1
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
2
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
3
|
Zhao D, Deng Y, Jiang X, Bai Y, Qian C, Shi H, Wang J. Advances in Carbon Dot Based Enhancement of Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2024; 7:8149-8162. [PMID: 39526921 DOI: 10.1021/acsabm.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy has advantages of high selectivity, less invasiveness, and high lethality for cancer cells compared with traditional treatment methods. However, some problems have hindered the development of photodynamic therapy, such as limited penetration depth, lack of oxygen, and toxicity. Carbon dots are widely used in the imaging and treatment of tumors due to their excellent optical and physicochemical properties, so effective methods have been explored to address the issues in photodynamic therapy via carbon dots. This review aims to elucidate the role of carbon dots in photodynamic therapy of cancer. Moreover, we summarize and discuss some strategies to harness carbon dots to enhance photodynamic therapy. Finally, we summarize many cancer synergistic therapeutic modalities involving carbon dots such as chemodynamic therapy, photothermal therapy, and immunotherapy in combination with photodynamic therapy to achieve more effective and safer treatments.
Collapse
Affiliation(s)
- Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunhao Deng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Qian
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
4
|
Dong C, Wang Y, Chen T, Ren W, Gao C, Ma X, Gao X, Wu A. Carbon Dots in the Pathological Microenvironment: ROS Producers or Scavengers? Adv Healthc Mater 2024; 13:e2402108. [PMID: 39036817 DOI: 10.1002/adhm.202402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Reactive oxygen species (ROS), as metabolic byproducts, play pivotal role in physiological and pathological processes. Recently, studies on the regulation of ROS levels for disease treatments have attracted extensive attention, mainly involving the ROS-induced toxicity therapy mediated by ROS producers and antioxidant therapy by ROS scavengers. Nanotechnology advancements have led to the development of numerous nanomaterials with ROS-modulating capabilities, among which carbon dots (CDs) standing out as noteworthy ROS-modulating nanomedicines own their distinctive physicochemical properties, high stability, and excellent biocompatibility. Despite progress in treating ROS-related diseases based on CDs, critical issues such as rational design principles for their regulation remain underexplored. The primary cause of these issues may stem from the intricate amalgamation of core structure, defects, and surface states, inherent to CDs, which poses challenges in establishing a consistent generalization. This review succinctly summarizes the recently progress of ROS-modulated approaches using CDs in disease treatment. Specifically, it investigates established therapeutic strategies based on CDs-regulated ROS, emphasizing the interplay between intrinsic structure and ROS generation or scavenging ability. The conclusion raises several unresolved key scientific issues and prominent technological bottlenecks, and explores future perspectives for the comprehensive development of CDs-based ROS-modulating therapy.
Collapse
Affiliation(s)
- Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| |
Collapse
|
5
|
Liu H, Gao C, Xu P, Li Y, Yan X, Guo X, Wen C, Shen XC. Biomimetic Gold Nanorods-Manganese Porphyrins with Surface-Enhanced Raman Scattering Effect for Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401117. [PMID: 39031811 DOI: 10.1002/smll.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Surface-enhanced Raman scattering (SERS) imaging integrating photothermal and photodynamic therapy (PTT/PDT) is a promising approach for achieving accurate diagnosis and effective treatment of cancers. However, most available Raman reporters show multiple signals in the fingerprint region, which overlap with background signals from cellular biomolecules. Herein, a 4T1 cell membrane-enveloped gold nanorods-manganese porphyrins system (GMCMs) is designed and successfully fabricated as a biomimetic theranostic nanoplatform. Manganese porphyrins are adsorbed on the surface of Au nanorods via the terminal alkynyl group. Cell membrane encapsulation protects the manganese porphyrins from falling off the gold nanorods. The biomimetic GMCMs confirm specific homologous targeting to 4T1 cells with good dispersibility, excellent photoacoustic (PA) imaging properties, and preferable photothermal and 1O2 generation performance. GMCMs exhibit distinct SERS signals in the silent region without endogenous biomolecule interference both in vitro and in vivo. Manganese ions could not only quench the fluorescence of porphyrins to enhance the SERS imaging effect but also deplete cellular GSH to increase 1O2 yield. Both in vitro and in vivo studies demonstrate that GMCMs effectively eradicate tumors through SERS/PA imaging-guided PTT/PDT. This study provides a feasible strategy for augmenting the Raman imaging effects of the alkynyl group and integrating GSH-depletion to enhance PTT/PDT efficacy.
Collapse
Affiliation(s)
- Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yingshu Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoxiao Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
6
|
Feng W, Mu X, Li Y, Sun S, Gao M, Lu Y, Zhou X. Zwitterionic nanoparticles from indocyanine green dimerization for imaging-guided cancer phototherapy. Acta Biomater 2024; 185:371-380. [PMID: 39053816 DOI: 10.1016/j.actbio.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Indocyanine green (ICG), the only near-infrared (NIR) dye approved for clinical use, has received increasing attention as a theranostic agent wherein diagnosis (fluorescence) is combined with therapy (phototherapy), but suffers rapid hepatic clearance, poor photostability, and limited accumulation at tumor sites. Here we report that dimerized ICG can self-assemble to form zwitterionic nanoparticles (ZN-dICG), which generate fluorescence self-quenching but exhibit superior photothermal and photodynamic properties over ICG. The zwitterionic moieties confer ZN-dICG an ultralow critical micelle concentration and high colloidal stability with low non-specific binding in vivo. In addition, ZN-dICG can respond to the over-generated reactive oxygen species (ROSs) and dissociate to restore NIR fluorescence of ICG, amplifying the sensitivity via albumin binding for low-background imaging of tumors. Following systemic administration, ZN-dICG accumulated in tumors of xenograft-bearing mice for imaging primary and metastatic tumors, and induced tumor ablation under laser irradiation. The discovery of ZN-dICG would contribute to the design of translational phototheranostic platform with high biocompatibility. STATEMENT OF SIGNIFICANCE: Indocyanine green (ICG) has been extensively studied as a phototheranostic agent that combines imaging with phototherapies, but it suffers from rapid hepatic clearance, poor photostability, and limited accumulation at tumor sites. Here, we report a strategy to construct ICG dimers (ICG-tk-ICG) by conjugating two ICG molecules via a thioketal bond, which can self-assemble into zwitterionic nanoparticles (ZN-dICG) at ultralow critical micelle concentrations, exhibiting superior photothermal and photodynamic properties over ICG. ZN-dICG responds to the over-generated ROS in tumors and dissociates to restore the NIR fluorescence of ICG, enhancing the sensitivity via albumin binding for low-background imaging of tumors. This study offers a supramolecular strategy that may potentiate the clinical translation of ICG in imaging-guided cancer phototherapy.
Collapse
Affiliation(s)
- Wenbi Feng
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yajie Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shi Sun
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Girma WM, Zhu Z, Guo Y, Xiao X, Wang Z, Mekuria SL, Hameed MMA, El-Newehy M, Guo R, Shen M, Shi X. Synthesis and Characterization of Copper-Crosslinked Carbon Dot Nanoassemblies for Efficient Macrophage Manipulation. Macromol Rapid Commun 2024:e2400511. [PMID: 39154350 DOI: 10.1002/marc.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Nanomedicines loaded in macrophages (MAs) can actively target tumors without dominantly relying on the enhanced permeability and retention (EPR) effect, making them effective for treating EPR-deficient malignancies. Herein, copper-crosslinked carbon dot clusters (CDCs) are synthesized with both photodynamic and chemodynamic functions to manipulate MAs, aiming to direct the MA-mediated tumor targeting. First, green fluorescent CDs (g-CDs) are prepared by a one-step hydrothermal method. Subsequently, the g-CDs are complexed with divalent copper ions to form copper-crosslinked CDCs (g-CDCs/Cu), which are incubated with MAs for their manipulation. Experimental results revealed that the prepared g-CDCs/Cu displayed good aqueous dispersibility and fluorescent emission properties. The nanoassemblies can be activated to deplete the overexpressed glutathione (GSH) and generate reactive oxygen species (ROS) in the presence of laser irradiation through the combined Cu-mediated chemodynamic therapy and CD-mediated photodynamic therapy. Furthermore, the ROS produced in MAs enabled polarization of MAs to antitumor M1 phenotype, suggesting the future potential use to reverse the immunosuppressive tumor microenvironment. These results obtained from the current study suggest a significant potential to develop g-CDCs/Cu for GSH depletion, ROS generation, and MA M1 polarization as a theransotic agent to tackle cancer.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Department of Chemistry, College of Natural Science, Wollo University, Dessie, 1000, Ethiopia
| | - Zewen Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianghao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Yu H, Huang Y, Nong Z, Lin X, Tang K, Cai Z, Huang K, Yu T, Lan H, Zhang Q, Wang Q, Yang L, Zhu J, Wu L, Luo H. In-Situ Grown Nanocrystal TiO 2 on 2D Ti 3C 2 Nanosheets with Anti-Tumor Activity from Photo-Sonodynamic Treatment and Immunology. Int J Nanomedicine 2024; 19:7963-7981. [PMID: 39130689 PMCID: PMC11316479 DOI: 10.2147/ijn.s457112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Traditional cancer treatment strategies often have severe toxic side effects and poor therapeutic efficacy. To address the long-standing problems related to overcoming the complexity of tumors, we develop a novel nanozyme based on the in situ oxidation of 2D Ti3C2 structure to perform simultaneous phototherapy and sonodynamic therapy on tumors. Ti3C2 nanozymes exhibit multi-enzyme activity, including intrinsic peroxidase (POD) activities, which can react with H2O2 in the tumor microenvironment. This new material can construct Ti3C2/TiO2 heterostructures in vivo. Methods Photothermal (PTT), sonodynamic (SDT) effects, and photoacoustic (PA) image-guided synergy therapy can be achieved. Finally, anticancer immune responses occur with this nanozyme. In vivo experiments revealed that the Ti3C2/TiO2 heterostructure inhibited tumor growth. Results Complementarily, our results showed that the Ti3C2/TiO2 heterostructure enhanced the immunogenic activity of tumors by recruiting cytotoxic T cells, thereby enhancing the tumor ablation effect. Mechanistic studies consistently indicated that Reactive Oxygen Species (ROS) regulates apoptosis of HCC cells by modulating NRF2/OSGIN1 signaling both in vitro and in vivo. As a result, Ti3C2 nanozyme effectively inhibited tumor through its synergistic ability to modulate ROS and enhance immune infiltration of cytotoxic T cells in the tumor microenvironment. Discussion These findings open up new avenues for enhancing 2D Ti3C2 nanosheets and suggest a new way to develop more effective sonosensitizers for the treatment of cancer.
Collapse
Affiliation(s)
- Hailing Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zhisheng Nong
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang, Liaoning, People’s Republic of China
| | - Xi Lin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Kexin Tang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Zeyu Cai
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Kaichen Huang
- Department of Clinical laboratory, The Third People’s Hospital of Zhuhai, Zhuhai, Guangdong, People’s Republic of China
| | - Ting Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Qiang Wang
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing, People’s Republic of China
| | - Lei Yang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
| | - Jingchuan Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, People’s Republic of China
| | - Hui Luo
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
He QL, Jia BX, Luo ZR, Wang YK, Zhang B, Liao T, Guang XY, Feng YF, Zhang Z, Zhou B. Programmable "triple attack" cancer therapy through in situ activation of disulfiram toxification combined with phototherapeutics. Chem Sci 2024; 15:11633-11642. [PMID: 39055020 PMCID: PMC11268515 DOI: 10.1039/d3sc05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Effectively and completely eliminating residual tumor cells is the key to reducing the risk of tumor metastasis and recurrence. Designing an "ideal" nanoplatform for programmable cancer therapy has great prospects for completely eliminating residual tumor cells. Herein, an intelligent nanoplatform of disulfiram (DSF)-loaded CuS-tannic acid nanohexahedrons (denoted as "DSF-CuS@TA") with thermal- and pH-sensitive degradation, as well as near-infrared (NIR-II) phototherapeutics properties, was constructed. And then, it was employed for in situ DSF toxification activation programmable "triple attack" cancer therapy. After accumulating in the tumor, DSF-CuS@TA first releases the loaded Cu(DTC)2, and simultaneously degrades and releases Cu2+ and DSF under mildly acidic stimulation to trigger instant intratumoral Cu(DTC)2 chelation, thereby achieving the "first strike." Next, under irradiation by a NIR-II laser, light energy is converted into heat to generate NIR-II photothermal therapy, thereby achieving the second strike. Subsequently, under thermal stimulation, DSF-CuS@TA degrades further, triggering the chelation of Cu(DTC)2 for a second time to reach the third strike. As expected, in vitro and in vivo studies showed that the synergistic integration of DSF-based programmed chemotherapy and NIR-II phototherapeutics could achieve effective tumor removal. Therefore, we propose a novel type of programmed therapy against cancer by designing a nanoplatform via "nontoxicity-to-toxicity" chemical chelation transformation.
Collapse
Affiliation(s)
- Qiu-Ling He
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Ben-Xu Jia
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Zhi-Rong Luo
- College of Chemistry and Environmental Engineering, Baise University Baise Guangxi 533000 People's Republic of China
| | - Yu-Kun Wang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Tao Liao
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Xuan-Yi Guang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Yan-Fang Feng
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Zhen Zhang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Bo Zhou
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| |
Collapse
|
10
|
Zhang P, Zheng L, Zhang X, Liu M, Li M, Zhang M, Wu JL, Choi MMF, Bian W. Mesoporous Graphene Oxide Nanocomposite Effective for Combined Chemo/Photo Therapy Against Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:7493-7508. [PMID: 39081895 PMCID: PMC11287468 DOI: 10.2147/ijn.s460767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Lung cancer is the most common cancer worldwide, among which non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Chemotherapy, a mainstay modality for NSCLC, has demonstrated restricted effectiveness due to the emergence of chemo-resistance and systemic side effects. Studies have indicated that combining chemotherapy with phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), can enhance efficacy of therapy. In this work, an aminated mesoporous graphene oxide (rPGO)-protoporphyrin IX (PPIX)-hyaluronic acid (HA)@Osimertinib (AZD) nanodrug delivery system (rPPH@AZD) was successfully developed for combined chemotherapy/phototherapy for NSCLC. Methods A pH/hyaluronidase-responsive nanodrug delivery system (rPPH@AZD) was prepared using mesoporous graphene oxide. Its morphology, elemental composition, surface functional groups, optical properties, in vitro drug release ability, photothermal properties, reactive oxygen species production, cellular uptake and cell viability were evaluated. In addition, the in vivo therapeutic effect, biocompatibility, and imaging capabilities of rPPH@AZD were verified by a tumor-bearing mouse model. Results Aminated mesoporous graphene oxide (rPGO) plays a role as a drug delivery vehicle owing to its large specific surface area and ease of surface functionalization. rPGO exhibits excellent photothermal conversion properties under laser irradiation, while PPIX acts as a photosensitizer to generate singlet oxygen. AZD acts as a small molecule targeted drug in chemotherapy. In essence, rPPH@AZD shows excellent photothermal and fluorescence imaging effects in tumor-bearing mice. More importantly, in vitro and in vivo results indicate that rPPH@AZD can achieve hyaluronidase/pH dual response as well as combined chemotherapy/PTT/PDT anti-NSCLC treatment. Conclusion The newly prepared rPPH@AZD can serve as a promising pH/hyaluronidase-responsive nanodrug delivery system that integrates photothermal/fluorescence imaging and chemo/photo combined therapy for efficient therapy against NSCLC.
Collapse
Affiliation(s)
- Peigang Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Lingling Zheng
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Xiaorui Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Miao Liu
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Mingli Li
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Martin M F Choi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| |
Collapse
|
11
|
Wang Y, Huang K, Wang T, Liu L, Yu F, Sun W, Yao W, Xiong H, Liu X, Jiang H, Wang X. Nanosensors Monitor Intracellular GSH Depletion: GSH Triggers Cu(II) for Tumor Imaging and Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310300. [PMID: 38299477 DOI: 10.1002/smll.202310300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Glutathione (GSH) is the primary antioxidant in cells, and GSH consumption will break the redox balance in cells. Based on this, a method that uses high concentrations of GSH in the tumor microenvironment to trigger the redox reaction of Cu(II) to generate copper nanoprobes with fluorescence and tumor growth inhibition properties is proposed. The nanoprobe mainly exists in the form of Cu(I) and catalyzes the decomposition of hydrogen peroxide into hydroxyl radicals. At the same time, a simple and controllable carbon micro-nano electrode is used to construct a single-cell sensing platform, which enable the detection of glutathione content in single living cells after Cu(II) treatment, providing an excellent example for detecting single-cell biomolecules.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Ke Huang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tingya Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
12
|
Qi K, Lu Z, Gao X, Tan G, Zhang Z, Liu D, Dong G, Jing D, Luo P. Enhancing Surface Hydroxyl Group Modulation on Carbon Nitride Boosts the Effectiveness of Photodynamic Treatment for Brain Glioma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29793-29804. [PMID: 38819663 DOI: 10.1021/acsami.4c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The effectiveness of photodynamic therapy (PDT) in treating brain gliomas is limited by the solubility of photosensitizers and the production of reactive oxygen species (ROS), both of which are influenced by the concentration of photosensitizers and catalyst active sites. In this study, we developed a controllable surface hydroxyl concentration for the photosensitizer CN11 to address its poor water solubility issue and enhance PDT efficacy in tumor treatment. Compared to pure g-C3N4 (CN), CN11 exhibited 4.6 times higher hydrogen peroxide production under visible light, increased incidence of the n → π* electron transition, and provided more available reaction sites for cytotoxic ROS generation. These findings resulted in a 2.43-fold increase in photodynamic treatment efficacy against brain glioma cells. Furthermore, in vivo experiments conducted on mice demonstrated that CN11 could be excreted through normal cell metabolism with low cytotoxicity and high biosafety, effectively achieving complete eradication of tumor cells.
Collapse
Affiliation(s)
- Kai Qi
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Zihan Lu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoyuan Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Dan Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guohui Dong
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
13
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
14
|
Ai S, Zhao P, Fang K, Cheng H, Cheng S, Liu Z, Wang C. Charge Conversional Biomimetic Nanosystem for Synergistic Photodynamic/Protein Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307193. [PMID: 38054765 DOI: 10.1002/smll.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Cytochrome C (Cytc) has received considerable attention due to its ability to induce tumor apoptosis and generate oxygen to improve photodynamic therapy (PDT) efficiency. However, the damage to normal tissues caused by nonspecific accumulation of Cytc limits its application. Herein, in order to reduce its toxicity to normal tissues while retaining its activity, a charge conversional biomimetic nanosystem (CA/Ce6@MSN-4T1) is proposed to improve the tumor targeting ability and realize controlled release of Cytc in the tumor microenvironment. This nanosystem is constructed by coating tumor cell membrane on mesoporous silica nanoparticles coloaded with a photosensitizer (chlorin e6, Ce6) and the citraconic anhydride conjugated Cytc (CA) for synergistic photodynamic/protein therapy. The coating of the tumor cell membrane endows the nanoparticles with homologous targeting ability to the same cancer cells as well as immune escaping capability. CA undergoes charge conversion in the acidic environment of the tumor to achieve a controlled release of Cytc. The released Cytc can relieve cellular hypoxia to improve the PDT efficiency of Ce6 and can induce programmed cell death. Both in vitro and in vivo studies demonstrated that CA/Ce6@MSN-4T1 can efficiently inhibit the growth of tumors through synergistic photodynamic/protein therapy, and meanwhile show reduced side effects on normal tissues.
Collapse
Affiliation(s)
- Shulun Ai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Peisen Zhao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Kaixuan Fang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Sixue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
15
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
16
|
Wang T, Tao J, Wang B, Jiang T, Zhao X, Yu Y, Meng X. Reversing Resistance of Cancer Stem Cells and Enhancing Photodynamic Therapy Based on Hyaluronic Acid Nanomicelles for Preventing Cancer Recurrence and Metastasis. Adv Healthc Mater 2024; 13:e2302597. [PMID: 37941492 DOI: 10.1002/adhm.202302597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach for tumor treatment; however, the therapeutic resistance of cancer stem cells (CSCs) severely limits its efficacy and easily lead to recurrence. Herein, a hyaluronic acid (HA)-Ce6-Olaparib (OLA) micelle (HCCO) is developed, which combines the CSC targeting of HA, the PDT effect of Ce6, and the DNA damage repair inhibition of OLA. More importantly, HCCO induces immunogenic cell death (ICD) effects, promotes dendritic cells maturation, and alleviates myeloid-derived suppressor cells (MDSCs) infiltration to reverse CSC resistance. As a result, HCCO not only significantly inhibits the growth of 4T1 breast cancer cells and CSCs in vitro, but also effectively inhibits tumor recurrence and metastasis in vivo. This study provides a novel strategy for preventing tumor recurrence and metastasis by the combination of inhibiting DNA damage repair, reversing CSC resistance, and enhancing PDT.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| |
Collapse
|
17
|
Gao Y, Wu J, Shen J, Xu Y, Li L, Wang W, Zhou N, Zhang M. Chitosan modified magnetic nanocomposite for biofilm destruction and precise photothermal/photodynamic therapy. Int J Biol Macromol 2024; 259:129402. [PMID: 38219940 DOI: 10.1016/j.ijbiomac.2024.129402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Getting rid of the biofilms is a major challenge when treating skin and soft tissue infections (SSTI), an inflammatory illness brought on by bacteria. Traditional magnetic materials have a limited dispersibility and a biofilm permeable property, making it challenging to remove biofilms and causing infection to linger. To solve these problems, we developed a kind of magnetic composite nanoplatform coated with indocyanine green carbon dots and modified with chitosan modification (Fe-ICGCDs@CS). Fe-ICGCDs@CS has high dispersibility and improves the conductivity of biofilms under magnetic action. Fe-ICGCDs@CS can adsorb bacteria via the positive charge and achieve precise photothermal sterilization and photodynamic therapy (PDT). Moreover, by catalyzing hydrogen peroxide (2 mM), Fe-ICGCDs@CS can produce oxygen to relieve the anoxic state in the deep layer of biofilms and activate dormant bacteria to make them sensitive to external stimuli. All in all, unlike the common "just kill" sterilization model, Fe-ICGCDs@CS can accurately kill bacteria and be recovered by an external magnetic field at the end of treatment, thus reducing the potential biological toxicity of nanomaterials. Therefore, the proposed Fe-ICGCDs@CS provides a new antibacterial method with low biotoxicity for clinical application in the treatment of biofilm infections.
Collapse
Affiliation(s)
- Yumeng Gao
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Wu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
18
|
Su P, Sun W, Wang G, Xu H, Bao B, Wang L. Size transformable organic nanotheranostic agents for NIR-II imaging-guided oncotherapy. J Colloid Interface Sci 2024; 654:740-752. [PMID: 37866046 DOI: 10.1016/j.jcis.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Nanotheranostic agents combined the second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging with phototherapy strategy have attracted tremendous interest. However, the actual efficacy of NIR-II probes could be weakened by their limited accumulation and penetration in tumor tissues. Herein, a size-transformable NIR-II nanotheranostic agent (BBT-HASS@FPMPL NPs) is employed for simultaneously enhanced penetration and retention in deep tumor tissue to realize precise image and effective PTT therapy. BBT-HASS@FPMPL NPs were first formed by using hyaluronic acid (HA) chains and disulfide bonds as stimuli-responsive "lock" to efficiently load conjugated oligomer (BBTN+), and then folic acid (FA) modified polylysine (FPMPL) shell was stacked at the surface by electrostatic interaction. Dual targeting with HA and FA is expected to lead to more selective targeting and better accumulation of BBT-HASS@FPMPL NPs in tumor sites. Simultaneously, obvious particle size reduction and charge reversal can be triggered in acidic tumor microenvironment to achieve deep intratumor filtration through transcytosis. Following tumor penetration, size change was further initiated by overexpressed hyaluronidase and GSH in tumor. Free BBTN+ can be subsequently released from nanoparticles to promote specific intratumor retention, which synergistically enhance photothermal therapeutic efficacy. Owing to sufficient tumor accumulation and deep penetration, the NIR-II emission of BBTN+ could further be used for precise monitoring of subcutaneous tumor progression in mice for 6 days with just one dose injection. We expect that such nanotheranostic platform that combined the high resolution of NIR-II fluorescence with deep tumor penetration and long intratumor retention could be useful for real-time monitoring of tumor process, precise diagnosis, and enhanced phototherapy.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenjun Sun
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guoqin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongpan Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Biqing Bao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
19
|
Wu H, Liu G, Chen K, Zhang T, Ye Q, Chen J, Peng Y. A piperazine-substituted phthalocyanine with rapid cellular uptake and dual organelle-targeting for in vitro photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103818. [PMID: 37788794 DOI: 10.1016/j.pdpdt.2023.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The rational design of photosensitizers with rapid cellular uptake and dual-organelle targeting ability is essential for enhancing the efficacy of photodynamic therapy (PDT). However, achieving this goal is a great challenge. In this paper, a novel axial piperazine substituted (PIP) silicon phthalocyanine (PIP-SiPc) has been synthesized. The PIP substitution significantly improved the cellular uptake of PIP-SiPc in MCF-7 breast cancer cells, as demonstrated by two-photon fluorescence imaging combined with fluorescence correlation spectroscopy. Additionally, PIP-SiPc was able to target both mitochondria and lysosomes simultaneously. Notably, PIP-SiPc exhibited remarkable singlet oxygen generation ability, leading to apoptosis in cancer cells upon irradiation, with an IC50 value of only 0.2 µM. These findings highlight the effectiveness of PIP-SiPc as a multifunctional photosensitizer for PDT.
Collapse
Affiliation(s)
- Haijian Wu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Guowei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Kuizhi Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Tiantian Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Qiuhao Ye
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou, China.
| | - Yiru Peng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
20
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
21
|
Lai CM, Xu J, Zhang BC, Li DM, Shen JW, Yu SJ, Shao JW. Three-pronged attacks by hybrid nanoassemblies involving a natural product, carbon dots, and Cu 2+ for synergistic HCC therapy. J Colloid Interface Sci 2023; 650:526-540. [PMID: 37423180 DOI: 10.1016/j.jcis.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.
Collapse
Affiliation(s)
- Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bing-Chen Zhang
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Dong-Miao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiang-Wen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shi-Jing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
23
|
Curley R, Burke CS, Gkika KS, Noorani S, Walsh N, Keyes TE. Phototoxicity of Tridentate Ru(II) Polypyridyl Complex with Expanded Bite Angles toward Mammalian Cells and Multicellular Tumor Spheroids. Inorg Chem 2023; 62:13089-13102. [PMID: 37535942 PMCID: PMC10428208 DOI: 10.1021/acs.inorgchem.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/05/2023]
Abstract
Tridentate ligand-coordinated ruthenium (II) polypyridyl complexes with large N-Ru-N bite angles have been shown to promote ligand field splitting and reduce singlet-triplet state mixing leading to dramatically extended emission quantum yields and lifetimes under ambient conditions. These effects are anticipated to enhance their photoinduced singlet oxygen production, promoting prospects for such complexes as type II phototherapeutics. In this contribution, we examined this putative effect for [Ru(bqp)(bqpCOOEt)]2+, Ru-bqp-ester, a heteroleptic complex containing bqp = [2,6-bi(quinolin-8-yl)pyridine], a well-established large bite angle tridentate ligand, as well as its peptide conjugates [Ru(bqp)(bqpCONH-ahx-FrFKFrFK(Ac)-CONH2)]5+ (Ru-bqp-MPP) and [Ru(bqp) (bqp)(CONH-ahx-RRRRRRRR-CONH2)]10+ (Ru-bqp-R8) that were prepared in an effort to promote live cell/tissue permeability and targeting of the parent. Membrane permeability of both parent and peptide conjugates were compared across 2D cell monolayers; A549, Chinese hamster ovary, human pancreatic cancer (HPAC), and 3D HPAC multicellular tumor spheroids (MCTS) using confocal microscopy. Both the parent complex and peptide conjugates showed exceptional permeability with rapid uptake in both 2D and 3D cell models but with little distinction in permeability or distribution in cells between the parent or peptide conjugates. Unexpectedly, the uptake was temperature independent and so attributed to passive permeation. Both dark and photo-toxicity of the Ru(II) complexes were assessed across cell types, and the parent showed notably low dark toxicity. In contrast, the parent and conjugates were found to be highly phototoxic, with impressive phototoxic indices (PIs) toward HPAC cell monolayers in particular, with PI values ranging from ∼580 to 760. Overall, our data indicate that the Ru(II) parent complex and its peptide conjugates show promise at both cell monolayers and 3D MCTS as photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Rhianne
C. Curley
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Christopher S. Burke
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Karmel S. Gkika
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Sara Noorani
- National
Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Naomi Walsh
- National
Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9 D09 NA55, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 D09 NA55, Ireland
| |
Collapse
|
24
|
Zhang Y, Yang N, Dong Z, Wu J, Liao R, Zhang Y, Zhang G, Ren M, Wang F, Dong X, Liang P. Dual-Targeting Biomimetic Nanomaterials for Photo-/Chemo-/Antiangiogenic Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37400422 DOI: 10.1021/acsami.3c03471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Avoiding the low specificity of phototheranostic reagents at the tumor site is a major challenge in cancer phototherapy. Meanwhile, angiogenesis in the tumor is not only the premise of tumor occurrence but also the basis of tumor growth, invasion, and metastasis, making it an ideal strategy for tumor therapy. Herein, biomimetic cancer cell membrane-coated nanodrugs (mBPP NPs) have been prepared by integrating (i) homotypic cancer cell membranes for evading immune cell phagocytosis to increase drug accumulation, (ii) protocatechuic acid for tumor vascular targeting along with chemotherapy effect, and (iii) near-infrared phototherapeutic agent diketopyrrolopyrrole derivative for photodynamic/photothermal synergetic therapy. The mBPP NPs exhibit high biocompatibility, superb phototoxicity, excellent antiangiogenic ability, and double-trigging cancer cell apoptosis in vitro. More significantly, mBPP NPs could specifically bind to tumor cells and vasculature after intravenous injection, inducing fluorescence and photothermal imaging-guided tumor ablation without recurrence and side effects in vivo. The biomimetic mBPP NPs could cause drug accumulation at the tumor site, inhibit tumor neovascularization, and improve phototherapy efficiency, providing a novel avenue for cancer treatment.
Collapse
Affiliation(s)
- Yuanying Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ziyi Dong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jiahui Wu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rui Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gege Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengfei Ren
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|