/GO@MOF membrane with fast photothermal self-cleaning capability was developed through facile chemical crosslinking and suction-filtration strategies. Attributed to the powerful underwater superoleophobicity, the PVA/GO@MOF membrane exhibited extraordinary anti-oil adhesion even for high-viscosity crude oil and continuous crude oil emulsion purification capability with stable flux (1020 L m-2 h-1 bar-1) and exceptional efficiency (> 99.3%) even after 60 min. Most importantly, in comparison to reported photocatalytic self-cleaning oil/water separation membranes, the PVA/GO@MOF membrane can degrade organic contaminants more rapidly with a higher degradation rate (99.9%) in 50 min due to the superior photothermal conversion capacity. The synergistic photothermal and photocatalytic effects significantly enhanced photodegradation efficiency, which created opportunities for in-depth treatment of complex oily wastewater. Besides, the obtained membrane displayed excellent chemical and mechanical durability with underwater oil contact angle (UWOCA) above 150° even in harsh environments, such as corrosive solutions, UV irradiation, ultrasound treatment, abrasion experiment and bending test. Therefore, the developed PVA/GO@MOF membrane with robust durability and fast photocatalytic self-cleaning property is highly expected to purify oily wastewater and degrade organic pollutants.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuqing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
15
|
Vaithilingam S, Thirviyam SK, Muthukaruppan A, Arulanandu JA. CdO-Nanografted Superhydrophobic Hybrid Polymer Composite-Coated Cotton Fabrics for Self-Cleaning and Oil/Water Separation Applications. ACS OMEGA 2023; 8:43163-43177. [PMID: 38024688 PMCID: PMC10652371 DOI: 10.1021/acsomega.3c06790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The current study presents a simple and cost-competitive method for the development of high-performance superhydrophobic and superoleophilic cotton fabrics coated with cadmium oxide/cerotic acid (CdO/CE)-polycaprolactone (PCL)- and cadmium oxide/stearic acid (CdO/ST)-polycaprolactone-grafted hybrid composites. X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy are used to characterize the CdO/CE-PCL and CdO/ST-PCL and polycaprolactone-modified cotton fabrics. Using an optical contact angle meter, the wetting behavior of corrosive liquids such as coffee, milk, tea, water dyed with methylene blue, strong acids (HCl), strong alkali (NaOH), and saturated salt solution (NaCl) on the CdO-CE/ST/PCL-modified cotton fabrics is assessed as well as the durability of CdO-CE/ST/PCL-modified cotton fabrics in corrosive liquids. Data obtained from the oil-water separation experiment indicate remarkable separation efficiency with oil purity values of ≥99.97 wt %, and high permeation flux values of up to 11,700 ± 300 L m-2 h-1 are observed for surfactant-stabilized water-in-oil emulsions via a gravity-driven technique. From the data obtained, it is concluded that the nano-CdO-grafted superhydrophobic hybrid polymer composite-coated cotton fabrics (CdO-ST/(CE)/PCL/CFs) can be utilized for self-cleaning and oil/water separation applications.
Collapse
Affiliation(s)
- Selvaraj Vaithilingam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
| | - Swarna Karthika Thirviyam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
- Dept.
of Chemistry, SDNB Vaishnav College for
Women, Chrompet, Chennai 600 044, India
| | - Alagar Muthukaruppan
- Polymer
Engineering Laboratory, PSG Institute of
Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | | |
Collapse
|
16
|
Wang Z, Qu G, Ren Y, Chen X, Wang J, Lu P, Cheng M, Chu X, Yuan Y. Advances in the Research of Photo, Electrical, and Magnetic Responsive Smart Superhydrophobic Materials: Synthesis and Potential Applications. Chem Asian J 2023; 18:e202300680. [PMID: 37712452 DOI: 10.1002/asia.202300680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
With the rapid advancement of technology, the wettability of conventional superhydrophobic materials no longer suffice to meet the demands of practical applications. Intelligent responsive superhydrophobic materials have emerged as a highly sought-after material in various fields. The exceptional superhydrophobicity, reversible wetting, and intelligently controllable characteristics of these materials have led to extensive applications across industries, including industry, agriculture, defense, and medicine. Therefore, the development of intelligent superhydrophobic materials with superior performance, economic practicality, enhanced sensitivity, and controllability assumes utmost importance in advancing technology worldwide. This article provides a summary of the wettability principles of superhydrophobic surfaces and the mechanisms behind intelligent responsive superhydrophobicity. Furthermore, it reviews and analyzes the recent research progress on light, electric, and magnetic responsive superhydrophobic materials, encompassing aspects such as material synthesis, modification, performance, and responses under diverse external stimuli. The article also explores the challenges associated with different types of responsive superhydrophobic materials and the unique application prospects of light, electric, and magnetic responsive superhydrophobic materials. Additionally, it outlines the future directions for the development of intelligent responsive superhydrophobic materials.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Minhua Cheng
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Xiaomei Chu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| | - Yongheng Yuan
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China
- National Regional Engineering Research Center-NCW, Yunnan, Kunming, 650500, China
| |
Collapse
|
17
|
He J, Xue Y, Liu H, Li J, Liu Q, Zhao Y, Mu L, Sun CL, Qu M. Humidity-Resistant, Conductive Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Human-Machine Interaction Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43963-43975. [PMID: 37690053 DOI: 10.1021/acsami.3c10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
With the rapid development of triboelectric nanogenerators (TENGs), the exploration of self-powered, flexible, and wearable electronic devices has attracted widespread attention. However, the choice of tribomaterials and high humidity environment have a significant impact on the triboelectricity of TENG. Therefore, we prepared a composite fabric (HPC) with superhydrophobic and conductive properties, which was used simultaneously as a tribopositive material and electrode for the construction of promising wearable TENGs. Specifically, the loading of polydopamine, carbon nanotubes, and polypyrrole on the surface of the cotton fabric makes it have not only conductivity but also enhanced tribopositive polarity. Then, cetyltrimethoxysilane was selected to modify it to obtain superhydrophobicity. Compared with the common TENGs with a separate tribolayer and electrode, the integrated HPC-TENG shows the advantages of simpler structure and lighter wear. Moreover, compared with the unmodified fabric-based TENG, the performance of the proposed HPC-TENG is improved by nearly 7.2 times, and the maximum power density can reach 2.6 W m-2. This remarkable output can be attributed to the combination of strong electron-giving groups, high electrical conductivity, and abundant micro- and nanorough structure of the HPC fabric. More importantly, due to the water repellency of the fabric surface, the high output performance can be maintained under high humidity conditions. In addition, HPC-TENG has potential applications as pressure sensors for human motion status monitoring and multichannel sensing for smart game blanket entertainment. The newly designed HPC-TENG offers a new strategy for the development of superhydrophobic fabrics with an electrical conductivity, energy harvesting, and self-powered sensor.
Collapse
Affiliation(s)
- Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuyu Xue
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiehui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qinghua Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yue Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Leihuan Mu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
18
|
Wang Z, Ren Y, Wu F, Qu G, Chen X, Yang Y, Wang J, Lu P. Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: Synthesis and potential application. Adv Colloid Interface Sci 2023; 318:102932. [PMID: 37311274 DOI: 10.1016/j.cis.2023.102932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
With the rapid development of science and technology, superhydrophobic nanomaterials have become one of the hot topics from various subjects. Due to their distinct properties, such as superhydrophobicity, anti-icing and corrosion resistance, superhydrophobic nanomaterials are widely used in industry, agriculture, defense, medicine and other fields. Hence, the development of superhydrophobic materials with superior performance, economical, practical features, and environment-friendly properties are extremely important for industrial development and environmental protection. Aimed to provide a scientific and theoretical basis for the subsequent study on the preparation of composite superhydrophobic nanomaterials, this paper reviewed the latest progress in the research of superhydrophobic surface wettability and the theory of superhydrophobicity, summarized and analyzed the latest development of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials in terms of their synthesis, modification, properties and structure sizes (diameters), discussed the problems and unique application prospects of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China.
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuyi Yang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| |
Collapse
|
19
|
Li J, Li S, Chen C, Guo H, Lei B, Zhang P, Meng G, Feng Z. Dopamine self-polymerized sol-gel coating for corrosion protection of AZ31 Mg Alloy. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Zhang J, Zhu L, Wang C, Huang J, Guo Z. Robust Superamphiphobic Coating Applied to Grease-Proof Mining Transformer Components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37229539 DOI: 10.1021/acs.langmuir.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The iron core and heat sink in a mining transformer are susceptible to damage from oil spills or the harsh mine environment; the deterioration of oil products in the underground environment and transformers produce massive amounts of harmful liquid substances, which may lead to unnecessary economic losses in drilling engineering. To overcome this issue, a convenient and economical way to protect transformer components was developed. Herein, we proposed an air spray technology at room temperature for the preparation of antigreasy superamphiphobic coatings, which are suitable for bulk metallic glass transformer cores and ST13 heat sinks. The addition of polypyrrole powder effectively improves the thermal conductivity and specific heat of the coating in the range of 50-70 °C. More importantly, the fabricated coating has excellent repellency to liquids, such as water, ethylene glycerol, hexadecane, and rapeseed oil. Meanwhile, the coating has excellent physical and chemical resistance and outstanding antifouling features, which provide a feasible solution for combating grease pollution and corrosion in the mine environment. Taking multifaceted stability into consideration, this work contributes to enhancing the application of superamphiphobic coatings in the fields of protecting transformer components in the harsh environment or during transformer operation faults.
Collapse
Affiliation(s)
- Jiaxu Zhang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Lina Zhu
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, People's Republic of China
- Zhengzhou Institute, China University of Geosciences, Beijing 450000, Zhengzhou, People's Republic of China
| | - Chengbiao Wang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Montes Ruiz-Cabello FJ, Fusco S, Ibáñez-Ibáñez P, Guerrero-Vacas G, Cabrerizo-Vílchez MÁ, Rodríguez-Valverde MÁ. Water-Repellent Galvanized Steel Surfaces Obtained by Sintering of Zinc Nanopowder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5469-5476. [PMID: 37016494 PMCID: PMC10116646 DOI: 10.1021/acs.langmuir.3c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Galvanized steel surfaces are widely used in industry as a solution to prevent corrosion of steel tools that operate in outdoor or corrosive and oxidative environments. These objects are coated with a zinc protective layer deposited by hot dip galvanization. Turning the surface of galvanized steel tools into superhydrophobic may lead to very useful functionalities, although it may be a difficult task, because the preservation of the thin zinc layer is a claim. We propose herein the use of a bottom-up approach based on sandblasting, followed by sintering of zinc nanoparticles on the galvanized steel substrate, which allowed us to produce a zinc-made hierarchical structure required for superhydrophobicity. These samples acquired a double-scale structure that led to superhydrophobicity when they were later hydrophobized with a thin fluoropolymer layer. We found that sandblasting might be useful but not mandatory, unlike the sintering process, which was essential to reach superhydrophobicity. We found that, under certain experimental conditions, the surfaces showed outstanding water-repellent properties. We observed that the sandblasting on galvanized steel caused more damage than the sintering process. Sintering of low-melting-point metal nanoparticles was revealed as a promising strategy to fabricate functional metallic surfaces.
Collapse
Affiliation(s)
- Francisco Javier Montes Ruiz-Cabello
- Laboratory
of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain
| | - Schon Fusco
- Laboratory
of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain
| | - Pablo Ibáñez-Ibáñez
- Laboratory
of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain
| | - Guillermo Guerrero-Vacas
- Department
of Mechanics, University of Cordoba, Rabanales Campus, Leonardo da Vinci
Building, Madrid-Cádiz Road, km 396, Cordoba ES-14071, Spain
| | - Miguel Ángel Cabrerizo-Vílchez
- Laboratory
of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain
| | - Miguel Ángel Rodríguez-Valverde
- Laboratory
of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain
| |
Collapse
|
22
|
Thu VT, Trieu MH, An NHT, Dat NT, Linh ND, Manh NB. Mussel - Inspired biosorbent combined with graphene oxide for removal of organic pollutants from aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114793. [PMID: 36963189 DOI: 10.1016/j.ecoenv.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
In this work, we develop a mussel-inspired biosorbent combined with graphene oxide for removal of organic dyes in water sources. The composite was prepared via self-polymerization of dopamine in weak alkaline solution containing graphene oxide at ambient condition. Morphological and structural studies revealed that polydopamine has gradually grown to cover the surface of graphene oxide flakes, partially reduced these flakes, and somehow form many grains (size around 20 nm) on the flakes instead of making very large aggregates as usual. The mass ratio between two components of the composite was also investigated to find the optimal one which provides enough surface area (20 m2.g-1) and maintain adhesive sites in order to ensure high-efficiency removal of organic molecules. The adsorption kinetics and isotherms of as-prepared adsorbent towards methylene blue were found to fit well with pseudo-first order kinetics model and Langmuir isotherm. The maximum adsorption capacity (qm) and Langmuir constant (kL) were estimated to be 270 mg.g-1 and 0.49 L. mg-1. The as-prepared bio-sorbent is very promising for remediation of water sources contaminated with cationic organic molecules and heavy metal ions.
Collapse
Affiliation(s)
- Vu Thi Thu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Mai Hai Trieu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Hoang Thuy An
- Hanoi National University of Education (HNUE), 144 Xuan Thuy, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Tien Dat
- Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Dieu Linh
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Ba Manh
- Institute of Chemistry (IOC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
23
|
Zheng L, Luo S. Fabrication of a durable superhydrophobic surface with corrosion resistance on copper. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
24
|
Yan W, Xue S, Bin Xiang, Zhao X, Zhang W, Mu P, Li J. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion. Chem Commun (Camb) 2023; 59:2182-2198. [PMID: 36723187 DOI: 10.1039/d2cc06688b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal materials are susceptible to the influence of environmental media, and chemical or electrochemical multiphase reactions occur on the metal surface, resulting in the corrosion of metal materials, which can directly damage the geometry and reduce the physical properties of metal materials. This corrosion damage can seriously affect the long-term use of metal materials in marine equipment and the aerospace industry, and other fields. Inspired by the special microstructure and slippery properties of natural nepenthes intine, researchers have prepared slippery liquid-infused porous surfaces (SLIPS) with a stable continuous lubricant layer by injecting low-surface-energy lubricants into a substrate with a micro/nano-porous structure. This surface has excellent hydrophobicity, low friction, non-adhesiveness, and self-healing properties. The broad application prospects of SLIPS in the fields of anti-corrosion, anti-icing, anti-bacteria, and anti-fouling have made it a hot research topic directing the study of biomimetic materials at present. However, SLIPS are susceptible to environmental shear forces, such as ocean flow or extraneous fluids, resulting in destruction of the porous structure and loss of surface lubricant, thereby depriving SLIPS of the ability to protect metals from corrosion. Therefore, it is important for metal corrosion protection to find ways to improve the stability and extend the service life of SLIPS. Over the last several years, research into and development of SLIPS have come a long way. Herein, a summary of available reports on SLIPS is given in terms of design principles and their performance characteristics, the construction of rough/porous substrate structures, the choice of low-surface-energy modifiers and lubricants, and lubricant infusion methods. Ways of constructing different substrate structures and the characteristics, advantages, and disadvantages of choosing various modifiers and lubricants to prepare the surface are compared. Finally, a comprehensive summary and outlook of SLIPS with anti-corrosion properties are provided. We are convinced that a comprehensive review of SLIPS will provide important guidance and strong reference for the design and preparation of green and economical SLIPS with anti-corrosion capabilities in the future.
Collapse
Affiliation(s)
- Wenhao Yan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Shuaiya Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xuerui Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
25
|
Zhang J, Singh V, Huang W, Mandal P, Tiwari MK. Self-Healing, Robust, Liquid-Repellent Coatings Exploiting the Donor-Acceptor Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8699-8708. [PMID: 36735767 PMCID: PMC9940105 DOI: 10.1021/acsami.2c20636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Liquid-repellent coatings with rapid self-healing and strong substrate adhesion have tremendous potential for industrial applications, but their formulation is challenging. We exploit synergistic chemistry between donor-acceptor self-assembly units of polyurethane and hydrophobic metal-organic framework (MOF) nanoparticles to overcome this challenge. The nanocomposite features a nanohierarchical morphology with excellent liquid repellence. Using polyurethane as a base polymer, the incorporated donor-acceptor self-assembly enables high strength, excellent self-healing property, and strong adhesion strength on multiple substrates. The interaction mechanism of donor-acceptor self-assembly was revealed via density functional theory and infrared spectroscopy. The superhydrophobicity of polyurethane was achieved by introducing alkyl-functionalized MOF nanoparticles and post-application silanization. The combination of the self-healing polymer and nanohierarchical MOF nanoparticles results in self-cleaning capability, resistance to tape peel and high-speed liquid jet impacts, recoverable liquid repellence over a self-healed notch, and low ice adhesion up to 50 icing/deicing cycles. By exploiting the porosity of MOF nanoparticles in our nanocomposites, fluorine-free, slippery liquid-infused porous surfaces with stable, low ice adhesion strengths were also achieved by infusing silicone oil into the coatings.
Collapse
Affiliation(s)
- Jianhui Zhang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Vikramjeet Singh
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Wei Huang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Priya Mandal
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Manish K. Tiwari
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| |
Collapse
|
26
|
Yang G, Zhang B, Zheng C, Xu W, Hou B. Waterborne superhydrophobic coating with abrasion and corrosion resistant capabilities. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
27
|
Zhao SR, Liu ZX, Liu JK, Liu J, Luan B, Ma YS, Liu PP. Enhanced Weathering and Corrosion Resistance of Eu-Doped ZnO Solid Solution Material by Fluorescence Modification. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Si-Rui Zhao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P.R. China
| | - Zi-Xiang Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P.R. China
| | - Jin-Ku Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P.R. China
| | - Jichang Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, P.R. China
| | - Bo Luan
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, Shandong Province256500, P.R. China
| | - Yun-Sheng Ma
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, Shandong Province256500, P.R. China
| | - Peng-Peng Liu
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, Shandong Province256500, P.R. China
| |
Collapse
|
28
|
Xiang B, Liu Q, Sun Q, Gong J, Mu P, Li J. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem Commun (Camb) 2022; 58:13413-13438. [PMID: 36398621 DOI: 10.1039/d2cc05780h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering the serious damage to aquatic ecosystems and marine life caused by oil spills and oily wastewater discharge, efficient, environment-friendly and sustainable oil/water separation technology has become an inevitable trend for current development. Herein, fabrics are recognized as eco-friendly materials for water treatment due to their good degradability and low cost. Particularly, fabrics with rough structures and natural hydrophilicity/oleophilicity enable the construction of superwetting surfaces for the selective separation of oil/water mixtures and even complex emulsions. Therefore, superwetting fabrics for efficiently solving oil spills and purifying oily wastewater have received extensive attention. Especially, Janus and smart fabrics are highly anticipated to enable the on-demand and sustainable treatment of oil spills and oily wastewater due to their changeable wettability. Moreover, the fabrication of superwetting fabrics with multifunctional performances for oily wastewater purification can further promote their practical industrial applications, such as photocatalytic, self-cleaning, and self-healing characteristics. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this research field. In this review, firstly, the fundamental theories of wettability and the separation mechanisms based on special wettability are discussed. Then, superwetting fabrics for efficient oil/water separation are systematically reviewed, such as superhydrophobic/superoleophilic (SHB/SOL), superhydrophilic/superoleophobic (SHL/SOB), SHL/underwater superoleophobic (SHL/UWSOB), and UWSOB/underoil superoleophobic (UWSOB/UOSHB) fabrics. Most importantly, we highlight Janus, smart, and multifunctional fabrics based on their superwetting property. Correspondingly, the advantages and disadvantages of each superwetting fabric are comprehensively analyzed. Besides, super-antiwetting fabrics with superhydrophobic/superoleophobic (SHB/SOB) property are also introduced. Finally, the challenges and future research directions are explained.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qiuqiu Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
29
|
Ye X, Li Y, Zhang Y, Wang P, Hu D. Superhydrophobic Polyurethane Membrane with a Biomimetically Hierarchical Structure for Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49274-49283. [PMID: 36259519 DOI: 10.1021/acsami.2c13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a stable and durable hexadecyltrimethoxysilane (HDTMS)/thermoplastic polyurethane (TPU) superhydrophobic film is successfully prepared by a simple and low-cost two-step method, namely, carrying out biomimetically hierarchical structures and low surface energy material modification concurrently. Meanwhile, effective parameters affecting the water contact angle (WCA) are studied and optimized. More importantly, under optimum parameters, the maximum WCA is 165°, the minimum slide angle (SA) is 3°, and the adhesion force is 13 μN, showing good self-cleaning performance. Besides, considerable mechanical stability to withstand 4000 tension or 5000 compression cycles, breathability, and moisture penetrability, as well as chemical resistance with sustained superhydrophobic properties in various harsh environments, are presented.
Collapse
Affiliation(s)
- Xu Ye
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
30
|
One-step spraying achieved superhydrophobic fluoroSiO2@epoxy coating with corrosion-wear resistance and anti-wetting stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Luo W, Niu Z, Mu P, Li J. Pebax and CMC@MXene-Based Mixed Matrix Membrane with High Mechanical Strength for the Highly Efficient Capture of CO 2. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjia Luo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhenhua Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
32
|
Wang Q, Xie D, Li FY, Liu HL, Chen GX, Yu MG. Aqueous construction of raspberry-like ZIF-8 hierarchical structures with enhanced superhydrophobic performance. NANOSCALE 2022; 14:13308-13314. [PMID: 36063419 DOI: 10.1039/d2nr03377a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Materials with super-wetting ability have attracted wide attention from both academia and industry due to their great potential applications. A straightforward and versatile route was proposed for the large-scale synthesis of a monodisperse raspberry-like metal-organic framework (ZIF-8) using zinc nitrate as a zinc source and dimethylimidazole as an organic ligand in aqueous solution. After hydrophobic treatment with hexadecyltrimethoxysilane, the ethanolic suspension of three-dimensional raspberry-like ZIF-8 showed excellent superhydrophobic properties. Furthermore, commercial adhesives were used to blend with the suspension to improve the bonding strength to different substrates. These surfaces retained their water resistance after 50 finger-wipe cycles, 40 sandpaper abrasions and knife scratches. Moreover, the prepared hydrophobic surface can withstand the impact of water flow for 10 minutes. The formulations developed can be used for superhydrophobic coating applications on different substrate surfaces such as aluminum foil, glass, paper and cotton.
Collapse
Affiliation(s)
- Q Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - D Xie
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - F Y Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - H L Liu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - G X Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - M G Yu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
33
|
Zhang Q, Xu P, Pang C, Cui K, Yu C, Huang L. A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating. NEW J CHEM 2022. [DOI: 10.1039/d2nj03988e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superhydrophobic coatings prepared by femtosecond laser treatment have favorable mechanical and chemical stability.
Collapse
Affiliation(s)
- Qi Zhang
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Peng Xu
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- HanKaiSi Intelligent Technology Co., Ltd., Guiyang, 550016, China
| | - Chi Pang
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ke Cui
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Chuan Yu
- HanKaiSi Intelligent Technology Co., Ltd., Guiyang, 550016, China
| | - Liang Huang
- Guizhou Huake Aluminium Co., Ltd., Guiyang, 550014, China
| |
Collapse
|