1
|
Leung VWM, Park SW, Lai JHC, Chen Z, Huang J, Liu Y, Hu C, Chan KWY. Imaging treatment efficacy of repeated photodynamic therapy in glioblastoma using chemical exchange transfer saturation MRI. Magn Reson Med 2025; 93:1771-1781. [PMID: 39498581 DOI: 10.1002/mrm.30362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE To observe the tumor responses during photodynamic therapy in a murine glioblastoma model using chemical exchange saturation transfer (CEST) MRI and to compare the treatment effectiveness between single photodynamic therapy (sPDT) and repeated PDT (rePDT). METHODS After tumor cell implantation in NSG mouse brain (n = 27), mice were subjected to four PDT sessions (rePDT), sPDT after the administration of 5-aminolevulinic acid 6 h before each session, and a non-PDT session (control). A 630-nm LED light was used to effectuate PDT. After 24 h for each PDT session, T2-weighted and CEST MRI were performed over 7 days. RESULTS We observed that rePDT resulted in a continuous suppression of tumors according to T2-weighted images; thus, the tumor volume was the smallest among three groups on Day 7. Both CEST contrasts at 3.5 ppm (amide proton transfer, APT) and- $$ - $$ 3.5 ppm (relayed nuclear Overhauser enhancement, rNOE) in the rePDT group were significantly lower (p < 0.05) than those in the control group starting from Day 5, which corresponds to lower protein and cellularity in tumors in the rePDT group, respectively. CEST contrast decreased by 17.9% at 3.5 ppm and 11.3% at- $$ - $$ 3.5 ppm for rePDT group. This was validated by histology, where we observed moderate correlations between APT with cell proliferation (R = 0.730, p < 0.01) and cell apoptosis (R = 0.715, p < 0.05) and moderate correlation between rNOE with cellularity (R = 0.796, p < 0.01). CONCLUSIONS rePDT has a better effect in tumor growth suppression when compared with sPDT, and CEST could be a robust and noninvasive mean to assess the molecular changes related to treatment efficacy.
Collapse
Affiliation(s)
- Vivian W M Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Incando Therapeutics Pte Ltd, Singapore
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| | - Charles Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Incando Therapeutics Pte Ltd, Singapore
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Wang Y, Ma X, Zhang Y, Yang Y, Wang P, Chen T, Gao C, Dong C, Zheng J, Wu A. Insights into Non-Metallic Magnetic Resonance Imaging Contrast Agents: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411875. [PMID: 39901535 DOI: 10.1002/smll.202411875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Traditional metal-based magnetic resonance imaging contrast agents (MRI CAs), such as gadolinium, iron, and manganese, have made significant advancements in diagnosing major diseases. However, their potential toxicity due to long-term accumulation in the brain and bones raises safety concerns. In contrast, non-metallic MRI CAs, which can produce a nuclear magnetic resonance effect, show great promise in MRI applications due to their adaptable structure and function, good biocompatibility, and excellent biodegradability. Nevertheless, the development of non-metallic MRI CAs is slow due to the inherent low magnetic sensitivity of organic compounds, their rapid metabolism, and susceptibility to reduction. Designing effective multifunctional organic compounds for high-sensitivity MRI remains a challenge. In this discussion, the mechanisms of various non-metallic MRI CAs are explored and an overview of their current status, highlighting both their advantages and potential drawbacks, is provided. The key strategies for creating high-performance MRI CAs are summarized and how different synthetic approaches affect the performance of non-metallic MRI Cas is evaluated. Last, the challenges and future prospects for these promising non-metallic MRI CAs are addressed.
Collapse
Affiliation(s)
- Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuehua Ma
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanqiang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Pengyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 3l5010, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
5
|
Pemmasani Prabakaran RS, Park SW, Lai JHC, Wang K, Xu J, Chen Z, Ilyas AMO, Liu H, Huang J, Chan KWY. Deep-learning-based super-resolution for accelerating chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2024; 37:e5130. [PMID: 38491754 DOI: 10.1002/nbm.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
Chemical exchange saturation transfer (CEST) MRI is a molecular imaging tool that provides physiological information about tissues, making it an invaluable tool for disease diagnosis and guided treatment. Its clinical application requires the acquisition of high-resolution images capable of accurately identifying subtle regional changes in vivo, while simultaneously maintaining a high level of spectral resolution. However, the acquisition of such high-resolution images is time consuming, presenting a challenge for practical implementation in clinical settings. Among several techniques that have been explored to reduce the acquisition time in MRI, deep-learning-based super-resolution (DLSR) is a promising approach to address this problem due to its adaptability to any acquisition sequence and hardware. However, its translation to CEST MRI has been hindered by the lack of the large CEST datasets required for network development. Thus, we aim to develop a DLSR method, named DLSR-CEST, to reduce the acquisition time for CEST MRI by reconstructing high-resolution images from fast low-resolution acquisitions. This is achieved by first pretraining the DLSR-CEST on human brain T1w and T2w images to initialize the weights of the network and then training the network on very small human and mouse brain CEST datasets to fine-tune the weights. Using the trained DLSR-CEST network, the reconstructed CEST source images exhibited improved spatial resolution in both peak signal-to-noise ratio and structural similarity index measure metrics at all downsampling factors (2-8). Moreover, amide CEST and relayed nuclear Overhauser effect maps extrapolated from the DLSR-CEST source images exhibited high spatial resolution and low normalized root mean square error, indicating a negligible loss in Z-spectrum information. Therefore, our DLSR-CEST demonstrated a robust reconstruction of high-resolution CEST source images from fast low-resolution acquisitions, thereby improving the spatial resolution and preserving most Z-spectrum information.
Collapse
Affiliation(s)
- Rohith Saai Pemmasani Prabakaran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Huabing Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Tung Biomedical Sciences Centre, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Ding J, He L, Yang L, Cheng L, Zhao Z, Luo B, Jia Y. Novel Nanoprobe with Combined Ultrasonography/Chemical Exchange Saturation Transfer Magnetic Resonance Imaging for Precise Diagnosis of Tumors. Pharmaceutics 2023; 15:2693. [PMID: 38140034 PMCID: PMC10747786 DOI: 10.3390/pharmaceutics15122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given that cancer mortality is usually due to a late diagnosis, early detection is crucial to improve the patient's results and prevent cancer-related death. Imaging technology based on novel nanomaterials has attracted much attention for early-stage cancer diagnosis. In this study, a new block copolymer, poly(ethylene glycol)-poly(l-lactide) diblock copolymer (PEG-PLLA), was synthesized by the ring-opening polymerization method and thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (H-NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The obtained PEG-PLLA was used to prepare nanoparticles encapsulated with perfluoropentane and salicylic acid by the emulsion-solvent evaporation method, resulting in a new dual-mode nano-image probe (PEG-PLLA@SA·PFP). The zeta potential and mean diameter of the obtained nanoparticles were measured using dynamic light scattering (DLS) with a Malvern Zetersizer Nano. The in vitro biocompatibility of the PEG-PLLA nanoparticles was evaluated with cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed using an ultrasonic imaging apparatus, and chemical exchange saturation transfer (CEST) MRI was conducted on a 7.0 T animal scanner. The results of IR and NMR confirmed that the PEG-PLLA was successfully synthesized. The particle size and negative charge of the nanoparticles were 223.8 ± 2.5 nm and -39.6 ± 1.9 mV, respectively. The polydispersity of the diameter was 0.153 ± 0.020. These nanoparticles possessed good stability at 4 °C for about one month. The results of cytotoxicity, cell migration, and hemolysis assays showed that the carrier material was biocompatible. Finally, PEG-PLLA nanoparticles were able to significantly enhance the imaging effect of tumors by the irradiation of ultrasound and saturation by a radiofrequency pulse, respectively. In conclusion, these nanoparticles exhibit promising dual-mode capabilities for US/CEST MR imaging.
Collapse
Affiliation(s)
- Jieqiong Ding
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Liu He
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Lin Yang
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China;
| | - Liyuan Cheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Zhiwei Zhao
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China;
| | - Binhua Luo
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
7
|
Law LH, Huang J, Xiao P, Liu Y, Chen Z, Lai JHC, Han X, Cheng GWY, Tse KH, Chan KWY. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI. J Control Release 2023; 354:208-220. [PMID: 36623695 DOI: 10.1016/j.jconrel.2023.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Image guided nose-to-brain drug delivery provides a non-invasive way to monitor drug delivered to the brain, and the intranasal administration could increase effective dose via bypassing Blood Brain Barrier (BBB). Here, we investigated the imaging of liposome-based drug delivery to the brain via intranasal administration, in which the liposome could penetrate mucus and could be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) at 3T field strength. Liposomes were loaded with a computed tomography (CT) contrast agent, iohexol (Ioh-Lipo), which has specific amide protons exchanging at 4.3 ppm of Z-spectrum (or CEST spectrum). Ioh-Lipo generated CEST contrasts of 35.4% at 4.3 ppm, 1.8% at -3.4 ppm and 20.6% at 1.2 ppm in vitro. After intranasal administration, these specific CEST contrasts were observed in both olfactory bulb (OB) and frontal lobe (FL) in the case of 10% polyethylene glycol (PEG) Ioh-Lipo. We observed obvious increases in CEST contrast in OB half an hour after the injection of 10% PEG Ioh-Lipo, with a percentage increase of 62.0% at 4.3 ppm, 10.9% at -3.4 ppm and 25.7% at 1.2 ppm. Interestingly, the CEST map at 4.3 ppm was distinctive from that at -3.4 pm and 1.2 ppm. The highest contrast of 4.3 ppm was at the external plexiform layer (EPL) and the region between left and right OB (LROB), while the CEST contrast at -3.4 ppm had no significant difference among all investigated regions with slightly higher signal in olfactory limbus (OL, between OB and FL) and FL, as validated with histology. While no substantial increase of CEST contrast at 4.3 ppm, -3.4 ppm or 1.2 ppm was observed in OB and FL when 1% PEG Ioh-Lipo was administered. We demonstrated for the first time the feasibility of non-invasively detecting the nose-to-brain delivery of liposomes using CEST MRI. This multiple-contrast approach is necessary to image the specific distribution of iohexol and liposome simultaneously and independently, especially when designing drug carriers for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China; Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, China.
| |
Collapse
|
8
|
Irrera P, Roberto M, Consolino L, Anemone A, Villano D, Navarro-Tableros V, Carella A, Dastrù W, Aime S, Longo DL. Effect of Esomeprazole Treatment on Extracellular Tumor pH in a Preclinical Model of Prostate Cancer by MRI-CEST Tumor pH Imaging. Metabolites 2022; 13:metabo13010048. [PMID: 36676972 PMCID: PMC9866131 DOI: 10.3390/metabo13010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Novel anticancer treatments target the pH regulating system that plays a major role in tumor progression by creating an acidic microenvironment, although few studies have addressed their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors (PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole) proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate tumor acidosis. Although statistically significant tumor pH changes were observed a few hours after Esomeprazole administration in both the acute study and up to one week of treatment in the chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated to similar tumor growth curves between treated and control groups in both the subcutaneous and orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach to monitoring treatment response to PPIs.
Collapse
Affiliation(s)
- Pietro Irrera
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Miriam Roberto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Victor Navarro-Tableros
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | | | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
- Correspondence:
| |
Collapse
|