1
|
Wang T, Wang Y, Wang B, Su Y, Jiang T, Gan T, Zhao X. Fucoidan based Ce6-chloroquine self-assembled hydrogel as in situ vaccines to enhance tumor immunotherapy by autophagy inhibition and macrophage polarization. Carbohydr Polym 2024; 346:122637. [PMID: 39245502 DOI: 10.1016/j.carbpol.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Tumor vaccines have become a promising approach for cancer treatment by triggering antigen-specific responses against tumors. However, autophagy and immunosuppressive tumor microenvironment (TME) reduce antigen exposure and immunogenicity, which limit the effect of tumor vaccines. Here, we develop fucoidan (Fuc) based chlorin e6 (Ce6)-chloroquine (CQ) self-assembly hydrogels (CCFG) as in situ vaccines. Ce6 triggers immune response in situ by photodynamic therapy (PDT) induced immunogenic cell death (ICD) effect, which is further enhanced by macrophage polarization of Fuc and autophagy inhibition of CQ. In vivo studies show that CCFG effectively enhances antigen presentation under laser irradiation, which induces a powerful in situ vaccine effect and significantly inhibits tumor metastasis and recurrence. Our study provides a novel approach for enhancing tumor immunotherapy and inhibiting tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanguo Su
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Gan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Chen R, Shi J, Zhao T, Li S, Wang H, Xu J, Guo B, Zhou F. Swelling Induced Hardening and Degradation Induced Slow-Expansion Hydrogel for a Modified Cervical Spinal Cord Compression Animal Model. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58274-58285. [PMID: 39435982 DOI: 10.1021/acsami.4c12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This study presents the development of a polyurethane hydrogel (PUG) for use in a chronic cervical spinal cord compression animal model, leveraging microphase separation and dynamic covalent bonds to achieve swelling induced hardening and degradation-induced slow expansion. PUG-SS and PUG-SS-60% were synthesized with varying disulfide bond concentrations, offering controllable degradation rates and mechanical properties. The hydrogels demonstrated significant swelling-induced hardening and maintained compression above the cervical spinal cord's intrinsic modulus. MRI and histopathological analyses confirmed effective and sustained spinal cord compression, with PUG-SS-60% showing prolonged effects. Behavioral tests, including the BBB locomotor scale, von Frey pain test, and catwalk gait analysis, indicated quicker motor function recovery with PUG-SS and sustained compression with PUG-SS-60%. In vitro cytotoxicity assays showed no significant hydrogel-induced cell death. This study underscores the potential of PUG-SS-60% for providing controlled, sustained compression in chronic spinal cord compression models, paving the way for advanced nonsurgical treatment strategies and improved understanding of degenerative cervical myelopathy (DCM) pathology.
Collapse
Affiliation(s)
- Rui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Jiaxin Shi
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianyuan Zhao
- Peking University Third Hospital, Department of Orthopaedics, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Shuyang Li
- Peking University Third Hospital, Department of Orthopaedics, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Haoxiang Wang
- Peking University Third Hospital, Department of Orthopaedics, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Feifei Zhou
- Peking University Third Hospital, Department of Orthopaedics, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| |
Collapse
|
4
|
Li X, Zhang L, Liu Z, Wang R, Jiao T. Recent progress in hydrogels combined with phototherapy for bacterial infection: A review. Int J Biol Macromol 2024; 274:133375. [PMID: 38914386 DOI: 10.1016/j.ijbiomac.2024.133375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Phototherapy has become one of the most effective antibacterial methods due to its associated lack of drug resistance and its good antibacterial effect. For the purpose of avoiding the aggregation and premature release of photosensitive/photothermal agents during phototherapy, they can be mixed into three-dimensional hydrogels. The combination of hydrogels and phototherapy combines the merits of both hydrogels and phototherapy, overcomes the disadvantages of traditional antibacterial methodologies, and has broad application prospects. This review presents recent advancements in phototherapeutic antibacterial hydrogels including photodynamic antibacterial hydrogels, photothermal antibacterial hydrogels, photodynamic and photothermal synergistic antibacterial hydrogels, and other synergistic antibacterial hydrogels involving phototherapy.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
5
|
Chang Y, Xu KQ, Yang XL, Xie MH, Mo Z, Li ML, Ju HX. Zinc hexacyanoferrate/g-C 3N 4 nanocomposites with enhanced photothermal and photodynamic properties for rapid sterilization and wound healing. Colloids Surf B Biointerfaces 2024; 240:113998. [PMID: 38823340 DOI: 10.1016/j.colsurfb.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yi Chang
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China
| | - Ke-Qiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhao Mo
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Lin Li
- Department of Basic Medical, Jiangsu Vocational College of Medicine, Yancheng 224005, PR China
| | - Hui-Xiang Ju
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China.
| |
Collapse
|
6
|
Yan CJ, Yang SR, Yeh YC. Injectable pH- and Ultrasound-Responsive Dual-Crosslinked Dextran/Chitosan/TiO 2 Nanocomposite Hydrogels for Antibacterial Applications. Chem Asian J 2024; 19:e202301151. [PMID: 38782735 DOI: 10.1002/asia.202301151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Combining exogenous and endogenous antibacterial mechanisms has been demonstrated to enhance therapeutic efficacy significantly. This study constructs an innovative type of exogenous and endogenous antibacterial nanocomposite hydrogels with injectable dual-crosslinked networks and dual-stimuli responsiveness. The primary network establishes imine bonds between the functionalized dextran featuring norbornenes and aldehydes (NorAld-Dex) and the quaternized chitosan (QCS). The imine bonds provide self-healing, injectability, and pH-responsiveness to the hydrogel network. The secondary network is established by integrating thiolated mesoporous silica-coated titanium dioxide nanoparticles (TiO2@MS-SH) into the hydrogel network via an ultrasound-activated thiol-norbornene reaction with NorAld-Dex. The microstructures and properties of NorAld-Dex/QCS/TiO2@MS-SH hydrogels can be fine-tuned by adjusting the sonication time to increase the amount of thiol-norbornene crosslinks in the network. Effective antibacterial performance of NorAld-Dex/QCS/TiO2@MS-SH hydrogels at low pH has been demonstrated with the synergistic effect of the acid-induced dissociation of the hydrogel network, protonated QCS, and the reactive oxygen species (ROS) generated by TiO2@MS-SH nanoparticles under ultrasound irradiation. In summary, NorAld-Dex/QCS/TiO2@MS-SH nanocomposite hydrogel is an advanced dual stimuli-responsive antibacterial platform with customizable microstructures and properties, offering great potential for biomedical applications.
Collapse
Affiliation(s)
- Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| |
Collapse
|
7
|
Khan MUA, Aslam MA, Yasin T, Abdullah MFB, Stojanović GM, Siddiqui HM, Hasan A. Metal-organic frameworks: synthesis, properties, wound dressing, challenges and scopes in advanced wound dressing. Biomed Mater 2024; 19:052001. [PMID: 38976990 DOI: 10.1088/1748-605x/ad6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Wound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention. Metal-organic frameworks (MOFs), owning to their peculiar physicochemical characteristics, are now considered a promising class of well-suited porous materials for wound healing in addition to their other biological applications. This detailed literature review provides an overview of the latest developments in MOFs for wound healing applications. We have discussed the synthesis, essential biomedical properties, wound-healing mechanism, MOF-based dressing materials, and their wound-healing applications. The possible major challenges and limitations of MOFs have been discussed, along with conclusions and future perspectives. This overview of the literature review addresses MOFs-based wound healing from several angles and covers the most current developments in the subject. The readers may discover how the MOFs advanced this discipline by producing more inventive, useful, and successful dressings. It influences the development of future generations of biomaterials for the healing and regeneration of skin wounds.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Tooba Yasin
- Polymer Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
Xiang G, Wang B, Zhang W, Dong Y, Tao J, Zhang A, Chen R, Jiang T, Zhao X. A Zn-MOF-GOx-based cascade nanoreactor promotes diabetic infected wound healing by NO release and microenvironment regulation. Acta Biomater 2024; 182:245-259. [PMID: 38729545 DOI: 10.1016/j.actbio.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rui Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
10
|
Yu P, Wei L, Yang Z, Liu X, Ma H, Zhao J, Liu L, Wang L, Chen R, Cheng Y. Hydrogel Wound Dressings Accelerating Healing Process of Wounds in Movable Parts. Int J Mol Sci 2024; 25:6610. [PMID: 38928316 PMCID: PMC11203733 DOI: 10.3390/ijms25126610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ in the human body and requires proper dressing to facilitate healing after an injury. Wounds on movable parts, such as the elbow, knee, wrist, and neck, usually undergo delayed and inefficient healing due to frequent movements. To better accommodate movable wounds, a variety of functional hydrogels have been successfully developed and used as flexible wound dressings. On the one hand, the mechanical properties, such as adhesion, stretchability, and self-healing, make these hydrogels suitable for mobile wounds and promote the healing process; on the other hand, the bioactivities, such as antibacterial and antioxidant performance, could further accelerate the wound healing process. In this review, we focus on the recent advances in hydrogel-based movable wound dressings and propose the challenges and perspectives of such dressings.
Collapse
Affiliation(s)
- Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Liqi Wei
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Zhiqi Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Xin Liu
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Hongxia Ma
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Jian Zhao
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lulu Liu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lili Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Yan Cheng
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| |
Collapse
|
11
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Yang Y, Sun X, Wang S, Tang Z, Luo S, Shi J, Zhuo X, Zhu J, Zhang H, Kong X. Yolk-shelled silver nanowire@amorphous metal-organic framework for controlled drug delivery and light-promoting infected wound healing. Regen Biomater 2024; 11:rbae056. [PMID: 38845853 PMCID: PMC11153340 DOI: 10.1093/rb/rbae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against Escherichia coli and Staphylococcus aureus bacteria decreased to 3 and 3 μg ml-1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective and clinically-translatable solution for accelerating the healing process of infected wounds.
Collapse
Affiliation(s)
- Yueyan Yang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xu Sun
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Zhe Tang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Siyuan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jianjun Shi
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
13
|
Deng J, Gao S, Liu M, Xie W, Pan GY. Antioxidant and antibacterial hydrogel formed by protocatechualdehyde-ferric iron complex and aminopolysaccharide for infected wound healing. Int J Biol Macromol 2024; 268:131642. [PMID: 38641283 DOI: 10.1016/j.ijbiomac.2024.131642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
To better treat bacteria-infected wounds and promote healing, new wound dressings must be developed. In this study, we obtained PA@Fe by chelating iron trivalent ions (Fe3+) with protocatechualdehyde (PA), which has a catechol structure. Subsequently, we reacted it with ethylene glycol chitosan (GC) via a Schiff base reaction and loaded vancomycin to obtain an antibacterial Gel@Van hydrogel with a photothermal response. The as-prepared Gel@Van hydrogel exhibited good injectability, self-healing, hemostasis, photothermal stability, biocompatibility, and antioxidant and antibacterial properties. Moreover, Gel@Van hydrogel achieved highly synergistic antibacterial efficacy through photothermal and antibiotic sterilization. In a mouse skin-damaged infection model, Gel@Van hydrogel had a strong ability to promote the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds, indicating the great potential application value of Gel@Van hydrogel in the field of treating and promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Jianbin Deng
- School of Pharmacy, Guilin Medical University, Guilin 541100, PR China
| | - Shiqi Gao
- School of Pharmacy, Guilin Medical University, Guilin 541100, PR China
| | - Mengqi Liu
- School of Pharmacy, Guilin Medical University, Guilin 541100, PR China
| | - Weiquan Xie
- School of Pharmacy, Guilin Medical University, Guilin 541100, PR China.
| | - Guang-Yu Pan
- School of Pharmacy, Guilin Medical University, Guilin 541100, PR China; School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, PR China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541100, PR China.
| |
Collapse
|
14
|
Wu M, Kong X, Li H, Ji Y, He S, Shi Y, Hu H. Cyclic peptide conjugated photosensitizer for targeted phototheranostics of gram-negative bacterial infection. Bioorg Chem 2024; 145:107203. [PMID: 38377817 DOI: 10.1016/j.bioorg.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising alternative to antibiotics for eradicating pathogenic bacterial infections. It holds advantage of not inducing antimicrobial resistance but is limited for the treatment of gram-negative bacterial infection due to the lack of photosensitizer (PS) capable of targeted permeating the outer membrane (OM) of gram-negative bacteria. To facilitate the targeted permeability of PS, cyclic polymyxin b nonapeptide that can specifically bind to the lipopolysaccharide on OM, is conjugated to an FDA approved PS chlorin e6 via variable linkers. Based on structure to activity study, C6pCe6 with aminohexanoic linker and P2pCe6 with amino-3, 6-dioxaoctanoic linker are identified to preferentially image gram-negative bacteria. These two conjugates also exhibit improved aqueous dispersity and enhanced ROS generation, consequently enabled their selective bactericidal activities against gram-negative bacteria upon 660 nm light irradiation. The effective photobactericidal ability of P2pCe6 is further validated on P. aeruginosa infected G. mellonella. Moreover, it is demonstrated to effectively treat the P. aeruginosa infection and accelerate the healing process at the wound site of mouse. Owing to the light irradiation triggered targeted imaging and enhanced bactericidal capacities, P2pCe6 hold great potential to serve as a potent PS for mediating the phototheranostics of gram-negative bacterial infection.
Collapse
Affiliation(s)
- Minghao Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huang Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yajing Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Liang Y, Wang J, Liu X, Chen S, He G, Fang X, Yang J, Teng Z, Liu HB. Anti-adhesion multifunctional poly(lactic-co-glycolic acid)/polydimethylsiloxane wound dressing for bacterial infection monitoring and photodynamic antimicrobial therapy. Int J Biol Macromol 2024; 260:129501. [PMID: 38224803 DOI: 10.1016/j.ijbiomac.2024.129501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.
Collapse
Affiliation(s)
- Yuehui Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xu Liu
- Medical College of Guangxi University, Guangxi University, Nanning 53004, PR China
| | - Shirong Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Guangpeng He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xiru Fang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jiaying Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Zhongshan Teng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China.
| |
Collapse
|
16
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
17
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
18
|
Wang T, Tao J, Wang B, Jiang T, Zhao X, Yu Y, Meng X. Reversing Resistance of Cancer Stem Cells and Enhancing Photodynamic Therapy Based on Hyaluronic Acid Nanomicelles for Preventing Cancer Recurrence and Metastasis. Adv Healthc Mater 2024; 13:e2302597. [PMID: 37941492 DOI: 10.1002/adhm.202302597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach for tumor treatment; however, the therapeutic resistance of cancer stem cells (CSCs) severely limits its efficacy and easily lead to recurrence. Herein, a hyaluronic acid (HA)-Ce6-Olaparib (OLA) micelle (HCCO) is developed, which combines the CSC targeting of HA, the PDT effect of Ce6, and the DNA damage repair inhibition of OLA. More importantly, HCCO induces immunogenic cell death (ICD) effects, promotes dendritic cells maturation, and alleviates myeloid-derived suppressor cells (MDSCs) infiltration to reverse CSC resistance. As a result, HCCO not only significantly inhibits the growth of 4T1 breast cancer cells and CSCs in vitro, but also effectively inhibits tumor recurrence and metastasis in vivo. This study provides a novel strategy for preventing tumor recurrence and metastasis by the combination of inhibiting DNA damage repair, reversing CSC resistance, and enhancing PDT.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao, 266003, China
| |
Collapse
|
19
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
20
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
21
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
22
|
Jia X, Dou Z, Zhang Y, Li F, Xing B, Hu Z, Li X, Liu Z, Yang W, Liu Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023; 15:2735. [PMID: 38140076 PMCID: PMC10747460 DOI: 10.3390/pharmaceutics15122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. Crucially, smart responsive hydrogels can modulate drug release and eliminate pathological factors by changing their properties or structures in response to internal or external stimuli, such as pH, enzymes, light, and electricity. These stimuli can also be used to trigger antibacterial responses, angiogenesis, and cell proliferation to enhance wound healing. In this review, we introduce the synthesis and principles of smart responsive hydrogels, describe their design and applications for chronic wound healing, and discuss their future development directions. We hope that this review will inspire the development of smart responsive hydrogels for chronic wound healing.
Collapse
Affiliation(s)
- Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zixuan Dou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fanqin Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenzhuo Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
23
|
Tavakoli M, Mirhaj M, Varshosaz J, Al-Musawi MH, Almajidi YQ, Danesh Pajooh AM, Shahriari-Khalaji M, Sharifianjazi F, Alizadeh M, Labbaf S, Shahrebabaki KE, Nasab PM, Firuzeh M, Esfahani SN. Keratin- and VEGF-Incorporated Honey-Based Sponge-Nanofiber Dressing: An Ideal Construct for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55276-55286. [PMID: 37990423 DOI: 10.1021/acsami.3c11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 μm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Yasir Q Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad 10047, Iraq
| | - Amir Mohammad Danesh Pajooh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439956191, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Pegah Madani Nasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
24
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
25
|
Tong A, Tong C, Fan J, Shen J, Yin C, Wu Z, Zhang J, Liu B. Prussian blue nano-enzyme-assisted photodynamic therapy effectively eradicates MRSA infection in diabetic mouse skin wounds. Biomater Sci 2023; 11:6342-6356. [PMID: 37581536 DOI: 10.1039/d3bm01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. In vitro experiments demonstrated that CPB-Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H2O2 in the bacterial microenvironment to upregulate the O2 level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. In vivo results demonstrated that CPB-Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB-Ce6 NPs showed excellent biosafety profiles in vitro and in vivo. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.
Collapse
Affiliation(s)
- Aidi Tong
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jingyi Shen
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Wu
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jiansong Zhang
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
26
|
Zhao Y, Wang X, Qi R, Yuan H. Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics. Polymers (Basel) 2023; 15:3305. [PMID: 37571202 PMCID: PMC10422483 DOI: 10.3390/polym15153305] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Hydrogels have a three-dimensional network structure and high-water content, are similar in structure to the extracellular matrix, and are often used as wound dressings. Natural polymers have excellent biocompatibility and biodegradability and are commonly utilized to prepare hydrogels. Natural-polymer-based hydrogels can have excellent antibacterial and bioactive properties by loading antibacterial agents or being combined with therapeutics such as phototherapy, which has great advantages in the field of treatment of microbial infections. In the published reviews of hydrogels used in the treatment of infectious wounds, the common classification criteria of hydrogels include function, source of antibacterial properties, type of antibacterial agent, etc. However, there are few reviews on the classification of hydrogels based on raw materials, and the description of natural-polymer-based hydrogels is not comprehensive and detailed. In this paper, based on the principle of material classification, the characteristics of seven types of natural polymers that can be used to prepare hydrogels are discussed, respectively, and the application of natural-polymer-based hydrogels in the treatment of infectious wounds is described in detail. Finally, the research status, limitations, and prospects of natural-polymer-based hydrogels are briefly discussed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
27
|
Zheng H, Zhong B, Wang Q, Li X, Chen J, Liu L, Liu T. ZnO-Doped Metal-Organic Frameworks Nanoparticles: Antibacterial Activity and Mechanisms. Int J Mol Sci 2023; 24:12238. [PMID: 37569611 PMCID: PMC10418459 DOI: 10.3390/ijms241512238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Metal-Organic Frameworks (MOFs) offer new ideas for the design of antibacterial materials because of their antibacterial properties, high porosity and specific surface area, low toxicity and good biocompatibility compared with other nanomaterials. Herein, a novel antimicrobial nanomaterial, MIL-101(Fe)@ZnO, has been synthesized by hydrothermal synthesis and characterized by FTIR, UV-vis, ICP-OES, XRD, SEM, EDS and BET to show that the zinc ions are doped into the crystal lattice of MIL-101(Fe) to form a Fe-Zn bimetallic structure. MIL-101(Fe)@ZnO was found to be effective against a wide range of antibacterial materials including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter junii and Staphylococcus epidermidis. It has a significant antibacterial effect, weak cytotoxicity, high safety performance and good biocompatibility. Meanwhile, MIL-101(Fe)@ZnO was able to achieve antibacterial effects by causing cells to produce ROS, disrupting the cell membrane structure, and causing protein leakage and lipid preoxidation mechanisms. In conclusion, MIL-101(Fe)@ZnO is an easy-to-prepare antimicrobial nanomaterial with broad-spectrum bactericidal activity and low toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (H.Z.); (B.Z.); (Q.W.); (X.L.); (J.C.); (L.L.)
| |
Collapse
|
28
|
Li J, Yan Y, Chen Y, Fang Q, Hussain MI, Wang LN. Flexible Curcumin-Loaded Zn-MOF Hydrogel for Long-Term Drug Release and Antibacterial Activities. Int J Mol Sci 2023; 24:11439. [PMID: 37511198 PMCID: PMC10380506 DOI: 10.3390/ijms241411439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Management of chronic inflammation and wounds has always been a key issue in the pharmaceutical and healthcare sectors. Curcumin (CCM) is an active ingredient extracted from turmeric rhizomes with antioxidant, anti-inflammatory, and antibacterial activities, thus showing significant effectiveness toward wound healing. However, its shortcomings, such as poor water solubility, poor chemical stability, and fast metabolic rate, limit its bioavailability and long-term use. In this context, hydrogels appear to be a versatile matrix for carrying and stabilizing drugs due to their biomimetic structure, soft porous microarchitecture, and favorable biomechanical properties. The drug loading/releasing efficiencies can also be controlled via using highly crystalline and porous metal-organic frameworks (MOFs). Herein, a flexible hydrogel composed of a sodium alginate (SA) matrix and CCM-loaded MOFs was constructed for long-term drug release and antibacterial activity. The morphology and physicochemical properties of composite hydrogels were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and mechanical property tests. The results showed that the composite hydrogel was highly twistable and bendable to comply with human skin mechanically. The as-prepared hydrogel could capture efficient CCM for slow drug release and effectively kill bacteria. Therefore, such composite hydrogel is expected to provide a new management system for chronic wound dressings.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yachao Yan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingzhi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Shunde Graduate, University of Science and Technology Beijing, Foshan 528399, China
| | - Qinglin Fang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Muhammad Irfan Hussain
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Shunde Graduate, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|